Supplemental Materials for

Are People More or Less Likely To Follow Advice That Is Accompanied By A Confidence Interval?

Celia Gaertig University of California, Berkeley Joseph P. Simmons
University of Pennsylvania

Journal of Experimental Psychology: General

Table of Contents:

Supplement	Pages
1: Was It Beneficial To Follow The Advice in Studies 1-12?	1-2
2: Exploratory Measures Included in Studies 1-12	3-5
3: Analyses Including Sports Knowledge in Studies 1-10	6
4: Model Predictions in Study 11	7-11
5: Advisor's Predictions and Confidence Intervals in Study 12	12

Supplement 1: Was It Beneficial to Follow the Advice in Studies 1-12?

Tables S1 and S2 show t-tests comparing the distance between participants' own predictions and the outcome and between the model's/advisor's predictions and the outcome for Studies 1-12.

Table S1. Results for Studies 1-11 from t-tests comparing the distance between participants' own predictions and the outcome and the distance between the model's/advisor's predictions and the outcome.

Domain	Study	Advice	Model/A	Advisor mance		cipants' rmance	Effect of Model/Advisor Performance	
Domain	Study	Quality	M	SD	M	SD	vs. Participants' Performance	
				Overal	ll Data			
	1	Good	8.89	0.00	11.14	3.23	t(380) = 13.60, p < .001	
NBA	2	Good	10.78	0.06	12.50	1.98	t(376) = 16.79, p < .001	
•	3	Good	7.71	0.00	9.91	4.38	t(375) = 9.72, p < .001	
	4	Good	4.60	0.10	5.95	2.14	t(1,075) = 20.78, p < .001	
MID.	5	Good	3.86	0.73	5.38	1.39	t(1,221) = 39.26, p < .001	
MLB	6	Random	6.39	0.17	5.73	1.18	t(1,232) = -19.15, p < .001	
•	-	Good	4.34	0.52	5.98	1.30	t(599) = 29.10, p < .001	
	7	Random	7.00	0.80	5.84	1.29	t(604) = -19.97, p < .001	
	8	Good	11.05	0.45	16.02	5.90	t(1,155) = 28.73, p < .001	
NFL	9	Good	12.69	0.53	15.50	4.04	t(3,841) = 43.84, p < .001	
•	10	Good	10.35	1.05	12.43	2.69	t(1,165) = 26.93, p < .001	
COVID-19 ⁺	11	Good	6.66	4.01	653.58	9,347.24	t(3,369) = 4.02, p < .001	
				Confidenc	e Interval			
	1	Good	8.89	0.00	11.19	3.89	t(191) = 8.21, p < .001	
NBA	2	Good	10.78	0.00	12.53	1.84	t(185) = 12.98, p < .001	
•	3	Good	7.71	0.00	9.79	3.98	t(193) = 7.27, p < .001	
MLB	4	Good	4.60	0.00	5.96	2.21	t(532) = 14.22, p < .001	
•	5	Good	3.86	0.73	5.47	1.44	t(616) = 27.71, p < .001	
•	6	Random	6.39	0.25	5.74	1.27	t(622) = -12.49, p < .001	
•	7 -	Good	4.35	0.51	5.92	1.26	t(294) = 20.50, p < .001	
		Random	7.00	0.80	5.80	1.24	t(301) = -14.89, p < .001	
NFL	8	Good	11.06	0.47	16.08	6.15	t(578) = 19.74, p < .001	
•	9	Good	12.69	0.53	15.47	4.02	t(1,913) = 30.79, p < .001	
	10	Good	10.37	1.10	12.29	2.75	t(579) = 17.00, p < .001	
COVID-19 ⁺	11	Good	6.68	3.98	435.55	7,516.56	t(1,698) = 2.35, p = .019	
				No Confider	nce Interval			
	1	Good	8.89	0.00	11.09	2.39	t(188) = 12.64, p < .001	
NBA	2	Good	10.78	0.08	12.46	2.11	t(190) = 11.00, p < .001	
	3	Good	7.71	0.00	10.04	4.78	t(181) = 6.56, p < .001	
	4	Good	4.59	0.14	5.94	2.07	t(542) = 15.19, p < .001	
) III D	5	Good	3.86	0.73	5.29	1.32	t(604) = 28.10, p < .001	
MLB	6	Random	6.39	0.01	5.73	1.08	t(609) = -14.97, p < .001	
•		Good	4.34	0.53	6.04	1.33	t(304) = 20.70, p < .001	
	7 ~	Random	7.00	0.79	5.87	1.34	t(302) = -13.39, p < .001	
	8	Good	11.05	0.42	15.96	5.64	t(576) = 20.96, p < .001	
NFL	9	Good	12.70	0.54	15.54	4.05	t(1,927) = 31.21, p < .001	
	10	Good	10.32	1.01	12.57	2.61	t(585) = 21.29, p < .001	
COVID-19 ⁺	11	Good	6.65	4.05	875.27	10,895.66	t(1,670) = 3.26, p = .001	

