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Supplemental Results 
 

All Experiments 
Error by typicality: While we had strong predictions that category typicality would 

influence images’ direction of error, it was less clear if category typicality would similarly 

affect their magnitude of error. For example, the use of category knowledge may have 

created small, systematic distortions for typical category members, but atypical category 

members may have exhibited the same extent of error in all directions. Here, we plot 

average error by typicality in the four experiments (Figure S1). We found that in 

Experiments 1 – 3, error was greater for typical category members relative to atypical 

category members in the experimental group, suggesting that the influence of category 

knowledge resulted in greater error in addition to systematic bias. Statistics are reported 

in the main text for Experiments 1, 2 and 4, and in the Supplemental Results specific to 

Experiment 3. 

Figure S1. Average memory accuracy by category typicality in each experiment. Gray lines 
signify participants. Error bars indicate SEM. * p < .05; ** p < .01; *** p < .001  
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Error by spatial consistency and confidence: In the main text, we reported how 

confidence and spatial consistency with category membership interacted to influence 

error in Experiment 2, finding that the difference in error by spatial consistency was 

greatest when reported confidence was weakest. We aimed to replicate this effect in 

Experiments 3 and 4. See Figure S4 for a comparison of the effect sizes across the 

three experiments. 

In Experiment 3, focusing on the experimental group, we entered spatial 

consistency, confidence, and their interaction into a mixed-effect model with error as the 

dependent measure (Figure S2B). This revealed main effects of consistency, F(1, 149.87) = 

81.47, p < .001, and confidence, F(2, 129.49) = 99.17, p < .001, qualified by an interaction, 

F(2, 1625.85) = 3.32, p = .04. This interaction was driven by the same pattern of effects as 

Experiment 1, with less of a difference in error between spatially consistent and 

inconsistent images for increasingly confident responses (very confident: t(708.66) = -2.63, 

p = .009; somewhat confident: t(325.63) = -7.14, p < .001; guessed: t(303.20) = -7.77, p < 

.001; Bonferroni-corrected α = .017 for 3 tests). This replicates the effects observed in 

Experiment 2 and suggests that when memory for specific image locations was weaker, 

participants relied more on their knowledge of a category’s likely location on the grid. 

In Experiment 4, using the same model (Figure S2C), we found main effects of 

spatial consistency, F(1, 50.52) = 49.08, p < .001, and confidence, F(3, 39.35) = 8.63, p < 

.001, but no consistency by confidence interaction, F(3, 1129.60) = 1.77, p = .15. For 

consistency with Experiments 2 and 3, we computed pairwise tests of error by 

consistency for each level of reported confidence. This revealed less error for spatially 

consistent images relative to inconsistent images at all levels of confidence (all t < -2.84, 

all p < .005; Bonferroni-corrected α = .0125 for 4 tests). The absence of an interaction in 

Experiment 4 may be driven by the change in stimuli for this experiment, which may 

have changed the way participants used the confidence responses. For example, visual 

inspection suggests that the main effect of confidence is much stronger in Experiment 2 

and 3 relative to Experiment 4, as the spread of error across levels of confidence is 

much more narrow in Experiment 4, possibly signifying that confidence is a less 

informative marker of memory strength in this experiment. 
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Figure S2. Error by consistency and confidence. Average error by confidence and 
consistency in Experiment 2 (A), Experiment 3 (B), and Experiment 4 (C). The data from 
Experiment 2 (replotted from Figure 3D) is included above for comparison with the other 
experiments. Gray lines signify participants. Gray dots signify participants with no responses in 
the other bin (e.g. a dot in Forgot Item for consistent images indicates that the participant did not 
respond ‘Forgot Item’ for any inconsistent images). Error bars indicate SEM. Statistics reflect 
simple effects that survive Bonferroni correction for the number of tests conducted within each 
experiment (Experiments 2 & 4: α = .0125, Experiment 3: α = .0167).  ** p < .01; *** p < .001  
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Bias by typicality and confidence: We also sought to replicate the influence of 

confidence on bias observed in Experiment 2, which revealed a main effect of 

confidence such that there was less bias for the most confident responses. See Figure 

S4 for a comparison of the effect sizes across the three experiments. 

In Experiments 3 and 4, we computed separate mixed effects models with 

confidence and typicality with bias as the dependent variable, again focusing only on 

the experimental group. In Experiment 3 (Figure S3B), this model revealed a main effect 

of confidence, F(2, 98.64) = 3.80, p = .03, and a main effect of category typicality, F(1, 

1921.76) = 21.85, p < .001. There was no reliable interaction, F(2, 2908.71) = 2.21, p = .11. As 

in Experiment 2, the main effect of confidence was driven by less bias for ‘very 

confident’ responses relative to ‘somewhat confident’ responses, t(78.79) = -2.47, p = 

.016, and relative to ‘guessed’ responses, t(101.64) = -2.52, p = .013, both of which 

survive correction for multiple corrections (3 tests, α = .0167). There was no difference 

in bias between ‘somewhat confident’ and ‘guessed’ responses, t(91.66) = -0.67, p = .50. 

The main effect of typicality was driven by greater bias for typical category members 

relative to atypical category members for ‘very confident’ responses, t(622.79) = 3.27, p = 

.001, and for ‘somewhat confident’ responses, t(329.80) = 3.56, p < .001, but not for 

‘guessed’ responses, t(279.10) = 1.18, p = .24 (3 tests, α = 0.167).  In Experiment 4 

(Figure S3C), the same group x typicality ANOVA revealed no main effects or 

interaction, all F < 1.85, all p > .15. 

