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Figure S1. Experiment 1: Parameter estimates for all components of the drift regression (A) and 
order effects (B).  The fixed drift rate (b0), the weight on healthy relative to unhealthy (!"

!#
), and 

the average drift rate (v) are shown. We calculated the average drift rate using values of 5 (the 
average rating for a food) for both items in the drift rate formula (Equation 2). 
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(B) 

 
Figure S2.  Experiment 1: Relationship between individual-level fixed drift bias and starting 
point bias vs. choice bias (A) and vs. mean RT difference (B).  Choice bias is the probability of 
choosing the healthy option. Mean RT difference is the difference between a subject’s mean RT 
for healthy choices and their mean RT for unhealthy choices. Both drift rates and starting points 
help to explain subjects’ choices and RT.  



 

 

Figure S3.  Experiment 1 time trends where starting point (z) (left); z and boundary separation 
(a) (center); and z, a, and non-decision time (ndt) (right) depend on trial. Even when accounting 
for how a and ndt change with trial number, the results remain essentially unchanged. 

  



 

Figure S4.  Experiment 1: Parameter estimates for the analysis of time trends in starting point.  
Starting point (top row) was regressed on trial with a logistic link function:  𝑙𝑜𝑔𝑖𝑡(𝑧) = 	 𝛾/ +
𝛾1 × 𝑇𝑟𝑖𝑎𝑙.  All intercepts (𝛾/, healthy bias) were zero, indicating that subjects did not exhibit a 
predisposition.  The coefficient on the trial regressor (𝛾1) was either positive or negative 
depending on whether the store generally had better healthy items or unhealthy items.  The drift 
rate function (bottom row) was extended to include Trial as a regressor:  𝑣 =
	𝛽/ + 	𝛽1	´		𝐻𝑒𝑎𝑙𝑡ℎ𝑦	𝑅𝑎𝑡𝑖𝑛𝑔 − 	𝛽?	´	𝑈𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦	𝑅𝑎𝑡𝑖𝑛𝑔 + 𝛽A	´	𝑇𝑟𝑖𝑎𝑙.  The intercept 
(𝛽/)	corresponds to an evaluation bias towards one of the categories (healthy or unhealthy) at the 
beginning of the block. The coefficients on the trial regressor (𝛽A) did not credibly differ from 
zero in either condition suggesting no change in the evaluation bias over the course of the block. 

 
  



 (A) 

 

(B) 

 

Figure S5.  Relationship between individual-level starting point bias and fixed drift bias for 
Experiment 2A (A) and Experiment 2B (B).  Data are presented separately for the Coin (N=57, 
76), Double (N=58, 85), and Proportion/Demand (N=66, 89) conditions.  In all conditions, fixed 
drift bias was positively correlated with starting-point bias, indicating that the stronger the 
average fixed drift bias toward the target options, the stronger the expectation that the target side 
was better.  
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Figure S6.  Experiment 2A (A) and 2B (B) time trends, where starting point (z) (left); z and 
boundary separation (a) (center); and z, a, and non-decision time (ndt) (right) depend on trial. 
Even when accounting for how a and ndt change with trial number, the results remain essentially 
unchanged.  
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Figure S7.  Parameter estimates for the analysis of time trends in starting point for Experiment 
2A (A) and 2B (B).  Starting point was regressed on trial with a logistic link function:  
𝑙𝑜𝑔𝑖𝑡(𝑧) = 	𝛾/ + 𝛾1 × 𝑇𝑟𝑖𝑎𝑙.  All intercepts (𝛾/) were zero, indicating that subjects did not 
initially exhibit a predisposition.  The coefficient on the trial regressor (𝛾1) was positive in the 
Proportion, CoinB, and DoubleB conditions where predispositions were reinforced, and zero in 
the Demand, CoinA, and DoubleA conditions where predispositions were not reinforced. 

 



 
Figure S8.  Experiment 2 evaluation bias.  Drift biases were estimated as a function of trial 
number.  Based on this model, we estimate the drift biases at the beginning (Trial 1) and end 
(Trial 150) of each condition.  These results suggest that the evaluation biases did not credibly 
change from the beginning to the end of the block. 
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Figure S9. Trace plots.  A visual inspection of all traces indicates convergence. For the 
Experiment 1 models (A) and the Experiment 2 time trends analyses (B and C, right), 3 chains of 
2000 samples with 1000 burn-in were run. Concatenated sample from the 3 chains are displayed.  
All R-hats < 1.1. For the Experiment 2 static models (B and C, left), 1 chain of 6000 samples 
with 3000 burn-in was run. 