Notes. Bolding indicates that the model/advisor outperformed participants. This was the case in all studies that entailed good advice (ps < .001). Participants were able to outperform the model/advisor in those studies that entailed random advice, i.e., Study 6 and in the random advice condition in Study 7 (ps < .001). The means for the model's/advisor's performance slightly differ across conditions for some of studies, because participants were asked to make predictions for multiple items in each of those studies, but not all participants completed all items.

⁺ The results for Study 11 hold regardless of how we deal with outliers. That is, the models' best guesses significantly outperformed participants' predictions when we exclude (a) any participants who made an initial or final prediction greater than or equal to one million (p < .001), or (b) any participants who made an initial or final prediction that was more than 50% higher than the high bound of the model to which that participant was assigned (p < .001), or (c) when we adjust participants' predictions for wrong use of format by replacing any prediction greater than or equal to 1,000,000 by that prediction divided by 1,000 (p < .001).

Table S2. Results for Study 12 from t-tests comparing the distance between participants' own predictions and the outcome and the distance between the advisor's predictions and the outcome.

Advice Quality	Advisor Performance		Partici Perfor	-	Effect of Advisor Performance vs. Participants' Performance					
Quanty	M	SE	M	SD	vs. 1 articipants 1 eriormance					
Overall Data										
Exact Truth	0	0	19.11	11.22	t(1,744) = 71.16, p < .001					
Truth off by 5	5	0	19.03	8.04	t(1,945) = 104.43, p < .001					
Truth off by 11	11	0	19.04	8.52	t(1,941) = 98.52, p < .001					
		75	% Confide	nce Inter	val					
Exact Truth	0	0	18.90	11.66	t(583) = 39.16, p < .001					
Truth off by 5	5	0	19.11	7.88	$t(651) = 61.89, \ p < .001$					
Truth off by 11	11	0	19.34	8.55	t(647) = 57.58, p < .001					
		95	% Confide	nce Inter	val					
Exact Truth	0	0	19.51	11.06	t(577) = 42.39, p < .001					
Truth off by 5	5	0	19.54	8.02	t(651) = 62.23, p < .001					
Truth off by 11	11	0	18.84	8.42	t(647) = 56.93, p < .001					
		N	o Confide	nce Interv	al					
Exact Truth	0	0	18.93	10.92	t(582) = 41.86, p < .001					
Truth off by 5	5	0	18.42	8.18	t(641) = 57.03, p < .001					
Truth off by 11	11	0	18.94	8.58	t(645) = 56.11, p < .001					

Notes. Bolding indicates that the advisor outperformed participants.

Supplement 2: Exploratory Measures Included in Studies 1-12

Table S3 lists the exploratory measures included in Studies 1-12, and Table S4 presents the results for the first set of measures, aimed at capturing participants' perceptions of the model and of their own performance.

Table S3. Exploratory Measures Included in Studies 1-12.