 Retrieval in Experiments 2 and 3 was modulated by reported confidence such 

that stronger memories, as indexed by high confidence, were less biased towards their 

category centers. This suggests that retrieval of weaker memories relied more on 

knowledge of each category’s general location and thus memory for their locations was 

more distorted. Furthermore, the main effect of category typicality in Experiment 3 

suggests that confidence and category typicality may separately and independently bias 

retrieval, although this was not observed in Experiment 2. Interestingly, in Experiment 4, 

bias was not affected by confidence at all, in contrast to observations that higher 

confidence was related to less error. This may be explained by the possibility that 

confidence was not as strong as an index of memory as it was in Experiments 1 – 3. 
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Figure S3. Bias by typicality and confidence. Average bias (as a proportion of error) by 
confidence and typicality in Experiment 2 (A), Experiment 3 (B), and Experiment 4 (C). Results 
from Experiment 2 (re-plotted from Figure 3B) are included here for comparison with other 
experiments. Gray lines signify participants. Gray dots signify participants with no responses in 
the other bin (e.g. a dot in Forgot Item for typical category members indicates that the 
participant did not respond ‘Forgot Item’ for any atypical category members). Error bars indicate 
SEM. Statistics reflect simple effects that survive Bonferroni correction for the number of tests 
conducted within each experiment (Experiments 2 & 4: α = .0125, Experiment 3: α = .0167). ** p 
< .01; *** p < .001 
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Figure S4. Effect sizes of error and bias across experiments, by confidence and exemplar 
memory. (A) Standardized difference in mean error for spatially consistent versus inconsistent 
images. 0 on the x-axis reflects no difference in error by consistency. (B) Standardized 
difference in the mean bias relative to 0, averaged across typical and atypical images. 0 on the 
x-axis reflects no reliable bias towards category clusters. Points represent mean effect size. 
Lines represent bootstrapped 95% confidence intervals.  
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Expt Condition Forgot Item Guessed 
Location 

Somewhat 
Confident of 

Location 

Very 
Confident of 

Location 

2 
Consistent 10.5 (11.3) 34.9 (21.3) 41.8 (20.0) 12.8 (15.0) 

Inconsistent 10.1 (10.1) 35.3 (22.6) 41.8 (21.8) 12.9 (14.4) 

3 
Consistent   35.1 (30.1) 45.5 (24.1) 19.4 (19.9) 

Inconsistent   36.6 (31.0) 43.9 (24.4) 19.4 (20.5) 

4 
Consistent 9.3 (14.6) 30.4 (24.5) 49.1 (24.5) 11.2 (14.9) 

Inconsistent 10.1 (17.0) 30.7 (24.3) 48.5 (25.4) 10.7 (12.2) 
 
Table S1. Mean (SD) percentage of all encoded images, by spatial consistency and 
confidence. 
 
 
 
 
 
 
 
 
 
 

Expt Condition Forgot Item Guessed 
Location 

Somewhat 
Confident of 

Location 

Very 
Confident of 

Location 

2 
Typical 10.4 (11.2) 36.4 (24.9) 42.1 (24.1) 11.1 (13.1) 
Atypical 9.8 (10.4) 34.2 (22.4) 41.4 (21.9) 14.6 (16.6) 

3 
Typical   38.0 (32.5) 44.1 (26.1) 17.9 (19.3) 
Atypical   35.3 (31.3) 43.9 (25.9) 20.8 (23.1) 

4 
Typical 8.9 (16.0) 32.7 (28.8) 48.3 (28.4) 10.1 (12.1) 
Atypical 11.3 (18.9) 28.5 (22.7) 48.7 (24.8) 11.4 (13.6) 

	
Table S2. Mean (SD) percentage of all spatially inconsistent images, by category 
typicality and confidence. 
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Swap errors: One open question is whether the observed distortions in memory are due 

to small but systematic changes in retrieval, or large errors where participants mistook 

an image for a different one – a swap error. Although there is no clear way to identify 

swaps in these experiments, one way to adjudicate between these possibilities is by 

approximating the profile of a swap error by identifying retrieved locations that were 

closer to their category cluster. Since most members of a category were clustered in the 

same area, a swap error would look like a very large bias towards its category cluster. 

While this profile cannot directly pinpoint swap errors, decomposing retrieval in this way 

may provide a course hint at possible differences in biases.  

To quantify this, we drew a line between each image’s encoded location and 

cluster center, and we projected its retrieved location onto the line. We then sorted the 

projected distances of all images into four bins, separated by three landmarks along the 

line: the image’s encoded location, its category’s cluster center, and the halfway point 

between the two (Figure S5). The resulting four bins were: (1) ‘Biased away’, or images 

whose projected retrieval was father from their cluster center relative to their encoded 

locations, (2) ‘Closer to Encoded’, or images whose retrieval was biased towards their 

cluster center, but was retrieved closer to its encoded location than its cluster center, (3) 

‘Closer to Cluster’, or images whose retrieval was closer to their cluster center than their 

encoded location, and (4) ‘Beyond Cluster’, for images retrieved in locations extending 

beyond their cluster center. The proportions of trials in these bins were entered into 

ANOVAs separately for each experiment. Planned paired t-tests of the difference by 

typicality were performed separately for each bin. Significance for these tests was 

Bonferroni-corrected for four comparisons (α = .0125). 