  



(A) 

 
 
(B) 

   
(C) 

  
Figure S10. Quantile-Probability Plots.  For each model, we generated 500 datasets using the 
estimated parameter values.  The data is binned by choice (chose Healthy/Target vs. chose 
Unhealthy/non-Target) and by value difference (positive value difference, equally valued, 
negative value difference). The y-axis shows the mean RT at the 0.1, 0.3, 0.5, 0.7, and 0.9 
quantiles for observed vs. simulated data. The x-axis shows the probability of choosing either 
Target/Healthy or non-Target/Unhealthy.  The static models are on the left and the time trend 
models are on the right. 



 (A) 
 Experiment 2A   

Third of Trials Coin Double Proportion 

First Third 0.443 (0.031) 0.557 (0.026) 0.644 (0.015) 

Middle Third 0.417 (0.033) 0.552 (0.026) 0.645 (0.014) 

Last Third 0.403 (0.035) 0.508 (0.032) 0.644 (0.016) 

 

(B) 

 Experiment 2B   

Third of Trials Coin Double Demand 

First Third 0.677 (0.016) 0.650 (0.015) 0.506 (0.010) 

Middle Third 0.677 (0.015) 0.659 (0.014) 0.507 (0.008) 

Last Third 0.664 (0.018) 0.697 (0.014) 0.524 (0.011) 

 

Table S1.  Probability of selecting the target option for trials binned by the first third, middle 
third, and last third of trials for Experiment 2A (A) and Experiment 2B (B).  Each bin has 
approximately 50 trials.   

  



Behavioral Analyses 

In Experiment 1, we modeled the behavioral data with following mixed-effects logistic 

regression allowing for subject-level random effects for the slopes and intercept: 

𝑙𝑜𝑔𝑖𝑡(𝐶ℎ𝑜𝑜𝑠𝑒	𝐻𝑒𝑎𝑙𝑡ℎ𝑦)

= 	𝛽/ +	𝛽1´	(𝐻𝑒𝑎𝑙𝑡ℎ𝑦	𝑅𝑎𝑡𝑖𝑛𝑔 − 𝑈𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦	𝑅𝑎𝑡𝑖𝑛𝑔) + 𝛽?´	𝐵𝑒𝑡𝑡𝑒𝑟	𝐶𝑎𝑡𝑒𝑔𝑟𝑜𝑦 

In Experiment 2, we modeled the behavioral data with following mixed-effects logistic 

regression allowing for subject-level random effects for the slope and intercept: 

𝑙𝑜𝑔𝑖𝑡(𝐶ℎ𝑜𝑜𝑠𝑒	𝑇𝑎𝑟𝑔𝑒𝑡) = 	𝛽/ + 𝛽1 × 𝑉𝑎𝑙𝑢𝑒	𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

 

In Experiment 1, we modeled the RT data with the following mixed-effects regression allowing 

for subject-level random effects for the slopes and intercept: 

𝑙𝑜𝑔(𝑅𝑇) = 	𝛽/ + 𝛽1´|𝐻𝑒𝑎𝑙𝑡ℎ𝑦	𝑅𝑎𝑡𝑖𝑛𝑔 − 𝑈𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦	𝑅𝑎𝑡𝑖𝑛𝑔|

+	𝛽?´(𝑇𝑎𝑟𝑔𝑒𝑡	𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦	𝐼𝑠	𝐻𝑖𝑔ℎ𝑒𝑟	𝑉𝑎𝑙𝑢𝑒𝑑) 

In Experiment 2, we modeled the RT data with two mixed-effects regression allowing for 

subject-level random effects for the slopes and intercept.  The first was identical to the RT 

regression Experiment 1: 

𝑙𝑜𝑔(𝑅𝑇) = 	𝛽/ + 𝛽1´|𝑉𝑎𝑙𝑢𝑒	𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒| +	𝛽?´(𝑇𝑎𝑟𝑔𝑒𝑡	𝐼𝑠	𝐻𝑖𝑔ℎ𝑒𝑟	𝑉𝑎𝑙𝑢𝑒𝑑) 

And we conducted a second analysis using a quadratic regression: 

𝑙𝑜𝑔(𝑅𝑇) = 	𝛽/ + 𝛽1 × 𝑉𝑎𝑙𝑢𝑒	𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 +	𝛽? × 𝑉𝑎𝑙𝑢𝑒	𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒? 