Measure	Included in Study	Wording				
	Participants' Pe	rceptions of the Model and of Their Own Performance				
Confidence	2.11	How much confidence do you have in the model's (advisor's) best prediction(s)?				
in Model	2-11	(1 = none; 5 = a lot)				
	2-10	How much confidence do you have in your own best predictions?				
Confidence	2-10	(1 = none; 5 = a lot)				
in Self	11	How much confidence do you have in the initial prediction that you made?				
		(1 = none; 5 = a lot)				
		On average, how many points do you think the model's best guesses will be				
	2, 3, and 8-10	away from the true point totals?				
Model		(dropdown from "0" to "40 or more" in 1 point increments)				
Distance		On average, how many hits do you think the model's (advisor's) best predictions				
	4-7 ^a	will be away from the true number of hits?				
		(dropdown from "0" to "40 or more" in 1 hit increments)				
	2, 3, and 8-10	On average, how many points do you think your best guesses will be away from				
		the true point totals?				
Self		(dropdown from "0" to "40 or more" in 1 point increments)				
Distance		On average, how many hits do you think your best predictions will be away from				
	4-7ª	the true number of hits?				
		(dropdown from "0" to "40 or more" in 1 hit increments)				
Percent Model		In general, for what percentage of games do you think the model's best				
Better	2-10	prediction would be better than your own?				
		(dropdown from "0%" to "100%" in 1% increments)				
		How hard did you try to make accurate predictions when making your own				
	1-11 ^b	predictions about the game outcomes?				
Tried Hard		(1 = I did not try hard at all; 7 = I tried extremely hard)				
	12	How hard did you try when making your predictions?				
		(1 = I did not try hard at all; 7 = I tried extremely hard)				
		Additional Participant Characteristics				
Follow MLB	4-7	How closely do you follow Major League Baseball?				
	Τ-7	(1 = not at all closely; 7 = extremely closely)				
Favorite Team	4-7	Please pick your favorite MLB team from the list below				
MLB	7 /	(dropdown with team names)				
		If you had to vote for Biden or Trump in the election this fall, who would you				
Voting	11	vote for? $(1 = I \text{ would definitely vote for Biden; } 3 = I \text{ don't know; } 5 = I \text{ would}$				
		definitely vote for Trump)				
Wearing Masks	11	Do you think that people should be required to wear a mask when they go				
Juling ividaka	11	outside? $(1 = Yes, 2 = No, 3 = I don't know)$				

Notes. In Studies 2 and 3, the Confidence in Model, Confidence in Self, and Percent Model Better questions referred to "best guess(es)" instead of "best prediction(s)" in line with the wording used in these studies.

^aIn Studies 4 and 5, the Distance questions contained a typo, such that the questions referred to "points" instead of "hits."

^bIn Study 11 (COVID-19 study), we accidently included the Tried Hard question with the same wording as for the sports studies.

Table S4. Results of the Exploratory Measures included in Studies 1-12.