In Experiment 1, a 4 (bin) x 2 (typicality: typical, atypical) ANOVA revealed a 

main effect of bin, F(3,102) = 15.93, p < .001, ηp² = 0.50, no main effect of typicality, F(1, 34) 

= 0.47, p = .50, ηp² = 0.00, and a reliable interaction, F(3, 102) = 2.93, p = .04, ηp² = 0.08. 

This interaction was driven by more atypical category members biased away from their 

cluster center relative to typical ones, t(34) = -3.04, p = .004, d = -0.51. No other 

comparisons reached significance, p > 0.08. 

In Experiment 2, the same ANOVA revealed similar effects: a main effect of bin, 

F(3,102) = 37.12, p < .001, ηp² = 0.77, no reliable main effect of typicality, F(1, 34) = 0.19, p 
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= .67, ηp² = 0.00, and a reliable interaction, F(3, 102) = 10.54, p < .001, ηp² = 0.24. Here, 

there were more atypical trials than typical trials that were biased away from their 

cluster center, t(34) = -3.65, p < .001, d = -0.62, and biased towards the cluster center 

but still retrieved closer to their encoded location, t(34) = -3.05, p = .004, d = -0.52. 

However, more typical trials were retrieved closer to their cluster center, t(34) = 3.27, p = 

.002, d = 0.55, and beyond their cluster center, t(34) = 3.40, p = .002, d = 0.58. 

In Experiment 3, we again found a main effect of bin, F(3,342) = 35.62, p < .001, 

ηp² = 0.43, no reliable main effect of typicality, F(1, 114) = 0.01, p = .92, ηp² = 0.00, and a 

reliable interaction, F(3, 342) = 5.21, p = .002, ηp² = 0.04. Here, more atypical trials were 

biased away from their cluster center, t(114) = -3.82, p < .001, d = -0.36, and more typical 

trials were retrieved beyond their cluster center t(114) = 3.11, p = .002, d = 0.29. No other 

comparisons reached significance, all p > 0.28.  

We found a different pattern in Experiment 4. The same ANOVA revealed a main 

effect of bin, F(3,102) = 15.59, p < .001, ηp² = 0.54, no main effect of typicality, F(1, 34) = 

0.51, p = .49, ηp² = 0.00, and no interaction, F(3, 102) = 0.22, p = .88, ηp² = 0.006. Unlike 

in Experiments 1 – 3, more trials were retrieved closer to their cluster center than to 

their encoded locations.  

Taken together, these results suggest that a mixture of different errors drives the 

observed biases in retrieval. It seems likely that many of participants’ memories for both 

typical and atypical category members can be characterized as smaller distortions 

rather than larger swap errors, as the plurality of trials were biased towards their cluster 

center but still remained closer to their encoded locations. However, the large proportion 

of trials retrieved closer to or beyond their category cluster also highlights the possibility 

that swap errors were also common. When considering typicality, we find that typical 

category members are more likely to be retrieved closer to or beyond their cluster 

center relative to atypical ones in Experiments 2 and 3 (and in the same direction in 

Experiment 1), suggesting that swap errors may contribute more to retrieval of typical 

category members relative to atypical category members. Finally, memory in 

Experiment 4 may have been more prone to swap errors, likely due to visually similar 

exemplars of the six objects that were encoded, rather than visually distinct members of 

six categories. 
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Figure S5. Swap error analyses. Proportion of images retrieved, relative to encoded locations 
and cluster centers. ‘Biased Away’ indicates the proportion of trials retrieved farther from the 
cluster center than what was encoded. ‘Closer to Encoded’ indicates the proportion of retrieved 
closer to their encoded location than to their cluster center. ‘Closer to Cluster’ indicates the 
proportion retrieved closer to their cluster center than their encoded locations. ‘Beyond Cluster’ 
indicates the proportion retrieved beyond their category cluster relative to their encoded 
location. Gray lines signify participants. Error bars indicate SEM. Statistics reflect two-tailed 
paired-sample t-tests (α = .0125. Bonferroni-corrected for 4 comparisons per experiment). ** p < 
.01 *** p < .001  
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Interactions with superordinate category: Experiments 1 – 3 comprised animal and 

object images. The purpose of this was to increase power by doubling the number of 

image locations tested as a function of spatial consistency and category typicality. 

However, there are systematic differences between natural kinds and manmade 

objects, one being that visual similarity is a stronger organizing dimension of natural 

kinds. If the biases in location memory reported in the main text are driven by visual 

similarity, such that typical category members are retrieved closer to their category’s 

location because they are more often confused with visually similar category members, 

we reasoned that this effect would be stronger for animals over objects.  

We tested this alternative prediction separately in the Experimental groups from 

Experiments 1 – 3, using 2 (typicality: typical, atypical) x 2 (superordinate category: 

animals, objects) repeated-measures ANOVAs with bias as the dependent measure. In 

all three experiments, there were significant main effects of typicality, all F > 4.59, all p < 

.04, as observed in the main text. There were no main effects of superordinate 

category, all F < 1.81, all p > .19. Critically, in Experiments 1 and 3 there were no 

reliable interactions between superordinate category and typicality, both F < 2.25, both 

p > 0.14, although there was a trend for an interaction in Experiment 2, F(1, 34) = 3.48, p 

= .07, ηp² = 0.09. Interestingly, this was driven by greater bias for typical over atypical 

category members for object images, t(34) = 2.57, p = .01, d = 43, as compared to animal 

images, t(34) = 0.35, p = .73, d = 0.06. This is the opposite of what would be predicted if 

bias in memory was driven by higher visual similarity between category members. 

