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Supplementary Figure S1. Illustration of an EMG burst in its raw form (A) and after 

rectification (B). Raw bursts are characterized by a discrete onset, followed by a sequence of 

increases and decreases in voltage that occur on the muscle fiber membrane. To analyze their 

electrical properties, researchers take the absolute value of voltages across time points, a 

procedure known as rectification. Rectified EMG amplitude scales with the level of global 

muscle excitation (Vigotsky et al., 2018).  

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Figure S2. In order to examine the shape of predicted PMT and MT 

distributions and the between-trial correlation between the two chronometric variables, 

DTDM was simulated using best-fitting parameters averaged across subjects reported by 

Ratcliff & McKoon (2008, Experiment 1) in a random dot motion task featuring six levels of 

motions coherence (.05, .10, .15, .25, .35, .50). No between-trial variability in drift rate, 

starting point, and non-decision time was incorporated to focus on the main components of 

the model. With a diffusion coefficient set to 0.1, the parameters were: drift rate v5% = 0.042, 

v10% = 0.079, v15% = 0.133, v25% = 0.227, v35% = 0.291, v50% = 0.369; upper response bound 

r = 0.111 (= upper decision threshold reported by Ratcliff and McKoon). The upper EMG bound 

m was set to 50% of the upper response bound r. Mean nondecision time (Ter = 0.418 s) was 

decomposed into sensory encoding and corticomuscular latencies with mean Te = 0.368 s 

(added to predicted PMT) and motor latencies related to force production with mean Tr = 0.05 

s (added to predicted MT). For each motion coherence condition, 500,000 trials were 

simulated using the method described in Appendix 1 and a step size dt = 0.001 s.  A) 

Histograms of predicted PMT (row 1) and MT (row 2) in correct trials across motion coherence 

levels (columns). Also shown is a quantile-quantile (Q-Q) plot of predicted PMT versus MT 

deciles for each coherence level (row 3). Q-Q plots are approximately linear, suggesting that 

predicted PMT and MT distributions have a similar shape. Different values for parameter m 

do not modulate this prediction (additional simulations not shown for sake of brevity). (B) 

Between-trial Pearson’s correlation coefficient between predicted PMT and MT in correct 

trials. The correlation is null for each motion coherence level, reflecting the Markov property 

of the diffusion process (see main text).  

 

 

 

 



 

Supplementary Figure S3. Between-trial correlation between predicted PMT and MT when 

between-trial variability in drift rate increases (from 0 to 0.35 in steps of 0.05). With the 

exception of this parameter, DTDM was simulated in the same way as in Supplementary Figure 

S2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 1: DTDM code 

This appendix is structured in two parts. Part 1 shows a C implementation of DTDM. Part 2 

shows how to call the C code from Python. The model is simulated using the method and 

framework of Evans (2019), a time step dt = 0.001 s, and a diffusion coefficient fixed at 0.1. In 

each trial, the predicted PMT is defined as the sum of a residual latency Te and the latency 

between accumulation onset and the last crossing of an EMG bound. The predicted MT is 

defined as the sum of a residual latency Tr and the latency between the last crossing of an 

EMG bound and the corresponding response bound. 

 

Part 1: C implementation of DTDM 

#include <stdlib.h> 

#include <stdio.h> 

#include <sys/time.h> 

#include <math.h> 

 

 

void DTDM(double z, double v,double rU, double mU, double Te, double Tr, 

          double sv, double sz, double sTe, double sTr, 

          double s, double dt, double *resp, double *RT,  

          double *PMT, double *MT, 

          int n, int maxiter,  

          int rangeLow, int rangeHigh, double *randomTable) 

{ 

  double rhs,x,randNum,sampleV,sampleTe,sampleTr,rL,mL; 

  int i,iter,blah,outOfBounds; 

 

  // DTDM parameters 

  // z: starting point of the accumulation process 

  // v: drift rate 

  // rU: upper response bound 

  // rL: lower response bound 

  // mU: upper EMG bound 

  // mL: lower EMG bound 

  // Te: mean duration of sensory encoding and corticomusculuar delay (Te 

is added to predicted PMT) 

  // Tr: mean duration of residual motor components related to force 

production (Tr is added to predicted PMT) 

  //sv: between-trial variability in drift rate (SD of normal distribution 

with mean v) 

  //sz: between-trial variability in starting point (range of uniform with 

mean z) 

  //sTe: between-trial variability in Te (range of uniform with mean Te) 