			fidence	Confi		Main Effect of Confidence Interval
Domain	Study	Inte	rval	Inte	rval	(vs. No Confidence Interval)
		M	SE	M	SE	(vs. 140 Confidence Therval)
			C	onfidenc	e in Mod	lel/Advisor
NBA	2	2.65	0.06	2.96	0.07	b = 0.310, SE = 0.090, t = 3.45, p = .001
TIDII	3	2.87	0.07	3.14	0.07	b = 0.271, SE = 0.095, t = 2.87, p = .004
	4	3.56	0.04	3.51	0.04	b = -0.045, SE = 0.054, t = -0.84, p = .399
MLB	5	3.28	0.04	3.36	0.03	b = 0.077, SE = 0.050, t = 1.56, p = .120
WILD	6	2.98	0.04	3.17	0.04	b = 0.188, SE = 0.053, t = 3.54, p < .001
	7	2.80	0.04	2.92	0.04	b = 0.120, SE = 0.054, t = 2.25, p = .025
	8	3.00	0.04	3.11	0.04	b = 0.107, SE = 0.055, t = 1.95, p = .051
NFL	9	2.89	0.02	3.03	0.02	b = 0.137, SE = 0.031, t = 4.40, p < .001
	10	2.95	0.04	2.98	0.04	b = 0.039, SE = 0.055, t = 0.71, p = .475
COVID-19	11	3.14	0.03	3.15	0.03	b = 0.016, SE = 0.036, t = 0.45, p = .654
					fidence i	n Self
NBA	2	3.47	0.07	3.55	0.07	b = 0.075, SE = 0.094, t = 0.80, p = .426
11071	3	3.49	0.07	3.50	0.07	b = 0.011, SE = 0.095, t = 0.12, p = .908
MLB	4	3.10	0.04	3.08	0.04	b = -0.023, SE = 0.063, t = -0.37, p = .713
	5	3.17	0.04	3.19	0.04	b = 0.019, SE = 0.054, t = 0.36, p = .718
	6	3.15	0.04	3.14	0.04	b = -0.008, SE = 0.053, t = -0.15, p = .880
	7	3.13	0.04	3.12	0.04	b = -0.008, SE = 0.052, t = -0.15, p = .884
NFL	8	3.20	0.04	3.31	0.04	b = 0.104, SE = 0.057, t = 1.84, p = .067
	9	3.35	0.02	3.35	0.02	b = -0.004, SE = 0.032, t = -0.13, p = .899
	10	3.24	0.04	3.20	0.04	b = -0.041, SE = 0.056, t = -0.72, p = .469
COVID-19	11	3.34	0.02	3.45	0.02	b = 0.112, SE = 0.033, t = 3.42, p = .001
				Model/	Advisor 1	
NBA	2	7.48	0.26	7.26	0.31	b = -0.216, SE = 0.405, t = -0.53, p = .595
	3	7.14	0.20	7.64	0.36	b = 0.501, SE = 0.419, t = 1.20, p = .232
	4	3.91	0.15	4.09	0.17	b = 0.183, SE = 0.231, t = 0.79, p = .429
MLB	5	4.15	0.16	4.47	0.15	b = 0.326, SE = 0.220, t = 1.49, p = .138
1,122	6	4.57	0.12	4.50	0.12	b = -0.070, SE = 0.169, t = -0.41, p = .679
	7	5.11	0.13	5.21	0.15	b = 0.102, SE = 0.197, t = 0.52, p = .603
	8	7.87	0.17	8.12	0.21	b = 0.248, SE = 0.269, t = 0.92, p = .356
NFL	9	8.13	0.13	8.21	0.13	b = 0.086, SE = 0.180, t = 0.48, p = .633
	10	7.65	0.20	7.40	0.16	b = -0.249, SE = 0.253, t = -0.99, p = .325
					elf Distan	
NBA	2	5.71	0.28	5.90	0.34	b = 0.193, SE = 0.442, t = 0.44, p = .664
	3	5.54	0.20	6.37	0.33	b = 0.828, SE = 0.390, t = 2.12, p = .035
	4	4.87	0.18	4.96	0.19	b = 0.092, SE = 0.261, t = 0.35, p = .724
MLB	5	4.24	0.14	4.67	0.15	b = 0.425, SE = 0.204, t = 2.08, p = .038
	6	4.51	0.13	4.69	0.13	b = 0.174, SE = 0.186, t = 0.94, p = .349
	7	4.49	0.12	4.80	0.14	b = 0.308, SE = 0.185, t = 1.66, p = .096
	8	7.58	0.20	7.60	0.20	b = 0.024, SE = 0.283, t = 0.08, p = .932
NFL	9	7.22	0.13	7.54	0.13	b = 0.324, SE = 0.190, t = 1.70, p = .089
	10	6.70	0.20	6.75	0.18	b = 0.050, SE = 0.268, t = 0.19, p = .851

Table S4 continued. Results of the Exploratory Measures included in Studies 1-12.

