
Supplemental materials for:

An integrated theory of deciding and acting

Mathieu Servant1*, Gordon D. Logan2, Thibault Gajdos3, Nathan J. Evans4

1Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive UR 481

et MSHE Ledoux USR 3124, Université de Franche-Comté, France

2Department of Psychological Sciences, Vanderbilt University, USA

3Laboratoire de Psychologie Cognitive UMR 7286, Aix-Marseille Université, France

4School of Psychology, University of Queensland, Australia

Supplementary Figure S1. Illustration of an EMG burst in its raw form (A) and after

rectification (B). Raw bursts are characterized by a discrete onset, followed by a sequence of

increases and decreases in voltage that occur on the muscle fiber membrane. To analyze their

electrical properties, researchers take the absolute value of voltages across time points, a

procedure known as rectification. Rectified EMG amplitude scales with the level of global

muscle excitation (Vigotsky et al., 2018).

Supplementary Figure S2. In order to examine the shape of predicted PMT and MT

distributions and the between-trial correlation between the two chronometric variables,

DTDM was simulated using best-fitting parameters averaged across subjects reported by

Ratcliff & McKoon (2008, Experiment 1) in a random dot motion task featuring six levels of

motions coherence (.05, .10, .15, .25, .35, .50). No between-trial variability in drift rate,

starting point, and non-decision time was incorporated to focus on the main components of

the model. With a diffusion coefficient set to 0.1, the parameters were: drift rate v5% = 0.042,

v10% = 0.079, v15% = 0.133, v25% = 0.227, v35% = 0.291, v50% = 0.369; upper response bound

r = 0.111 (= upper decision threshold reported by Ratcliff and McKoon). The upper EMG bound

m was set to 50% of the upper response bound r. Mean nondecision time (Ter = 0.418 s) was

decomposed into sensory encoding and corticomuscular latencies with mean Te = 0.368 s

(added to predicted PMT) and motor latencies related to force production with mean Tr = 0.05

s (added to predicted MT). For each motion coherence condition, 500,000 trials were

simulated using the method described in Appendix 1 and a step size dt = 0.001 s. A)

Histograms of predicted PMT (row 1) and MT (row 2) in correct trials across motion coherence

levels (columns). Also shown is a quantile-quantile (Q-Q) plot of predicted PMT versus MT

deciles for each coherence level (row 3). Q-Q plots are approximately linear, suggesting that

predicted PMT and MT distributions have a similar shape. Different values for parameter m

do not modulate this prediction (additional simulations not shown for sake of brevity). (B)

Between-trial Pearson’s correlation coefficient between predicted PMT and MT in correct

trials. The correlation is null for each motion coherence level, reflecting the Markov property

of the diffusion process (see main text).

Supplementary Figure S3. Between-trial correlation between predicted PMT and MT when

between-trial variability in drift rate increases (from 0 to 0.35 in steps of 0.05). With the

exception of this parameter, DTDM was simulated in the same way as in Supplementary Figure

S2.

Appendix 1: DTDM code

This appendix is structured in two parts. Part 1 shows a C implementation of DTDM. Part 2

shows how to call the C code from Python. The model is simulated using the method and

framework of Evans (2019), a time step dt = 0.001 s, and a diffusion coefficient fixed at 0.1. In

each trial, the predicted PMT is defined as the sum of a residual latency Te and the latency

between accumulation onset and the last crossing of an EMG bound. The predicted MT is

defined as the sum of a residual latency Tr and the latency between the last crossing of an

EMG bound and the corresponding response bound.

Part 1: C implementation of DTDM

#include <stdlib.h>

#include <stdio.h>

#include <sys/time.h>

#include <math.h>

void DTDM(double z, double v,double rU, double mU, double Te, double Tr,

 double sv, double sz, double sTe, double sTr,

 double s, double dt, double *resp, double *RT,

 double *PMT, double *MT,

 int n, int maxiter,

 int rangeLow, int rangeHigh, double *randomTable)

{

 double rhs,x,randNum,sampleV,sampleTe,sampleTr,rL,mL;

 int i,iter,blah,outOfBounds;

 // DTDM parameters

 // z: starting point of the accumulation process

 // v: drift rate

 // rU: upper response bound

 // rL: lower response bound

 // mU: upper EMG bound

 // mL: lower EMG bound

 // Te: mean duration of sensory encoding and corticomusculuar delay (Te

is added to predicted PMT)

 // Tr: mean duration of residual motor components related to force

production (Tr is added to predicted PMT)

 //sv: between-trial variability in drift rate (SD of normal distribution

with mean v)