  //sTr: between-trial variability in Tr (range of uniform with mean Tr) 

  //s: diffusion coefficient 

 

  //Other important variables: 

  //dt: step size dt (in seconds) 

  //n: number of simulated trials 

  //outOfBounds: 0 if the decision variable is located in the region 

defined by lower and upper EMG bounds. 1 if if the decision variable is 

located in the region defined by an EMG bound and the corresponding 

response bound 

 

 



  //resp: vector containing the predicted accuracy for each trial (1 if 

correct response, 2 if incorrect response, -1 if the sample path did not 

hit a response bound within the allocated number of time steps (defined by 

maxiter) 

  //RT: vector containing the predicted RT for each trial 

  //PMT vector containing the predicted PMT for each trial  

  //PMT vector containing the predicted PMT for each trial 

  //The variables rangeLow, rangeHigh, and randomTable serve to simulate a 

random draw from a standard normal distribution (see python code and 

corresponding method described in Evans (2019).  

 

 

  // randomize seed of random number generator 

  struct timeval t1; 

  gettimeofday(&t1, NULL); 

  srand(t1.tv_usec * t1.tv_sec); 

 

 

  rhs=sqrt(dt)*(s); 

  rL = -rU; 

  mL = -mU; 

   

  // simulate n trials 

  for (i=0;i<n;i++) { 

 

    if (sz < 0.00001) { 

        x=z; 

    } else { 

        x = z + ((rand()/(1.0 + RAND_MAX))*sz) - (sz/2);  //rand()/(1.0 + 

RAND_MAX) simulates a random number from a uniform distribution bounded at 

0 and 1 

    } 

     

    if (sv < 0.00001) { 

        sampleV=v; 

    } else { 

        randNum = rand()/(1.0 + RAND_MAX); 

        blah = (rangeHigh) - (rangeLow) + 1; 

        blah = (randNum * blah) + (rangeLow); 

        randNum = randomTable[blah];//randNum is a random number from the 

standard normal distribution 

        sampleV = v + (sv*randNum); 

    } 

     

    if (sTe < 0.00001) { 

        sampleTe=Te; 

    } else { 

        sampleTe = Te + ((rand()/(1.0 + RAND_MAX))*sTe) - (sTe/2); 

    } 

    if (sTr < 0.00001) { 

        sampleTr=Tr; 

    } else { 

        sampleTr = Tr + ((rand()/(1.0 + RAND_MAX))*sTr) - (sTr/2); 

    }     

     

    iter=0; 

    resp[i]=(double) -1.0; 

    RT[i] = (double) -1.0; 

    PMT[i] = (double) -1.0; 

    MT[i] = (double) -1.0; 

    outOfBounds=0; 



 

    do  

    { 

      iter = iter+1; 

       

      randNum = rand()/(1.0 + RAND_MAX); 

      blah = (rangeHigh) - (rangeLow) + 1; 

      blah = (randNum * blah) + (rangeLow); 

      randNum = randomTable[blah]; 

       

      x = x + (sampleV*dt) + (rhs*randNum);//decision variable 

       

      if ((x<=mL || x>=mU) && (outOfBounds==0)){ 

        outOfBounds=1;// the decision variable is now located in the region 

between an EMG bound and the corresponding response bound 

        PMT[i] = (((double) iter)*dt - dt/((double) 2.0)) + sampleTe;//in 

case several EMG bound hits occur, PMT will store the latency of the last 

hit before the response  

      } 

      if (outOfBounds==1) { 

        if (x<mU && x>mL) {//check if the decision variable has left the 

region between EMG and response bounds 

          outOfBounds=0;//if this is the case, reset the outOfBounds 

variable to 0 

        } 

      } 

      if (x>=rU) { 

        resp[i]=(double) 1.0 ; //correct response 

        break; 

      } 

      if (x<=rL) { 

        resp[i]=(double) 2.0 ; //incorrect response 

        break; 

      } 

    } while (iter<maxiter) ;//simulate trial until max number of dt steps 

allowed (defined by maxiter) 

     

    RT[i]=(((double) iter)*dt - dt/((double) 2.0)) + sampleTe + sampleTr; 

    MT[i] = RT[i]-PMT[i]; 

  } 

} 

 