Domain Stud		No Confidence Interval		Confid Inte	dence	Main Effect of Confidence Interval			
Domain	Study	M	SE	M	SE	(vs. No Confidence Interval)			
Percent Model/Advisor Better									
NBA	2	28.57	1.56	31.70	1.72	b = 3.138, SE = 2.319, t = 1.35, p = .177			
NBA	3	27.52	1.50	31.60	1.65	b = 4.087, SE = 2.236, t = 1.83, p = .068			
	4	48.17	1.25	49.70	1.22	b = 1.533 SE = 1.751, t = 0.88, p = .382			
MLB	5	40.74	1.05	40.56	1.02	b = -0.186, SE = 1.465, t = -0.13, p = .899			
	6	35.14	0.98	40.50	1.06	b = 5.365, SE = 1.448, t = 3.70, p < .001			
	7	32.86	0.96	36.91	1.03	b = 4.049, SE = 1.407, t = 2.88, p = .004			
	8	34.70	1.03	35.68	1.07	b = 0.982, SE = 1.485, t = 0.66, p = .508			
NFL	9	31.39	0.54	33.90	0.56	b = 2.514, SE = 0.779, t = 3.23, p = .001			
	10	33.96	0.99	34.35	0.97	b = 0.383, SE = 1.381, t = 0.28, p = .782			
				T	ried Ha	rd			
	1	6.19	0.08	6.19	0.07	b = 0.008, SE = 0.109, t = 0.07, p = .945			
NBA	2	6.31	0.07	6.34	0.06	b = 0.032, SE = 0.093, t = 0.34, p = .731			
	3	6.08	0.08	6.21	0.08	b = 0.129, SE = 0.119, t = 1.08, p = .280			
	4	5.98	0.05	5.92	0.05	b = -0.053, SE = 0.069, t = -0.77, p = .442			
MLB	5	5.84	0.05	5.86	0.05	b = 0.019, SE = 0.067, t = 0.29, p = .774			
WILD	6	5.88	0.05	5.86	0.05	b = -0.020, SE = 0.066, t = -0.30, p = .763			
	7	5.82	0.05	5.77	0.05	b = -0.042, SE = 0.067, t = -0.63, p = .531			
	8	6.21	0.04	6.23	0.04	b = 0.020, SE = 0.061, t = 0.33, p = .743			
NFL	9	6.28	0.02	6.25	0.02	b = -0.030, SE = 0.031, t = -0.96, p = .339			
	10	6.17	0.04	6.16	0.04	b = -0.009, SE = 0.056, t = -0.15, p = .877			
COVID-19	11	6.10	0.02	6.11	0.03	b = 0.008, SE = 0.035, t = 0.22, p = .828			
Preferences	12	6.17	0.04	6.18	0.03	b = 0.008, SE = 0.045, t = 0.18, p = .857			

Notes. For the analysis of the Tried Hard measure in Study 12, we collapsed the two confidence interval conditions into one condition.

Supplement 3: Analyses Including Sports Knowledge in Studies 1-10

At the end of each of Studies 1-10, we presented participants with a set of knowledge questions about the sport they were predicting. Specifically, in Studies 1-3 (NBA) and 4-7 (MLB), we asked participants to identify the teams of four different players and to indicate which teams had the best and worst records at the time of the study. And in Studies 8-10 (NFL), we asked participants, for a series of eight different pairs of teams, which of the teams had scored more points this season so far. From participants' answers to these questions we constructed a variable indicating how much participants know about the respective sport.

Table S5 presents the results from analyses regressing the dependent measure of each study on (1) the confidence interval condition, (2) the sports knowledge variable (mean-centered), and (3) their interaction. The last column shows hat participants' sports knowledge did not interact with the effect of the confidence interval condition in any of our studies ($ps \ge .138$).

Table S5. Analyses including sports knowledge.