For completeness, we also queried whether superordinate category modulated 

the influence of spatial consistency on error, by conducting separate 2 (spatial 

consistency: consistent, inconsistent) x 2 (superordinate category: animals, objects) 

repeated-measures ANOVAs over the Experimental groups of each of the three 

experiments. All revealed a main effect of spatial consistency as reported in the main 

text, all F > 53.54, all p < .001, and no main effect of superordinate category, all F < 

1.96, all p > .17. In Experiments 1 and 2, there was no interaction, both F < 1.38, both p 

> .24, and in Experiment 3, there was a trend, F(1, 114) = 3.52, p = .06, ηp² = 0.03. Here, 

the difference in error by spatial consistency was stronger for animals, t(114) = -7.65, p < 

.001, d = -0.71, over objects, t(114) = -6.10, p < .001, d = -0.57, although robust in both.  
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Experiment 1 
Control analyses: We sought to assess whether the observed differences in error and 

bias could be explained by images’ proximity to landmarks. To do this, we divided the 

grid into areas that were near and far from landmarks on the grid. Locations near 

landmarks fell within a 100-pixel border around the edge of the grid, or within 100 pixels 

of the vertical border dividing its right and left sides. As the entire grid was 600 x 1200 

pixels, the areas far from landmarks constituted the two 400 x 400 pixel squares in the 

center of each side of the screen. 

We chose this configuration because it gave rise to roughly equal numbers of 

typical and atypical category members near a landmark (typical: mean = 6.86, SD = 

1.33; atypical: mean = 6.17, SD = 0.95) and far from a landmark (typical: mean = 7.37, 

SD = 1.60; atypical: mean = 7.60, SD = 0.91). Because there were uneven numbers of 

trials in each condition, we analyzed bias with a mixed effects linear model with 

typicality (typical, atypical), landmark (near, far), and their interaction as fixed effects. In 

addition to the effect of typicality observed in the main text, F(1, 920.64) = 9.20, p = .002, 

there was a effect of landmark, F(1, 925.35) = 12.59, p < .001. The effect of landmark 

reflected more bias for images located near landmarks relative to images far from 

landmarks. As many of the locations near landmarks were close to the edge of the grid, 

this effect may be driven by the fact that there was less area for these images to be 

placed that would be biased away from their category’s center. Critically, there was no 

interaction, F(1, 924.76) = 0.00, p = .99, suggesting that proximity to landmarks did not 

influence the effect of category typicality on bias observed in the main text. 

Note that because the category centers were not located near a landmark, there 

is a large imbalance of spatially consistent and spatially inconsistent locations in each 

bin. Specifically, there were fewer spatially consistent locations near landmarks 

(consistent: mean = 8.60, SD = 0.20; inconsistent: mean = 13.03, SD = 0.29) and more 

spatially consistent locations far from landmarks (consistent: mean = 33.4, SD = 0.20; 

inconsistent: mean = 14.97, SD = 0.29). Nevertheless, we analyzed error in a mixed-

effects model with spatial consistency (consistent, inconsistent), landmark (near, far), 

and their interaction as fixed effects. As in the main text, there was an effect of spatial 

consistency, F(1, 296.33) = 39.14, p < .001. In addition, there was an effect of landmark, 
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F(1, 35.05) = 4.28, p = .046, with more error for images located near landmarks relative to 

images located farther away. There was no reliable interaction, F(1, 2336.99) = 3.35, p = 

.07, suggesting that proximity to a landmark did not reliably affect the extent that spatial 

consistency modulated error. However, since there was a trend, we conducted post-hoc 

tests. First, there was less error for spatially consistent over inconsistent images for 

those located both near to and far from landmarks, both t < -3.86, p < .001. However, 

we found that across spatially inconsistent images, there was more error for ones near 

a landmark relative to those far from one, t(88.88) = 2.76, p = .007, while proximity to 

landmarks did not influence error for spatially consistent images, t(90.0) = 0.48, p = .63. 

 

Experiment 3 
Exemplar memory by typicality and confidence: We used participants’ reports of 

confidence about their chosen images in the exemplar memory test to gain confidence 

in this measure as an indication of memory strength. To do so, we computed a mixed-

effects binary logistic regression with exemplar memory as the dependent variable and 

confidence, typicality, and their interaction as fixed-effects variables. Type II Wald χ2 

tests were used to determine significance. These revealed an effect of confidence, χ2
(2) 

= 119.93, p < .001, with a greater likelihood of correct exemplar memory for images with 

higher confidence ratings. There was also an effect of typicality, χ2
(1) = 4.56, p = .03, 

with a greater likelihood of correct exemplar memory for atypical images relative to 

typical images, as reported in the main text. There was no reliable interaction, χ2
(2) = 

1.68, p = .43. Overall, participants’ confidence ratings reflected the likelihood that they 

chose the correct exemplar, providing justification for our decision to use exemplar 

memory as an index of memory for the perceptual details of the images. 

 

Error by spatial consistency with semantic knowledge: Before considering location 

memory as a function of exemplar memory, we first sought to replicate the observations 

from Experiments 1 and 2 that memory was more accurate for images that were 

spatially consistent with their category membership. We computed a 2 (group: 

experimental, control) x 2 (spatial consistency: consistent, consistent) ANOVA. This 

revealed a main effect of spatial consistency, F(1,228) = 96.14, p < .001, ηp² = 0.30, and 
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no main effect of group, F(1,228) = 0.007, p = .93, ηp² = 0.001, qualified by an interaction, 

F(1,228) = 28.48, p < .001, ηp² = 0.11. Both groups exhibited greater error for spatially 

inconsistent images relative to inconsistent images (experimental: t(114) = -10.47, p < 

.001, d = -0.98; control: t(114) = -3.23, p = .002, d = -0.30), but the interaction indicated 

that the effect was reliably stronger in the experimental group. As in Experiment 4, the 

dense clustering of images in spatially consistent locations may have aided retrieval in 

both groups. However, the reliably stronger effect in the experimental group 

demonstrates that retrieval was more accurate for images that were spatially consistent 

with their category membership, replicating Experiments 1 and 2. 

