Supplementary Materials for

Levels of Interpersonal Trust across Different Types of Environment: The Micro-Macro Interplay between Relational Distance and Human Ecology

This PDF file includes:

Supplementary text Figs. S1 to S12 Tables S1 to S16 References for SM reference citations

Supplementary Text

Study 1 Literature Search and Criteria for Study Inclusion

Meta-analyzed studies were obtained by searching the databases of *PsycINFO*, *Web of Science*, and *Google Scholar* (end date: February, 2015). Keywords including "trust", "cultural differences", "cross-cultural differences", and "game" (may use the name of a specific social dilemma game related to trust, such as "the trust game") were used. Additional articles and datasets were obtained from the reference lists of any analyzed articles or relevant reviews.

Thirty empirical studies involving cross-cultural comparisons between 5 Anglo countries (i.e., the U.S.A., Canada, U.K., Australia, and New Zealand) and 6 Confucian-influenced countries/regions (i.e., Mainland China, Japan, Korea, Singapore, Taiwan, and Hong Kong) were included for meta-analysis. We also included seven mono-culture studies that have been used in cross-cultural comparisons (Dreber et al., 2008; Ishii & Kurzban, 2008; Kim & Son, 1998; Kurzban et al., 2001; Wu et al., 2009; Yamagishi, 1986, 1988). More specifically, we matched mono-culture data from these studies that implemented the same trust measure as had been used in an Anglo country or in a Confucian Asian country. Together, data from 34 samples for attitudinal surveys and 19 samples for behavioral game studies (Anglo N = 15,281; Confucian N = 16,226) were included in the current analysis.

Operationalization of Interpersonal Trust

Studies included for meta-analysis utilized different trust measurements. Table S1 summarizes how interpersonal trust was operationalized in each measurement.

Coding Description of Included Studies

Tables S2-S5 display coding information of each included study, for attitudinal studies and behavioral studies, and for trust in unfamiliar persons (distant others) and in familiar persons (intermediate others and close others), separately.

Effect Size Calculation

In the literature, effect sizes are popularly assessed by Cohen's d (Cohen, 1969), which estimates population standardized mean difference between the treatment group and the control group. But d tends to overestimate mean differences in small samples. To correct this bias, Hedges (1981) developed a g index as an unbiased estimation of the population standardized mean difference. In the current meta-analysis, all effect sizes were measured by Hedges' g.

To calculate Hedges' *g*, Anglo samples were considered the treatment groups, whereas Confucian samples were considered the control groups. A positive effect size indicates that Anglo peoples have a higher level of trust than Confucian Asians, whereas a negative effect size indicates that Confucian Asians have a higher level of trust than Anglo peoples. With regard to continuous data, *g* was calculated based on group means, standard deviations, and sample sizes. With regard to dichotomous data, *g* was converted from the calculated odds ratio (Fleiss & Berlin, 2009). When the descriptive statistics were not available, g was converted from other inferential statistics, including statistics from *t*-tests and *F*-tests (Borenstein, 2009).

Dependent Effect Sizes Correction

Some included studies involved cross-national comparisons between multiple treatment groups and a common control group (e.g., Americans vs. Chinese and Canadian vs. Chinese, from the same study), or between overlapping treatment groups and control groups (e.g., Americans vs. Chinese and Canadian vs. Chinese, as well as Americans vs. Koreans and Canadian vs. Koreans, from the same study). In this case, the derived effect sizes are correlated with each other, and thus violate the independence assumption for meta-analysis. To correct for this dependence, we followed Gleser and Olkin's (1994, 2009) recommendation, aggregating effect sizes within the same studies. Our aggregation was based on an estimation of within-study effect size correlation at the level of r = .50. This correlation coefficient is the expected magnitude, if the treatment groups and the control groups have equal sample sizes (Borenstein et al., 2009).

We also corrected dependent effect sizes when comparing different types of trust or trust measurement. For instance, Zhang and Bond (1993) used a within-subject design to measure American, Hongkongese, and Mainland Chinese participants' attitudinal trust in their close others, acquaintances, and distant others. For the analysis of trust in strangers vs. acquaintances vs. close others, only data concerning trust in close others were selected from Zhang and Bond's study, given the limited number of included studies that assessed trust within different types of close relationships. Another example is Miller and Mitamura's (2003) study where participants completed both Likert-scale and binary-scale surveys of stranger trust. The effect sizes were similar between the two types of measurement (g = .39 vs. g = .44). We kept the Likert-scale data in the analysis of the responding scale; inclusion or exclusion of the binary-scale data did not substantially change our meta-analytic results.

Effect Size Information for Included Studies

Table S6 displays effect size information for each included study. For studies having dependent effect sizes, the aggregated effect sizes are present in the table.