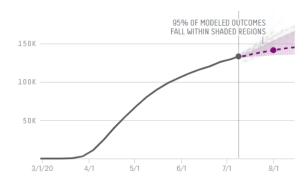
Sport	Study	Main Effect of Confidence Interval	Main Effect of Sports Knowledge	Interaction
	1	b = .020, SE = .030, t = .69, p = .493	b =032, SE = .007, t = -4.26, p < .001	b = .002, SE = .015, t = .12, p = .906
NBA	2	b = .064, SE = .026, t = 2.50, p = .013	b =016, SE = .007, t = -2.29, p = .022	b = .014, SE = .014, t = 1.01, p = .311
	3	b = .070, SE = .036, t = 1.96, p = .051	b =005, SE = .009, t =59, p = .556	b = .004, SE = .018, t = .25, p = .804
	4	b =003, SE = .018, t =18, p = .858	b =034, SE = .005, t = -7.00, p < .001	b = .006, SE = .010, t = .60, p = .546
MLB -	5	b = .011, SE = .016, t = .72, p = .473	b =019, SE = .004, t = -4.58, p < .001	b = .001, SE = .008, t = .11, p = .915
MILD .	6	b = .042, SE = .015, t = 2.84, p = .005	b =025, SE = .004, t = -6.70, p < .001	b =002, SE = .007, t =29, p = .774
	7	b = .023, SE = .015, t = 1.54, p = .125	b =005, SE = .004, t = -1.36, p = .174	b = .008, SE = .008, t = 1.05, p = .296
	8	b = .034, SE = .018, t = 1.86, p = .063	b =051, SE = .006, t = -9.22, p < .001	b =013, SE = .011, t = -1.20, p = .230
NFL	9	b = .027, SE = .009, t = 2.93, p = .003	b =051, SE = .003, t = -20.11, p < .001	b =007, SE = .005, t = -1.48, p = .138
	10	b = .025, SE = .016, t = 1.58, p = .114	b =029, SE = .004, t = -6.53, p < .001	b = .011, SE = .009, t = 1.24, p = .214

Supplement 4: Model Predictions in Study 11

Table S6 shows the predictions made by the 16 models that we used in Study 11. On the following pages, we also display screenshots of the 16 models obtained from the website Fivethirtyeight.com on the day the study was run. The screenshots contain each model's best prediction, the 95% confidence interval around the prediction, a graphical display of the prediction, and a brief description of the model.

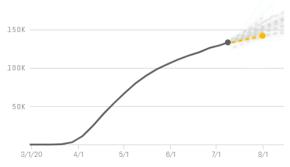
Table S6. Model predictions used in Study 11 (obtained from the website Fivethirtyeight.com on July 10, 2020)

Madal	Model -	Predicted number of deaths due to COVID-19 in the U.S. by August 1, 2020						
Model Number	Name	Best	95% Confidence Interval					
Number	rvaine	Prediction	Lower Bound	Upper Bound				
1	Los Alamos	141,000	135,000	153,000				
2	University of Arizona	142,000	139,000	147,000				
3	UCLA	142,000	138,000	150,000				
4	Georgia Tech	142,000	139,000	146,000				
5	Youyang Gou	146,000	140,000	153,000				
6	Northeastern University	146,000	140,000	158,000				
7	IHME	147,000	145,000	149,000				
8	University of Texas	148,000	144,000	153,000				
9	COVID-19 Simulator	149,000	139,000	153,000				
10	University of Mass	151,000	141,000	168,000				
11	COVID Act Now	151,000	148,000	155,000				
12	U.S. Army	153,000	149,000	158,000				
13	Ioawa State	154,000	150,000	158,000				
14	Johns Hopkins University	159,000	151,000	172,000				
15	MIT	160,000	158,000	162,000				
16	Columbia University	166,000	151,000	192,000				


Notes. The number of confirmed deaths due to COVID-19 in the U.S. as of July 9, 2020 was 133,290, and this number was provided to participants on the day the study was run (July 10, 2020). Participants were asked to predict the number of deaths reported at 7pm Easter Time on August 1, 2020, which turned out to be 152,870.

Model 1 Model 2

See forecasts from Today ▼


Deaths as of July 9: # 133,290

This model assumes that there will continue to be interventions, such as stay-at-home orders, but it does not specifically assume what those interventions will be. Instead, it considers various possible interventions to arrive at its forecast, which typically results in wider prediction intervals than a model with stricter assumptions.

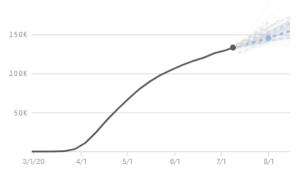
This model assumes that current interventions will remain in effect for at least four weeks after the forecasts were made.