 

Bias by category typicality: Before considering how exemplar memory related to bias in 

location memory, we first aimed to replicate the finding that typical category members 

were retrieved closer to their category’s cluster relative to atypical members, as was 

observed in Experiments 1 and 2. We computed a 2 (group: experimental, control) x 2 

(typicality: typical, atypical) ANOVA amongst spatially inconsistent images, with the 

average proportion of bias as the dependent variable. This revealed no main effect of 

group, F(1,228) = 0.002, p = .96, ηp² = 0.00, but a main effect of typicality, F(1,228) = 13.76, 

p < .001, ηp² = 0.06, qualified by a reliable interaction, F(1,228) = 10.53, p = .001, ηp² = 

0.04. As in Experiments 1 and 2, retrieval was more biased towards the category center 

for typical images relative to atypical images in the experimental group, t(114) = 4.96, p < 

.001, d = .46, but not the control group, t(114) = 0.33, p = .74, d = .03. 

 
Error by category typicality: We also aimed to replicate the observations of Experiments 

1 and 2 showing more error for typical category members relative to atypical category 

members (Figure S1). An 2 (group: experimental, control) x 2 (typicality: typical, 

atypical) ANOVA revealed a main effect of typicality, F(1,228) = 4.09, p = .04, ηp² = 0.02, 

no main effect of group, F(1,228) = 0.85, p = .36, ηp² = 0.04, and no reliable interaction, 

F(1,228) = 2.84, p = .09, ηp² = 0.01.  To compare with Experiments 1 and 2, we ran post-

hoc t-tests to compare error by typicality and group.  As in Experiments 1 and 2, we 

found greater error for typical images relative to atypical ones in the experimental group, 

t(114) = 2.31, p = .02, d = 0.22, but not the control group, t(114) = 0.28, p = .78, d = 0.03.  
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Supplemental Methods 
All Experiments 

Amazon Mechanical Turk: All data was collected on Amazon Mechanical Turk (AMT). 

AMT participants more closely match the demographics of adults in the United States 

relative to traditional lab experiments (Buhrmester, Kwang, & Gosling, 2011) and the 

quality of data is equivalent to that collected from lab participants across a number of 

learning and memory experiments (Brady & Alvarez, 2011; Crump, McDonnell, & 

Gureckis, 2013). All experiments were restricted to participants who were located in the 

United States, had completed > 100 HITs with at least a 95% acceptance rate, and had 

not participated in any prior pilots or other lab experiments that used the same stimuli. 

These restrictions were chosen to increase the likelihood that participants were native 

or fluent English speakers who could understand all provided instructions and were 

naïve to the aim of the experiments. Depending on the length of the task, participants 

were given a >5-hour time window to complete each experiment so they could choose a 

suitable time to complete the tasks without interruption. 

 

Experiment 1: Stimulus Development 
To create the image-location associations used in Experiment 1, we developed a data-

driven approach to estimate how images would be spatially organized if their locations 

adhered to their category membership. To do this, we used relatedness ratings from a 

separate set of participants who completed an odd-man-out task. These were used both 

to define images’ locations and identify their category membership and typicality.  

 

Participants 
24 participants (23 – 49 years old, 9 female) completed the experiment. The University 

of Pennsylvania Institutional Review Board (IRB) approved all consent procedures. 

 

Materials 
Images: Stimuli consisted of 70 150 x 150 pixel color images on white backgrounds (35 

animals, 35 common objects) from the Bank of Standardized Stimuli (Brodeur, Dionne-
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Dostie, Montreuil, & Lepage, 2010; https://sites.google.com/site/bosstimuli/home). 

These images were re-sized to 100 x 100 pixels for the memory experiments.  

 

Procedure 

Picture-naming: This task was developed to (1) ensure that participants could correctly 

identify the animals and objects, (2) familiarize the participants to the range of stimuli 

over which they would be making similarity judgments, and (3) create a pool of qualified 

participants that would be invited to complete the odd-man-out task. In this task, 

participants were instructed to name each image as specifically as possible. For 

example, if they viewed a picture of a bird, they were instructed to name the species of 

bird if possible. On each trial, participants viewed an image and chose from three 

options presented below the image: “I know this”, “I know this but can’t think of its 

name”, or “I don’t know what this is”. If they chose “I know this”, they also typed the 

name of the animal or object next to their choice.  Either pressing the ‘enter’ key after 

filling in the name, or clicking on the button corresponding to the other two choices, 

automatically advanced the participant to the next trial with a 200ms inter-trial-interval 

(ITI). Otherwise, the trial advanced automatically after 15 seconds of inactivity. Trials 

were divided into separate animal and object blocks that were randomized across 

participants. The order of images in each block was randomized for each participant. On 

average, the task was completed in 2 - 4 minutes. 