Part 2: Call of DTDM C code from Python 

We first need to compile the C code into a dynamic library (on a Linux operating system). This 

can be done using the following command: 

gcc -shared -o DTDM.so -fPIC DTDM.c 

where DTDM.c is the name of the file containing our C code. Below is a Python code to call the 

model, using 100,000 simulated trials and a time step dt = 0.001 s: 

import ctypes 

import numpy as np 

from scipy.stats import norm 

from copy import deepcopy 

import os 

np.set_printoptions(5, suppress=True) 

 



#load DTDM using Python’s ctypes library 

myso = ctypes.cdll.LoadLibrary(r"/Work/Users/mservant/code_DTDM.so") 

DTDM = myso.DTDM 

 

#define a convenient class to store model parameters 

class params: 

        def __init__(self, v, rU, mU, Te, Tr, sv=0, sz=0,sTe=0, sTr=0): 

            self.v = v 

            self.z = 0#unbiased starting point of the accumulation process 

            self.rU = rU   

            self.mU = mU  

            self.Te = Te  

            self.Tr = Tr  

            self.sv = sv  

            self.sz = sz 

            self.sTe = sTe 

            self.sTr = sTr 

            self.s = .1 

            self.dt = .001 

            self.n = 100000 

            self.resp = np.zeros(self.n) 

            self.RT = np.zeros(self.n) 

            self.PMT = np.zeros(self.n) 

            self.MT = np.zeros(self.n) 

            self.maxiter = 15000 

            #LUT parameters (see Evans, 2019) 

            #build LUT table for gaussian random number generator 

            interval = .0001 

            gran = np.arange(interval, 1, interval) 

            use_table = norm.ppf(gran) 

            self.randomTable = use_table 

            self.rangeLow = 0 

            self.rangeHigh = len(self.randomTable) 

 

#define model parameters 

v = 0.369 

rU = 0.111 

mU = .5*0.111 

Te = 0.418-.05 

Tr = .05 

 

#instantiate params class  

obj = params(v, rU, mU, Te, Tr) 

#call model 

DTDM( 

    ctypes.c_double(obj.z), 

    ctypes.c_double(obj.v), 

    ctypes.c_double(obj.rU), 

    ctypes.c_double(obj.mU), 

    ctypes.c_double(obj.Te), 

    ctypes.c_double(obj.Tr), 

    ctypes.c_double(obj.sv), 

    ctypes.c_double(obj.sz), 

    ctypes.c_double(obj.sTe), 

    ctypes.c_double(obj.sTr), 

    ctypes.c_double(obj.s), 

    ctypes.c_double(obj.dt), 

    ctypes.c_void_p(obj.resp.ctypes.data),   

    ctypes.c_void_p(obj.RT.ctypes.data),  

    ctypes.c_void_p(obj.PMT.ctypes.data),     

    ctypes.c_void_p(obj.MT.ctypes.data),   



    ctypes.c_int(obj.n), 

    ctypes.c_int(obj.maxiter), 

    ctypes.c_int(obj.rangeLow), 

    ctypes.c_int(obj.rangeHigh), 

    ctypes.c_void_p(obj.randomTable.ctypes.data))   

 

#perform a deep copy of results 

pred_MT = deepcopy(obj.MT) 

pred_resp = deepcopy(obj.resp) 

pred_PMT = deepcopy(obj.PMT) 

     

#only keep trials that have converged 

pred_MT = pred_MT[pred_resp > 0] 

pred_PMT = pred_PMT[pred_resp > 0] 

pred_resp = pred_resp[pred_resp > 0]     

 

#print mean PMT in correct trials: 

print(np.mean(pred_PMT[pred_resp==1])) 

#print mean MT in correct trials: 

print(np.mean(pred_MT[pred_resp==1])) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure S4. Illustration of the integrated profile method to detect the onset of 

an EMG burst shown in A. The cumulative sum of rectified voltages 𝐼𝑃(𝑡) is first computed, 

along with the reference line 𝑅(𝑡) (B; see main text for equations of 𝐼𝑃(𝑡) and 𝑅(𝑡)). The EMG 

onset corresponds to the minimum of the difference 𝐼𝑃(𝑡) − 𝑅(𝑡) shown in C. 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure S5. Individual DM fits to the RT distributions of correct and error 

responses and to accuracy data in each coherence condition. Values along the identity line 

indicate correspondence between observed (x-axis) and predicted data (y-axis).  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure S6. Individual DTDM fits to the joint distributions of PMT and MT in 

correct and error trials and to accuracy data in each coherence condition. Values along the 

identity line indicate correspondence between observed (x-axis) and predicted data (y-axis).  
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