Model 3

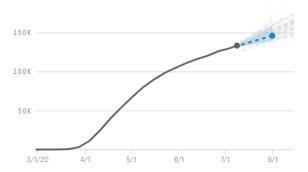
Model 4

8

Model 5

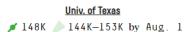

Model 6

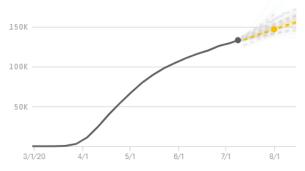
See forecasts from Today ▼ Deaths as

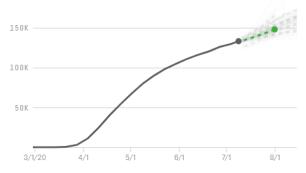

Deaths as of July 9: # 133,290 According to Johns Hopkins Univ.

This model assumes that there is heavily reduced contact between people in states with stay-at-home orders, and uses a schedule of state reopening dates to project when contact between people will increase in each state.

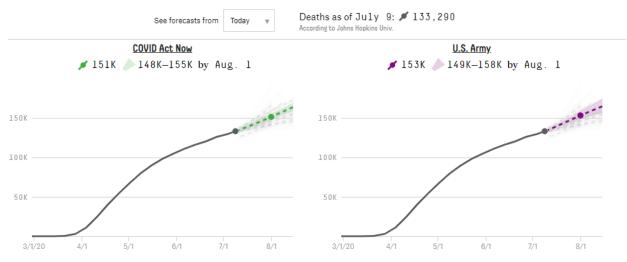
This model assumes each state's current social distancing policies will continue indefinitely.


Model 7


Model 8


Deaths as of July 9: # 133,290 According to Johns Hopkins Univ.

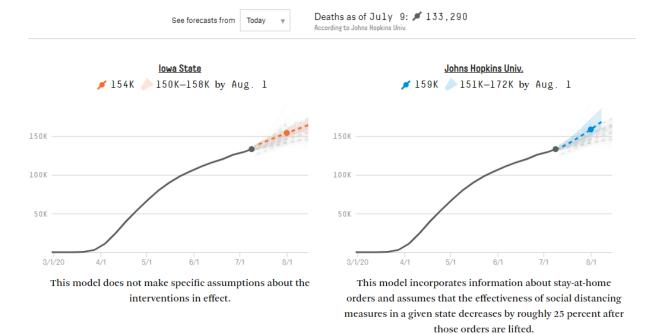
This model combines anonymized mobile phone data and current social distancing policies to estimate how much contact exists between people in a given area. It assumes that current policies and movement patterns will continue until new infections drop to a very small number. The model was changed significantly on May 4.



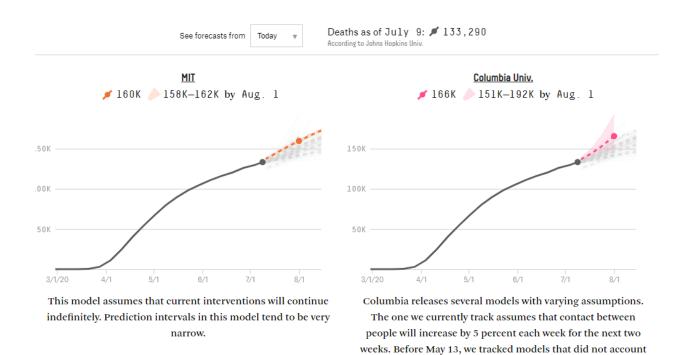
This model uses anonymized mobile data and assumes that people's movement levels won't deviate from the previous week.

Model 9 Model 10

Model 11 Model 12


The COVID Act Now model — which has state forecasts but no national forecast — assumes that current interventions are reflected in the observed data and those effects will continue in the future.

mobility as each state reopens.


This model assumes that current interventions will continue through the forecasted period.

remain similar over the forecast horizon.

Model 13 Model 14

Model 15 Model 16

for states reopening.

Supplement 5: Advisor's Predictions and Confidence Intervals in Study 12

Table S7. Advisor's best guesses and corresponding confidence intervals used in Study 12.