 
  



Experiment 2 RT Analyses 
 

We examined the inverted U-shape in the RT curves. We expected the peaks to coincide 

with the indifference points from the choice data (Figure 7A).  In other words, we expected to 

find peaks in the RT curves when the targets were rated lower than the non-targets.  To test these 

two hypotheses, we ran mixed-effects regressions with log(RT) as a function of Value Difference 

and Value Difference2, with random effects of subject on the intercept and slope.   

In Experiment 2A, we found significant quadratic effects in the DoubleA (b2 = -0.708, t = 

-2.60, p = 0.01) and Proportion (b2 = -1.47, t = -4.15, p = 10-5) conditions, but not in the CoinA 

condition (b2 = 0.0001, t = 0.00, p = 1).  From the linear coefficients of the model we can derive 

the peaks of the RT curves, which were estimated to be –at 0.382 in the Proportion condition and 

–0.473 in the DoubleA condition.  Unfortunately, in the CoinA condition, the range of value 

differences that we selected for the experiment (Target – Non-target: [-6, -2]) was not ideal for 

testing these hypotheses because subjects were on average indifferent at –2.  Therefore, in this 

condition, we were not set up to detect both sides of the inverted-U, only one side of it, which is 

indistinguishable from a linear increase.   

 In Experiment 2B, the inverted-U-shaped RT curves were also biased, with peaks to the 

left of value difference = 0 (Figure 7B), mirroring the choice data.  The mixed-effects 

regressions indicated quadratic effects in the CoinB (b2 = –0.432, t = -6.46, p = 10-8), DoubleB (b2 

= –0.443, t = -8.92, p = 10-13), and Demand (b2 = –0.547, t = -10.2, p = 10-16) conditions.  From 

the linear coefficients of the model we can derive the peaks of the RT curves, which were 

estimated to be at –2.44 in the DoubleB condition, –2.50 in the CoinB condition, and –0.301 in the 

Demand condition.   



Thus, in the majority of the conditions, we verify the inverted-U shape and that the peaks 

of the RT curves were shifted in the expected direction.  



Priors 
 

Using HDDM, we fit hierarchical Bayesian models. With these hierarchical models, we 

can estimate individual-level and group-level parameters concurrently. Individual-level 

parameters are assumed to come from group-level distributions, defined by the group-level 

parameters. For instance, a subject’s starting point bias (z) follows a group-level normal 

distribution parameterized by a mean (µz) and standard deviation (sz).  The priors on the 

parameters are specified below: 

Static Model: 
µa ~ Gamma(1.5, 0.75) 
µt ~ Normal(0.4, 0.3) 
µz ~ Normal(0.5, 0.5) 
µb0 ~ Normal(2, 3) 
µb1-2 ~ Normal(0, 15)  
 
sa ~ Half-Normal(var = 0.1) 
st ~ Half-Normal(1) 
sz ~ Half-Normal(0.05) 
sb0 ~ Half-Normal(2) 
sb1-2 ~ Uniform(lower = 10-10, upper = 100) 
 
sv ~ Half-Normal(2) 
st ~ Half-Normal (0.3) 
sz ~ Beta(a = 1, b = 3) 
 
asubject ~ Gamma(µa, sM?) 
tsubject ~ Gamma(µt, sN?) 
zsubject ~ invlogit( Normal(µz, sO?) ) 
b0,subject ~ Normal(µb0, sb/? ) 
b1-2,subject ~ Normal(µb1-2, sb1P?	? ) 
 
Time Trends Model: 
µa ~ Gamma(1.5, 0.75) 
µt ~ Normal(0.4, 0.3) 
µz ~ Normal(0.5, 0.5) 
µb0 ~ Normal(2, 3) 
µb1-3 ~ Normal(0, 15) 
µg0 ~ Normal(0, 15) 
µg1 ~ Normal(0, 15) 



 
sa ~ Half-Normal(var = 0.1) 
st ~ Half-Normal(1) 
sz ~ Half-Normal(0.05) 
sb0 ~ Half-Normal(2) 
sb1-3 ~ Uniform(lower = 10-10, upper = 100) 
sg0 ~ Uniform(lower = 10-10, upper = 100) 
sg1 ~ Uniform(lower = 10-10, upper = 100) 
 
sv ~ Half-Normal(2) 
st ~ Half-Normal(0.3) 
sz ~ Beta(1, 3) 
 
asubject ~ Gamma(µa, sM?) 
tsubject ~ Gamma(µt, sN?) 
b0,subject ~ Normal(µb0, sb/? ) 
b1-3,subject ~ Normal(µb1-3, sb1PA	? ) 
g0,subject ~ Normal(µg0, sg/? ) 
g1,subject ~ Normal(µg1, sg1? ) 
  