 //sz: between-trial variability in starting point (range of uniform with

mean z)

 //sTe: between-trial variability in Te (range of uniform with mean Te)

 //sTr: between-trial variability in Tr (range of uniform with mean Tr)

 //s: diffusion coefficient

 //Other important variables:

 //dt: step size dt (in seconds)

 //n: number of simulated trials

 //outOfBounds: 0 if the decision variable is located in the region

defined by lower and upper EMG bounds. 1 if if the decision variable is

located in the region defined by an EMG bound and the corresponding

response bound

 //resp: vector containing the predicted accuracy for each trial (1 if

correct response, 2 if incorrect response, -1 if the sample path did not

hit a response bound within the allocated number of time steps (defined by

maxiter)

 //RT: vector containing the predicted RT for each trial

 //PMT vector containing the predicted PMT for each trial

 //PMT vector containing the predicted PMT for each trial

 //The variables rangeLow, rangeHigh, and randomTable serve to simulate a

random draw from a standard normal distribution (see python code and

corresponding method described in Evans (2019).

 // randomize seed of random number generator

 struct timeval t1;

 gettimeofday(&t1, NULL);

 srand(t1.tv_usec * t1.tv_sec);

 rhs=sqrt(dt)*(s);

 rL = -rU;

 mL = -mU;

 // simulate n trials

 for (i=0;i<n;i++) {

 if (sz < 0.00001) {

 x=z;

 } else {

 x = z + ((rand()/(1.0 + RAND_MAX))*sz) - (sz/2); //rand()/(1.0 +

RAND_MAX) simulates a random number from a uniform distribution bounded at

0 and 1

 }

 if (sv < 0.00001) {

 sampleV=v;

 } else {

 randNum = rand()/(1.0 + RAND_MAX);

 blah = (rangeHigh) - (rangeLow) + 1;

 blah = (randNum * blah) + (rangeLow);

 randNum = randomTable[blah];//randNum is a random number from the

standard normal distribution

 sampleV = v + (sv*randNum);

 }

 if (sTe < 0.00001) {

 sampleTe=Te;

 } else {

 sampleTe = Te + ((rand()/(1.0 + RAND_MAX))*sTe) - (sTe/2);

 }

 if (sTr < 0.00001) {

 sampleTr=Tr;

 } else {

 sampleTr = Tr + ((rand()/(1.0 + RAND_MAX))*sTr) - (sTr/2);

 }

 iter=0;

 resp[i]=(double) -1.0;

 RT[i] = (double) -1.0;

 PMT[i] = (double) -1.0;

 MT[i] = (double) -1.0;

 outOfBounds=0;

 do

 {

 iter = iter+1;

 randNum = rand()/(1.0 + RAND_MAX);

 blah = (rangeHigh) - (rangeLow) + 1;

 blah = (randNum * blah) + (rangeLow);

 randNum = randomTable[blah];

 x = x + (sampleV*dt) + (rhs*randNum);//decision variable

 if ((x<=mL || x>=mU) && (outOfBounds==0)){

 outOfBounds=1;// the decision variable is now located in the region

between an EMG bound and the corresponding response bound

 PMT[i] = (((double) iter)*dt - dt/((double) 2.0)) + sampleTe;//in

case several EMG bound hits occur, PMT will store the latency of the last

hit before the response

 }

 if (outOfBounds==1) {

 if (x<mU && x>mL) {//check if the decision variable has left the

region between EMG and response bounds

 outOfBounds=0;//if this is the case, reset the outOfBounds

variable to 0

 }

 }

 if (x>=rU) {

 resp[i]=(double) 1.0 ; //correct response

 break;

 }

 if (x<=rL) {

 resp[i]=(double) 2.0 ; //incorrect response

 break;

 }

 } while (iter<maxiter) ;//simulate trial until max number of dt steps

allowed (defined by maxiter)

 RT[i]=(((double) iter)*dt - dt/((double) 2.0)) + sampleTe + sampleTr;

 MT[i] = RT[i]-PMT[i];

 }

}

Part 2: Call of DTDM C code from Python

We first need to compile the C code into a dynamic library (on a Linux operating system). This

can be done using the following command:

gcc -shared -o DTDM.so -fPIC DTDM.c

where DTDM.c is the name of the file containing our C code. Below is a Python code to call the

model, using 100,000 simulated trials and a time step dt = 0.001 s:

import ctypes

import numpy as np

from scipy.stats import norm

from copy import deepcopy

import os

np.set_printoptions(5, suppress=True)

#load DTDM using Python’s ctypes library

myso = ctypes.cdll.LoadLibrary(r"/Work/Users/mservant/code_DTDM.so")