Itom	Torio	True	Best Guess	Advisor's	75% Confide	ence Interval	95% Confide	ence Interval
Item	Topic	Answer	Condition	Best Guess	Lower Bound	Upper Bound	Lower Bound	Upper Bound
1	Cookies	26	Off By 0	26	21	31	17	35
2	Coffee	30	Off By 0	30	25	35	21	39
3	Cat/dog	39	Off By 0	39	33	45	29	49
4	iPad	41	Off By 0	41	35	47	31	51
5	Ice cream	44	Off By 0	44	38	50	34	54
6	YouTube	53	Off By 0	53	47	59	43	63
7	Spring/Summer	56	Off By 0	56	50	62	46	66
8	Politics/Sports	56	Off By 0	56	50	62	46	66
9	Travel	71	Off By 0	71	66	76	62	80
10	Twitter	74	Off By 0	74	69	79	65	83
1	Cookies	26	Off By -5	21	16	26	13	29
2	Coffee	30	Off By -5	25	20	30	16	34
3	Cat/dog	39	Off By -5	34	28	40	24	44
4	iPad	41	Off By -5	36	30	42	26	46
5	Ice cream	44	Off By -5	39	33	45	29	49
6	YouTube	53	Off By -5	48	42	54	38	58
7	Spring/Summer	56	Off By -5	51	45	57	41	61
8	Politics/Sports	56	Off By -5	51	45	57	41	61
9	Travel	71	Off By -5	66	61	71	57	75
10	Twitter	74	Off By -5	69	64	74	60	78
1	Cookies	26	Off By +5	31	26	36	22	40
2	Coffee	30	Off By +5	35	30	40	26	44
3	Cat/dog	39	Off By +5	44	38	50	34	54
4	iPad	41	Off By +5	46	40	52	36	56
5	Ice cream	44	Off By +5	49	43	55	39	59
6	YouTube	53	Off By +5	58	52	64	48	68
7	Spring/Summer	56	Off By +5	61	55	67	51	71
8	Politics/Sports	56	Off By +5	61	55	67	51	71
9	Travel	71	Off By +5	76	71	81	67	85
10	Twitter	74	Off By +5	79	74	84	70	88
1	Cookies	26	Off By -11	15	10	20	8	22
2	Coffee	30	Off By -11	19	14	24	10	28
3		39	•	28	22	34	18	38
	Cat/dog		Off By -11		24			38 40
4 5	iPad	41 44	Off By -11	30 33	27	36 39	20 23	43
6	Ice cream		Off By -11		36			52
	YouTube	53	Off By -11	42		48	32	
7	Spring/Summer	56	Off By -11	45 45	39	51 51	35 35	55 55
8	Politics/Sports	56 71	Off By -11	45	39			
9	Travel	71	Off By -11	60	55	65	51	69
10	Twitter	74	Off By -11	63	58	68	54	72
1	Cookies	26	Off By +11	37	32	42	28	46
2	Coffee	30	Off By +11	41	36	46	32	50
3	Cat/dog	39	Off By +11	50	44	56	40	60
4	iPad	41	Off By +11	52	46	58	42	62
5	Ice cream	44	Off By +11	55	49	61 	45	65
6	YouTube	53	Off By +11	64	58	70	54	74
7	Spring/Summer	56	Off By +11	67	61	73	57	77
8	Politics/Sports	56	Off By +11	67	61	73	57	77
9	Travel	71	Off By +11	82	77	87	73	91
10	Twitter	74	Off By +11	85	80	90	76	94

Notes. Items 1-10 asked about: (1) preference for peanut butter cookies over chocolate chip cookies, (2) drinking at least 10 cups of coffee in a week, (3) preference for having a cat over a dog, (4) owning an iPad, (5) preference for vanilla over chocolate ice cream, (6) having posted a video on YouTube, (7) preference for Spring over Summer, (8) interest for politics over sports, (9) having travelled outside of the US, and (10) having a Twitter account. See Table 4 in the main text for the exact item wording. We obtained the true answers from a pilot study, and we generated the confidence intervals around the different types of best guesses using margin of error calculations for binary questions.