Modifications to the HDDM code 
 

We modified the HDDM code because there is a problem with the prior on the intercept 

in the starting point regressions when one is using the inverse logit link function.  The HDDM 

code is set up so that the intercept and other regression coefficients have different prior 

distributions.  The intercept's distribution is based on the distribution of the parameter in the 

standard (non-regression-based) model, while the other regression coefficients have Normal 

distributions.  In most cases this is fine. 

However, there is a problem with starting points.  The problem is that starting points 

range from 0 to 1. Therefore, in the tutorial/documentation, users are instructed to use an inverse-

logit link function, which “transforms values between plus and minus infinity into values ranging 

from (just above) 0 to (nearly) 1.”  If a user follows these instructions, they are running the 

following regression:  

𝑧 = 	
1

1 + exp	(−b/ +	b1 × 𝑋1)
 

However, because z has a [0,1] distribution, the HDDM code gives	b/	that prior 

distribution as well.  The result is that b/ is constrained to be in [0,1], when in reality	b/ should 

be “between plus and minus infinity” with mean = 0, not 0.5. In other words, the intercept in the 

argument to the inverse logit function is constrained, when instead, it is the output of the inverse 

logit that should be constrained to [0,1]. The result is that the “baseline” starting points (i.e., the 

inverse logit of the intercept), will always be above 0.5.   

There are multiple solutions to this problem. One of which is to remove the inverse logit 

prior on the starting point intercept and replace it with a Normal. This way, the untransformed 



beta will not be constrained from 0 to 1.  A second possibility is keeping the inverse logit prior 

on the starting point intercept but use a linear link function. We chose the first solution, as shown 

in the description of our priors. 

  



Experiment 1 – Drift bias components (Figure S1) 
 

We conducted an analysis, which was not pre-registered, to test whether the store 

influenced the weight on the healthy food relative to the unhealthy food (!"
!#

) in Equation 2. We 

did find a difference in the relative weight between stores (Healthy Better store: 	 !"
!#
	 = 0.986 

(0.855, 0.111); Unhealthy Better store:  !"
!#
	 = 0.735 (0.632, 0.839)). But because the relative 

weight (!"
!#
)	 and the intercept (b0) pointed in opposite directions, we conducted an additional 

analysis, combining the relative weight and the intercept to test whether the average total drift 

rate differed between the Healthy Better and Unhealthy Better stores.  To do so, we calculated 

the total drift rate for average-valued healthy and unhealthy foods. In other words, we used 

values of 5 (the average rating for a food) for both items in the drift rate formula (Equation 2).  

Here, HDIs for the average total drift rates heavily overlapped (Healthy Better store:  	𝑣 = 0.163 

(-0.150, 0.446); Unhealthy Better store:  	𝑣		= -0.187 (-0.486, 0.139)), suggesting that the 

evaluation process did not credibly differ between the Healthy Better and Unhealthy Better 

stores (see Figure S1A).  Moreover, the difference between the distributions contains 0, further 

indicating no credible difference in the average drift rates (∆v = 0.351 (-0.087, 0.783)). 

 Next, we examined the components of the drift rate for both sets of subjects (see Figure 

S1B).  The weight on healthy relative to unhealthy remained the same for subjects who entered 

the Healthy Better store first (Healthy Store: !"
!#
	 = 0.923 (0.762, 1.07); Unhealthy Store:  !"

!#
	 = 

0.665 (0.520, 0.815)) and for those who entered the Unhealthy Better store first (Unhealthy 

Store: !"
!#
	 = 0.832 (0.698, 0.978); Healthy Store:  !"

!#
	 = 1.07 (0.841, 1.31)).  



Then, we confirmed that the average drift rate did not change from Phase 1 to Phase 2, 

irrespective of the store the subject entered first. For subjects who entered the Healthy Better 

store in Phase 1, their average drift did not change across stores (Healthy Store:  	𝑣 = 0.113 (-

0.137, 0.351); Unhealthy Store:  	𝑣		= 0.459 (-0.0345, 0.927)), as well as for subjects who entered 

the Unhealthy Better store first (Unhealthy Store:  	𝑣 = 0.287 (0.041, 0.557); Healthy Store:  	𝑣		= 

0.385 (-0.104, 0.858)). 