DTDM = myso.DTDM

#define a convenient class to store model parameters

class params:

 def __init__(self, v, rU, mU, Te, Tr, sv=0, sz=0,sTe=0, sTr=0):

 self.v = v

 self.z = 0#unbiased starting point of the accumulation process

 self.rU = rU

 self.mU = mU

 self.Te = Te

 self.Tr = Tr

 self.sv = sv

 self.sz = sz

 self.sTe = sTe

 self.sTr = sTr

 self.s = .1

 self.dt = .001

 self.n = 100000

 self.resp = np.zeros(self.n)

 self.RT = np.zeros(self.n)

 self.PMT = np.zeros(self.n)

 self.MT = np.zeros(self.n)

 self.maxiter = 15000

 #LUT parameters (see Evans, 2019)

 #build LUT table for gaussian random number generator

 interval = .0001

 gran = np.arange(interval, 1, interval)

 use_table = norm.ppf(gran)

 self.randomTable = use_table

 self.rangeLow = 0

 self.rangeHigh = len(self.randomTable)

#define model parameters

v = 0.369

rU = 0.111

mU = .5*0.111

Te = 0.418-.05

Tr = .05

#instantiate params class

obj = params(v, rU, mU, Te, Tr)

#call model

DTDM(

 ctypes.c_double(obj.z),

 ctypes.c_double(obj.v),

 ctypes.c_double(obj.rU),

 ctypes.c_double(obj.mU),

 ctypes.c_double(obj.Te),

 ctypes.c_double(obj.Tr),

 ctypes.c_double(obj.sv),

 ctypes.c_double(obj.sz),

 ctypes.c_double(obj.sTe),

 ctypes.c_double(obj.sTr),

 ctypes.c_double(obj.s),

 ctypes.c_double(obj.dt),

 ctypes.c_void_p(obj.resp.ctypes.data),

 ctypes.c_void_p(obj.RT.ctypes.data),

 ctypes.c_void_p(obj.PMT.ctypes.data),

 ctypes.c_void_p(obj.MT.ctypes.data),

 ctypes.c_int(obj.n),

 ctypes.c_int(obj.maxiter),

 ctypes.c_int(obj.rangeLow),

 ctypes.c_int(obj.rangeHigh),

 ctypes.c_void_p(obj.randomTable.ctypes.data))

#perform a deep copy of results

pred_MT = deepcopy(obj.MT)

pred_resp = deepcopy(obj.resp)

pred_PMT = deepcopy(obj.PMT)

#only keep trials that have converged

pred_MT = pred_MT[pred_resp > 0]

pred_PMT = pred_PMT[pred_resp > 0]

pred_resp = pred_resp[pred_resp > 0]

#print mean PMT in correct trials:

print(np.mean(pred_PMT[pred_resp==1]))

#print mean MT in correct trials:

print(np.mean(pred_MT[pred_resp==1]))

Supplementary Figure S4. Illustration of the integrated profile method to detect the onset of

an EMG burst shown in A. The cumulative sum of rectified voltages 𝐼𝑃(𝑡) is first computed,

along with the reference line 𝑅(𝑡) (B; see main text for equations of 𝐼𝑃(𝑡) and 𝑅(𝑡)). The EMG

onset corresponds to the minimum of the difference 𝐼𝑃(𝑡) − 𝑅(𝑡) shown in C.

Supplementary Figure S5. Individual DM fits to the RT distributions of correct and error

responses and to accuracy data in each coherence condition. Values along the identity line

indicate correspondence between observed (x-axis) and predicted data (y-axis).

Supplementary Figure S6. Individual DTDM fits to the joint distributions of PMT and MT in

correct and error trials and to accuracy data in each coherence condition. Values along the

identity line indicate correspondence between observed (x-axis) and predicted data (y-axis).

References

Evans, N. J. (2019). A method, framework, and tutorial for efficiently simulating models of decision-making.

Behavior Research Methods, 51(5), 2390–2404. https://doi.org/10.3758/s13428-019-01219-z

Ratcliff, R., & McKoon, G. (2008). The Diffusion Decision Model: Theory and Data for Two-Choice Decision

Tasks. Neural Computation, 20(4), 873–922. https://doi.org/10.1162/neco.2008.12-06-420

Vigotsky, A. D., Halperin, I., Lehman, G. J., Trajano, G. S., & Vieira, T. M. (2018). Interpreting Signal Amplitudes

in Surface Electromyography Studies in Sport and Rehabilitation Sciences. Frontiers in Physiology, 8.

https://doi.org/10.3389/fphys.2017.00985