 40 participants were recruited to participate in the picture-naming task. They 

were compensated with $1.50. One participant was excluded for entering nonsense 

words for the majority of animal trials, and an extra participant was recruited as a 

replacement. As the aim of this task was to ensure that participants had sufficient 

knowledge of the animals and objects represented in each image, which participants 

may have even if they do not know the specific name of an image, we developed a 

lenient criterion for analyzing this task. Close neighbors of an image, such as crocodile 

for alligator, lizard for gecko, utility knife or razor for box cutter, were accepted as 

correct. Misspelled names were included if they matched the correct image name with a 

maximum generalized Levenstein edit distance of 0.3. Using these criteria, 94.93% of 

images (SD: 8.94%) were named correctly. When including “I know this but can’t think 
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of its name” as accurate responses, accuracy rose to 97.71% (SD: 5.47%), signifying 

near-perfect knowledge of the images.  35 participants who accurately named at least 

65 out of 70 images were invited to participate in the next phase of the experiment; the 

excluded 5 participants named 39 - 62 images correctly. 

 

Odd-man-out: Eligible participants were invited to participate in the odd-man-out (OMO) 

task. In this task, participants were presented with three animals or three objects and 

were instructed to click on the picture that ‘did not belong’, or in other words, the animal 

or object that was least similar to the other two. Once an image was chosen, the three 

images were replaced by three new images after a 200ms ITI. Trials were untimed, but 

participants were instructed to respond in 2 – 4 seconds and make their decision as 

quickly as possible while still being accurate. They were told that there were no right 

answers, but that some trials would seem easier than others. They were instructed to 

make their decisions based on many factors, instead of focusing on one. For animal 

trials, this included factors like whether they are in the same family, share similar 

habitats, and are predators or prey. For object trials, this included factors like whether 

they serve a similar purpose, where they are commonly located, and their size. 

For each category, a complete testing of all triplets of images would require 

6,545 trials (choose 3 given 35). Piloting of this task with a prior cohort (N = 6) revealed 

that for each participant, similarity matrices derived from a randomly sub-sampled set of 

two-fifths of these combinations were highly correlated with similarity matrices derived 

from the participant’s full set of trials (for all 6 pilot participants, animals: all r > 0.90; 

objects: all r > 0.81). Thus, we presented participants with a random sample of 2,620 

combinations per category (two-fifths of all possible triplets). This task was divided into 

20 separate batches (10 per category) expected to take 12 - 15 minutes each. Each 

batch comprised 262 trials of a given category and 5 attention checks. In an animal 

batch, an attention check comprised two animals and one object. Participants were 

instructed to choose the object. In an object batch, participants were instructed to 

choose the animal presented with two objects.  

Although it is impossible to control the order of HITs that AMT workers choose to 

work on, we attempted to randomize the order of batches that workers had access to by 
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creating six different sequences of batches, and assigning a worker to one of the 

sequences based on the last letter or number in their account ID. AMT IDs are randomly 

generated string of letters and digits, so assigning groups by the last letter or number of 

a worker’s ID is akin to sampling from a uniform distribution of 1 to 36 (26 letters, 10 

digits). Within each batch, the trial order was randomized for each participant. 

Participants were given 7 days to complete all 20 batches. Upon the invitation to 

complete the batches, participants were told that they would be compensated $2.50 per 

batch, and if they completed all 20 within 7 days, they would receive a bonus of $5, for a 

total of $55. Two reminders were sent over the course of the week, and a third reminder 

was sent the day before the deadline, only to participants who had already completed 

>15 batches. If a participant missed 2 or more attention checks in a batch, it was 

rejected and a message was sent to the participant offering them an opportunity to re-

do the batch. Out of the participants whose data were used in the memory task, only 

one participant needed to re-do a rejected batch. At the end of the week, 24 out of 35 

participants had completed all 20 batches. The remaining 11 participants had completed 

1 to 13 batches (mean = 4, SD = 4.44). 

The OMO judgments were then used to create pairwise similarity matrices for 

each subject and superordinate category (Figures S6A, S6D). Starting with a 35 x 35 

matrix of zeros, for each trial in which an image was chosen, the similarity value for the 

other two presented images increased by one. These similarity values were summed 

across all trials and then divided by the number of times the two images appeared in the 

same trial. Similarity matrices thus ranged from 0 to 1, with higher values corresponding 

to greater similarity between images. To quantify the test-retest reliability of the ratings 

for each participant, split-half correlations were derived by re-computing pairwise 

similarity using the first and last half of the batches that were completed for each 

subject, and then correlating the lower triangle of the two matrices together. 

Correlations between the first and last half of batches were high (animals: mean r = 

0.66, SD = 0.05; objects: mean r = 0.54, SD = 0.06) and greater than correlations 

between each participant’s ratings and similarity matrices derived from Latent Semantic 

Analysis (LSA) and Word2Vec (Figures S6C, S6F). Three subjects, whose split-half 

correlations for both categories were > 2 SD lower than the group mean, were excluded 
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(all r’s < 0.08), leaving 21 subjects with data to be used to derive the locations for the 

memory test. 

 

Category membership and typicality: The odd-man-out results were used to derive a 2-

dimensional representation of participants’ semantic knowledge (Figures S6B, S6E). To 

do this, the similarity matrices from the 21 participants who completed the odd-man-out 

task were averaged into two group-level similarity matrices, one for each superordinate 

category. Classical multi-dimensional scaling was used to project the matrices into 2D 

spaces. To evaluate how well this projection reflected participants’ decisions in the 

OMO task, we computed the goodness of fit of the projected data to the full similarity 

space using subsets of the dimensions produced by the scaling procedure. This 

measure was operationalized as the R2 between the full similarity matrix and a 

reconstructed matrix using 1 to 10 coordinate dimensions weighted by their eigenvalues 

(Figure S6G).  While there were no obvious bends in this elbow plot, moving from one 

to two dimensions resulted in the steepest change in fit, and two dimensions captured 

85.5% of the variance in ratings for animals and 70.0% of the variance for objects. 