  



Experiment 2 - Drift sensitivity 

We explored how the conditions influenced drift sensitivity, i.e. the coefficient on Value 

Difference in Equation 5 (b1).  The coefficient on Value Difference was greater in the Proportion 

(b1 = 0.442 (0.385, 0.503)) and Demand conditions (b1 = 0.445 (0.41, 0.481)) relative to the Coin 

(CoinA:  b1 = 0.27 (0.233, 0.318); CoinB:  b1 = 0.278 (0.25, 0.307)) and Double (DoubleA:  b1 = 

0.211 (0.177, 0.246); DoubleB:  b1 = 0.26 (0.235, 0.282)) conditions.  This indicates that in the 

Coin and Double conditions, the uncorrected value difference did not play as great of a role in 

determining drift.  The largest coefficients in the Proportion and Demand conditions were as 

hypothesized, while the lack of difference between the Coin and Double conditions differed from 

what we expected based on the logistic regression results. 

  



Time Trend Analyses 
 

We modelled z as a function of trial and used the inverse logit link function to restrict z to 

values between 0 and 1:  

 

𝑧 = 	
1

1 + exp	(−g/ +	g1 × 𝑇𝑟𝑖𝑎𝑙)
 

 

Here, a non-zero g/ reflects a bias towards the target (positive) or non-target (negative) at the 

start of the condition.  A positive g1 indicates that the starting point bias is increasing with time, 

and a negative g1 indicates that it is decreasing with time. 

  



Experiment 1 Time Trends Model Comparison 

We conducted a model comparison exercise between the following 4 models, specified below: 

1. A linear relationship between predisposition and trial 

2. A logarithmic relationship between predisposition and trial  

3. A quadratic relationship between predisposition and trial (in addition to the linear 

relationship) 

4. A logarithmic relationship between predisposition and trial (in addition to the linear 

relationship) 

Model 1 

𝑣	 = 	𝛽/ + 	𝛽1	´		𝐻𝑒𝑎𝑙𝑡ℎ𝑦	𝑅𝑎𝑡𝑖𝑛𝑔 − 	𝛽?	´	𝑈𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦	𝑅𝑎𝑡𝑖𝑛𝑔 + 𝛽A	´	𝑇𝑟𝑖𝑎𝑙 

𝑙𝑜𝑔𝑖𝑡(𝑧) = 	𝛾/ + 𝛾1 × 𝑇𝑟𝑖𝑎𝑙  

Model 2  

𝑣	 = 	𝛽/ + 	𝛽1	´		𝐻𝑒𝑎𝑙𝑡ℎ𝑦	𝑅𝑎𝑡𝑖𝑛𝑔 − 	𝛽?	´	𝑈𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦	𝑅𝑎𝑡𝑖𝑛𝑔 + 𝛽A	´		log	(𝑇𝑟𝑖𝑎𝑙) 

𝑙𝑜𝑔𝑖𝑡(𝑧) = 	𝛾/ + 𝛾1 × log	(𝑇𝑟𝑖𝑎𝑙)  

Model 3 

𝑣	 = 	𝛽/ + 	𝛽1	´		𝐻𝑒𝑎𝑙𝑡ℎ𝑦	𝑅𝑎𝑡𝑖𝑛𝑔 − 	𝛽?	´	𝑈𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦	𝑅𝑎𝑡𝑖𝑛𝑔 + 𝛽A	´	𝑇𝑟𝑖𝑎𝑙

+ 𝛽Z	´	𝑇𝑟𝑖𝑎𝑙? 

𝑙𝑜𝑔𝑖𝑡(𝑧) = 	𝛾/ + 𝛾1 × 𝑇𝑟𝑖𝑎𝑙 + 𝛾?	´	𝑇𝑟𝑖𝑎𝑙?  

Model 4 

𝑣	 = 	𝛽/ + 	𝛽1	´		𝐻𝑒𝑎𝑙𝑡ℎ𝑦	𝑅𝑎𝑡𝑖𝑛𝑔 − 	𝛽?	´	𝑈𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦	𝑅𝑎𝑡𝑖𝑛𝑔 + 𝛽A	´	𝑇𝑟𝑖𝑎𝑙

+ 𝛽Z	´	log	(𝑇𝑟𝑖𝑎𝑙) 

𝑙𝑜𝑔𝑖𝑡(𝑧) = 	𝛾/ + 𝛾1 × 𝑇𝑟𝑖𝑎𝑙 + 𝛾? × log	(𝑇𝑟𝑖𝑎𝑙)  

 
 



(A) 
 

 Experiment 1 DIC  

Model Healthy Better Store Unhealthy Better Store 

1 29811.7 29907.7 

2 29801.4 29913.0 

3 29793.5 29906.2 

4 29795.8 29899.4 

 
(B) 
 

Experiment 1 Parameter Estimates for Best Fitting Model (95% HDI) 

Parameter Healthy Better Store (Model 3) Unhealthy Better Store (Model 4) 

𝛾/ -0.143 (-0.263, -0.028) 0.190 (0.010, 0.363) 

𝛾1 0.009 (0.006, 0.012) -0.002 (-0.004, -0.001) 

𝛾? -0.00003 (-0.00005, -0.00002) -0.060 (-0.120, -0.003) 

 

Table S2.  Experiment 1 model comparison results (A) and parameter values for the best fitting 
models (B).  A lower DIC indicates a better fit. We find that for the Healthy Better Store, Model 
3 fits the data best and that for the Unhealthy Better Store, Model 4 fits the data best.  Overall, 
Model 4 is the best model, though by a small margin.  None of the models substantially 
outperform the simple linear model. In the Healthy Better store, the coefficient on the linear trial 
term is positive, indicating that the starting point bias increases towards the healthy option with 
trial number.  However, the coefficient on the quadratic term is negative. This indicates a 
flattening of the curve later in the block, as can be seen in Figure S11.  In the Unhealthy Better 
store, the coefficient on the linear term is negative, indicating that the starting point bias 
increases towards the unhealthy option with trial number.  The coefficient on the logarithmic 
term is negative, again indicating a flattening of the curve later in the block, as can be seen 
Figure S11. 

  



 

Figure S11. Experiment 1 graphs for all starting point models (left) and the best fitting starting 
point models (right). Red is Healthy Better, and blue is Unhealthy Better.      
  



Experiment 2 Time Trends Model Comparison 

We conducted a model comparison exercise between the following 4 models, specified below: 

1. A linear relationship between predisposition and trial 

2. A logarithmic relationship between predisposition and trial  

3. A quadratic relationship between predisposition and trial (in addition to the linear 

relationship) 

4. A logarithmic relationship between predisposition and trial (in addition to the linear 

relationship) 

Model 1 

𝑣	 = 	𝛽/ + 	𝛽1	´		𝑉𝑎𝑙𝑢𝑒	𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + 	𝛽?	´	𝑇𝑎𝑟𝑔𝑒𝑡	𝑉𝑎𝑙𝑢𝑒 + 𝛽A	´	𝑇𝑟𝑖𝑎𝑙 

𝑙𝑜𝑔𝑖𝑡(𝑧) = 	𝛾/ + 𝛾1 × 𝑇𝑟𝑖𝑎𝑙  

Model 2  

𝑣	 = 	𝛽/ + 	𝛽1	´		𝑉𝑎𝑙𝑢𝑒	𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + 	𝛽?	´	𝑇𝑎𝑟𝑔𝑒𝑡	𝑉𝑎𝑙𝑢𝑒 + 𝛽A	´		log	(𝑇𝑟𝑖𝑎𝑙) 

𝑙𝑜𝑔𝑖𝑡(𝑧) = 	𝛾/ + 𝛾1 × log	(𝑇𝑟𝑖𝑎𝑙)  

Model 3 

𝑣	 = 	𝛽/ + 	𝛽1	´		𝑉𝑎𝑙𝑢𝑒	𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + 	𝛽?	´	𝑇𝑎𝑟𝑔𝑒𝑡	𝑉𝑎𝑙𝑢𝑒 + 𝛽A	´	𝑇𝑟𝑖𝑎𝑙 + 𝛽Z	´	𝑇𝑟𝑖𝑎𝑙? 

𝑙𝑜𝑔𝑖𝑡(𝑧) = 	𝛾/ + 𝛾1 × 𝑇𝑟𝑖𝑎𝑙 + 𝛾?	´	𝑇𝑟𝑖𝑎𝑙?  