K-means clustering was applied to the 2D coordinates to derive data-driven 

clusters of images. The optimal number of clusters was determined by computing the 

within-cluster sum of squared error for solutions with 1 to 10 clusters and using an 

elbow plot to identify the smallest number of clusters that explained the largest portion 

of error (Figure S6H). For both categories, the data was best explained with 3 clusters. 

This data-driven procedure resulted in animal clusters corresponding to birds, land 

mammals, and sea creatures, and object clusters corresponding to kitchen utensils and 

appliances, tools and personal care items, and office supplies.  

The cluster solutions were also used to identify images that were typical and 

atypical category members. First, a category was operationalized as images belonging 

to the same cluster (e.g. birds). The center of each cluster was derived by computing 

the mean x and y coordinate over all cluster images. Then, all images were sorted by 

their distance to their cluster center. For each cluster, the closest 20% of images were 

labeled as ‘typical’ category members (e.g. cardinal), and the furthest 20% of images 

were labeled as ‘atypical’ members (e.g. toucan and ostrich). Note that this data-driven 
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procedure resulted in differing numbers of category members in each group, and thus 

differing numbers of typical and atypical category members. Table S3 lists the number 

of images per category and condition.  

 

Counterbalancing: For some categories, the number of category members did not 

evenly divide into 40%, such that there were an odd number of images assigned as 

spatially inconsistent that could not be evenly assigned to typical and atypical category 

members. To account for this and for other variations in the stimulus display, we created 

6 counterbalancing groups. In each group, we (1) randomized the assignment of the 

odd image to a typical or atypical category member, (2) generated a new, random set of 

spatially inconsistent locations, and (3) counterbalanced whether animals appeared on 

the left side of the screen and objects on the right, or vice versa. AMT workers were 

assigned to one of the six groups based on the last letter or number in their Worker ID. 

Worker IDs are randomly generated string of letters and digits, so using the last letter or 

number of a worker’s ID is akin to sampling from a uniform distribution of 1 to 36 (26 

letters, 10 digits). 

 

Picture-naming responses sorted by category typicality: The picture-naming task was 

developed to ensure that participants could correctly identify the animals and objects, 

and to familiarize the participants to the stimuli before making similarity judgments. We 

also used responses from this task to investigate whether responses to the images 

differed based on their category typicality, which was subsequently calculated based on 

the responses to the odd-man-out judgments. Paired t-tests revealed no difference in 

average accuracy between typical and atypical category members, t(39) = 0.52, p = .61, 

and faster median response times for typical category members relative to atypical 

ones, t(39) = 5.18, p < 0.001. The faster response times for typical category members 

over atypical ones is consistent with a highly reliable body of work showing a word 

frequency effect, such that pictures naming is faster for high-frequency objects (e.g. 

Oldfield & Wingfield, 1965). The lack of a difference in accuracy may be due to the fact 

that accuracy was at ceiling overall, and that even though the images range in their 

frequency, on average they were all relatively easy to identify. 
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Figure S6. Odd-man-out procedure. (A, D) Similarity matrix of all animals and all objects 
derived from odd-man-out judgments. (B, E) 2D projection of animal and object similarity 
matrices using classical multi-dimensional scaling. Colors indicates 3 clusters derived with k-
means clustering. (C, F) Split-half correlations of the similarity matrices within each participant 
plotted alongside each participant’s correlation with similarity matrices derived from LSA and 
Word2Vec. Gray dots signify participants. Error bars indicate SEM. (G) Goodness of fit of 
projected similarity ratings derived from the group-averaged correlation matrix, as a function of 
the number of reconstructed dimensions. (H) Elbow plot of within-cluster sum of squared error 
for the k-means clustering algorithm as a function of number of clusters chosen.  
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Experiments 1 & 3     
 
Category 

Total Spatially 
Consistent 

Typical  Atypical  

Birds 7 4 1 or 2 1 or 2 
Mammals 18 11 3 or 4 3 or 4 
Sea Creatures 10 6 2 2 
Tools/personal care 11 7 2 2 
Kitchen 13 7 3 3 
Office 11 7 2 2 
Experiment 2     
 
Category 

Total Spatially 
Consistent 

Typical Atypical 

Birds 20 14 3 3 
Mammals 20 14 3 3 
Sea Creatures 20 14 3 3 
Insects 20 14 3 3 
Clothes 20 14 3 3 
Furniture 20 14 3 3 
Kitchen 20 14 3 3 
Office 20 14 3 3 
 
Table S3. Number of images in each category in each experiment. Top. Experiments 1, 3 & 4. 
40% of items in a category (the top and bottom 20%) were assigned as spatially inconsistent. 
When this proportion gave rise to an odd number of items (e.g. in the bird and mammals 
category), the odd one was randomly assigned as typical or atypical for each counterbalancing 
group. In other words, a given counterbalancing group encoded one typical bird and two atypical 
birds, and another group encoded two typical birds and one atypical bird. Experiment 3 used the 
same categories, locations, and counterbalancing groups developed for Experiment 1. In 
Experiment 4, the number of items in each color category was randomly matched to a semantic 
category such that the number of items in each category varied in the same was as in 
Experiments 1 and 3. Bottom. Experiment 2. As categories were predetermined in Experiment 
2, all categories comprised 20 items. 30% of items in a category (the top and bottom 15%) were 
assigned as spatially inconsistent.  
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Experiment 2: Stimulus Development 
We aimed to replicate Experiment 1 with validated approaches for defining category 

membership and typicality. To this end, a separate cohort of participants completed a 

list ranking task to identify typical and atypical members in a fixed set of categories. 