Model 4 

𝑣	 = 	𝛽/ + 	𝛽1	´		𝑉𝑎𝑙𝑢𝑒	𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + 	𝛽?	´	𝑇𝑎𝑟𝑔𝑒𝑡	𝑉𝑎𝑙𝑢𝑒 + 𝛽A	´	𝑇𝑟𝑖𝑎𝑙

+ 𝛽Z	´	log	(𝑇𝑟𝑖𝑎𝑙) 

𝑙𝑜𝑔𝑖𝑡(𝑧) = 	𝛾/ + 𝛾1 × 𝑇𝑟𝑖𝑎𝑙 + 𝛾? × log	(𝑇𝑟𝑖𝑎𝑙)  



(A) 
 

Experiment 2A DIC 

Model CoinA DoubleA Proportion 

1 19279.1 23953.1 24254.8 

2 19263.8 23955.1 24258.9 

3 19268.9 23954.9 24257.4 

4 19266.4 23957.5 24256.4 

 
(B) 
 

Experiment 2B DIC 

Model CoinB DoubleB Demand 

1 27444.7 28900.6 32423.3 

2 27438.9 28924.8 32423.2 

3 27441.9 28904.2 32423.4 

4 27440.7 28902.3 32427.5 

 
(C) 
 

 
 
 
 
 

Experiment 2A  Parameter Estimates for Best Fitting Model (95% HDI) 

Parameter CoinA (Model 2) DoubleA (Model 1) Proportion (Model 1) 

𝛾/ 0.205 (-0.022, 0.436) -0.015 (-0.092, 0.068) 0.009 (-0.061, 0.088) 

𝛾1 -0.099 (-0.138, -0.062) 0.0006 (-0.0003, 0.002) 0.002 (0.0014, 0.003) 



(D) 
 

 
Table S3.  Experiment 2A model comparison results (A) and parameter values for the best fitting 
models (C).  Experiment 2B model comparison results (B) and parameter values for the best 
fitting models (D).  A lower DIC indicates a better fit. In the Coin conditions, the logarithmic 
models (Model 2) fit the best.  In the CoinA condition, earlier trials more strongly influence the 
starting point away from the target. And in the CoinB condition, earlier trials more strongly 
influence the starting point towards the target. In the Double conditions, the linear models 
(Model 1) fit the best. For DoubleA, there is no change in the starting point with trial number. 
And for DoubleB, the starting point shifts toward the target linearly with trial number. In the 
Proportion condition, the best-fitting model is the linear model, and the starting point shifts 
toward the target linearly with trial number.  In the Demand condition, the logarithmic model fits 
slightly better than the linear model, but the parameter values suggest there is no change in 
starting point with trial number.  Again, the improvements of the non-linear models over the 
linear ones are typically quite small, indicating that the linear model is a reasonable 
approximation (see Figure S12). 

  

Experiment 2B  Parameter Estimates for Best Fitting Model (95% HDI) 

Parameter CoinB (Model 2) DoubleB (Model 1) Demand (Model 2) 

𝛾/ -0.350 (-0.495, -0.213) -0.062 (-0.124, -0.008) -0.060 (-0.190, 0.074) 

𝛾1 0.132 (0.103,0.164)  0.0036 (0.0030, 0.0043) 0.014 (-0.017, 0.044) 



(A) 

   
(B) 

   
Figure S12. Experiment 2A (A) and 2B (B) graphs for the starting point models (left) and the 
best fitting starting point models (right). Red is Coin, green is Double and blue is Proportion 
(A)/Demand (B).  
 

  



Deviations from Pre-Registrations: 

Experiment 1: 

There were no deviations from the pre-registration (https://aspredicted.org/blind.php?x=h8er63). 

 

Experiment 2: 

We made two deviations from our pre-registered exclusion criteria 

(https://aspredicted.org/blind.php?x=vv39xx): 

1. We pre-registered:  “For each individual, we will eliminate trials in which the RT is 

three standard deviations above the individual mean RT.” 

Instead, we removed RTs > 10 seconds and < 1 second. We chose a more lenient 

threshold during data preparation because we used a feature in HDDM to account for 

outliers. This feature fits a mixture model where 5% of the data do not inform the 

parameter estimates. 

2. We also removed subjects that chose the same option > 95% of the time. This 

exclusion criterion was not pre-registered.  We applied this criterion because, in these 

cases, there were too few non-target choices to estimate the model. 

  

 