 

Methods 
Participants 
216 participants (27 per category) completed this task. The University of Pennsylvania 

IRB approved all consent procedures. Demographics were not collected due to 

experimenter error. 

 

Materials 
Stimuli comprised 160 100x100-pixel color images on white backgrounds. These 

comprised 8 categories of 20 images: birds, insects, sea creatures, mammals, clothes, 

furniture, kitchen utensils, and office supplies. The categories were selected from prior 

studies of categorization norms (Uyeda & Mandler, 1980; Deyne et al., 2008). 

 

Procedure 

We employed a validated list ranking task (Figure S7A; Djalal, Ameel, & Storms, 2016). 

Extensive instructions with examples were given to ensure participants understood the 

concept of category typicality. For each category, participants viewed 20 images in a 

box labeled ‘Sort these’. Underneath, there were two empty boxes labeled ‘Typical’ and 

‘Atypical’. Participants were instructed to drag 10 images into each box. They were 

allowed to drag images freely across the boxes in any order. Then, within each box, 

participants sorted the 10 images as most (a)typical to less (a)typical. Arrows and labels 

indicated the direction that images were to be sorted. The average completion time was 

2.6 minutes (SD = 1.9). The resulting positions of the images were concatenated into a 

ranked list of category typicality and averaged across participants. The top three and 

bottom three images in each list were assigned as ‘typical’ and ‘atypical’ category 

members that would be ‘spatially inconsistent’ in the memory experiment, and the 

images in the middle of the list were assigned as ‘spatially consistent’ (Figure S7B). 
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Figure S7. Ranking procedure (A) Ranking task and instructions for the bird category. (B) 
Average typicality rankings for each category, which could range from 1 (all participants ranked 
image as most typical) to 20 (all participants ranked image as most atypical). Error bars indicate 
SEM. Color indicates condition in the memory experiment: green = spatially inconsistent/typical; 
black = spatially consistent; orange = spatially inconsistent/atypical.  
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Experiment 3 
Power analysis: We chose a new sample size for this experiment to account for the fact 

that the planned analyses were less powered relative to the analyses in the first two 

experiments. Specifically, because we planned to analyze error and bias as a function 

of exemplar memory accuracy, requiring the division of each condition by whether the 

encoded exemplars were correctly or incorrectly chosen at test, there would be fewer 

trials in each condition. To address this, we first collected data from subset of the 

shuffled control group (N = 35) to procure an estimate of exemplar memory accuracy in 

the absence of informative category knowledge during encoding. We found that 

accuracy was on average 67.6% (SD 16.6%). We then re-analyzed the influence of 

category typicality on bias from the experimental group in Experiment 1 (N = 35) with a 

subset of their trials that matched the number of exemplar incorrect trials from the pilot 

group. We chose to conduct this re-analysis using incorrect trial counts because 

exemplar accuracy in the initial subset was above 50%, meaning there were fewer 

incorrect trials than correct trials and any analyses including incorrect trials would be the 

least powered. 

The subsampling procedure was as follows. First, we matched each participant in 

Experiment 1 to a participant in the Experiment 3 pilot cohort. We randomly subsampled 

the number of typical and atypical images in the Experiment 1 participant to match the 

number of incorrect exemplars that the Experiment 3 pilot participant chose, and then 

we derived average bias separately for these ‘incorrect’ typical and atypical category 

members. We repeated this subsampling procedure 5,000 times per participant. We 

then computed the effect size of the difference in bias for typical versus atypical 

category members for each permutation and averaged them. This resulted in an 

estimated effect size of the difference in bias by typicality that would have been 

observed in Experiment 1 when limiting the analysis to trials with incorrect exemplar 

memory, assuming both groups of participants exhibited equivalent memory for the 

specific images. As expected, this procedure resulted in a smaller effect size (Cohen’s d 

= 0.263) than what was observed in Experiment 1 when including all trials (Cohen’s d = 

0.548). Using a power analysis (α = 0.05, power = 0.80), we established that a sample 

size of 115 participants per group was needed to recover this smaller effect.  
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Experiment 4 
Counterbalancing: In Experiment 4, we aimed match as many features of the 

experimental design to Experiment 1 as possible in order to understand whether biases 

in memory are driven by category knowledge or by newly-learned visual similarities of 

encoded images. Because a data-driven clustering algorithm determined category 

membership of the stimuli in Experiment 1, the number of category members varied 

across categories (Table S3). Thus, to match this in Experiment 4, we created 6 

counterbalancing groups, where in each one, the categories in Experiment 1 were 

randomly matched to Experiment 4. For example, because in Experiment 1 there were 

7 birds, 18 mammals, and 10 sea creatures, in one counter-balancing group there were 

7 lamps, 18 clocks, and 10 chairs, and in another counter-balancing group there were 7 

trains, 18 cars, and 10 planes. 

As described in the main text, both the assignment of the six color ranges to the 

six categories and the assignment of colors to images within each category were also 

randomized separately for the 6 groups. Thus, each group encoded a unique set of 

stimuli with (1) different numbers of category members per category, (2) categories with 

different ranges of colors, and (3) different images assigned typical and atypical colors.  

Figure S8. Experiment 4 stimulus display. Spatial locations for the six categories (white 
text) and the dominant color of its associated image (ovals).  
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