Test of Publication Bias

Method. We used two different methods to detect the presence of publication bias, including the conventional funnel plot tests and a more recently developed p-curve test.

The funnel plot is a scatterplot of studies' effect sizes against their precision (e.g., standard errors). Funnel plot asymmetry, with a lack of studies having small effect sizes and low precision (large standard errors), may indicate the presence of publication bias that suppresses small and non-significant effects (Sutton, 2009; van Assen et al., 2015). Egger and his colleagues developed the regression method to statistically test the asymmetry of funnel plot (Egger et al., 1997; Sterne et al., 2005), and Duval and Tweedie (2000) developed the trim-and-fill method to assess the impact of this asymmetry. These tests were performed using R software's meta-analysis packages as described in the main text.

Alternatively, the p-curve plot is a graph that displays the distribution of studies' significant p-values (< .05). The p-curve test examines the shape of p-curve, with the assumption that the distribution of p-values should be right-skewed (e.g., more .01s than .04s) if there exists a true effect and researchers do not selectively report results with p-values just below the .05 level (Simonsohn et al., 2014; Simonsohn et al., 2015). It has been argued that the p-curve test of publication bias can address limitations of conventional funnel plot tests including low statistical power and sometimes false positive results (Simonsohn et al., 2014; van Assen et al., 2015). The p-curve test of publication bias was performed using the official online application (v.4.052; http://www.p-curve.com/app4/) developed by Simonsohn and his colleagues.

Results. With respect to attitudinal studies, the regression test of funnel plot asymmetry did not find the presence of publication bias across all unfamiliar-person-trust surveys (z = .41, p > .250) and across all familiar-person-trust surveys (z = .38, p > .250). Likewise, the p-curve test found that the distributions of available significant p-values were right-skewed for both types of studies (unfamiliar-person trust: half p-curve z = .11.49, p < .001; familiar-person trust: z = .8.11, p < .001), indicating the absence of publication bias.

With respect to behavioral studies, the regression test detected funnel plot asymmetry for both unfamiliar-person-trust games (z = 4.89, p < .001) and familiar-person-trust games (z = -4.93, p < .001), indicating potential publication bias. However, the trim-and-fill test suggested that this potential bias had limited impact; after adjusting for the asymmetry, the corrected average effect sizes were g = .46, p = .002, 95% CI = [.16, .76] for unfamiliar-person-trust games and g = .08, p > .250, 95% CI = [-.23, .39] for familiar-person-trust games, neither of which alter our conclusions. In addition, the p-curve test of available significant p-values did not find evidence of publication bias for either type of study (unfamiliar-person trust: half p-curve z = -6.99, p < .001; familiar-person trust: z = -3.24, p < .001).

Study 2

Development and Validation of Survey Scales

Interpersonal Trust Scale. Three subscales were originally constructed, including trust in the partner's intentions, trust in the partner's competence, and trust in the partner's dependability. Items were partly adapted from the extant Western trust scales (Johnson-George & Swap, 1982; Rempel et al., 1985), while considering their suitability for use in Confucian cultures.

We first tested this scale in the U.S.A. and China. Exploratory analyses revealed that the three subscales were highly correlated in both countries, suggesting an uni-dimensional construct. As a result, we shortened the scale, and only retained 4 items from the intention subscale (e.g., "*I am confident that this person would never harm me*."), 1 item from the competence subscale ("*I am confident in this person's ability to keep his/her word*."), and 1 item from the dependability subscale ("*I am able to count on this person in times of need*."). We then tested this shortened 6-item scale in Japan. Appendix of this section includes all final items.

Cross-Cultural Measurement Invariance. Using Mplus 7.0 (Muthén & Muthén, 2012), a multiple-group confirmatory factor analysis (CFA) tested the three levels of measurement invariance for this single-factor trust measure (6 items). Given that participants evaluated their interpersonal trust repeatedly at three levels of relational distance, we correlated the error terms between these evaluations in the CFA (Little, 2013). First and foremost, the analysis confirmed the configural invariance (i.e., the same factor structure) for this questionnaire in all three countries. The fit statistics were χ^2 (676.07)/*df* (342) = 1.98, CFI = .941, RMSEA = .085, SRMR = .050, against the recommended cut-offs CFI \geq .90, RMSEA < .10, and SRMR \leq .80 (Hooper, Coughlan, & Mullen, 2008; Hu & Bentler, 1999).

Second, the analysis also confirmed the metric invariance (i.e., similar factor loadings) for this questionnaire in all three countries. The fit statistics were χ^2 (743.33)/*df* (372) = 2.00, CFI = .934, RMSEA = .086, SRMR = .069 (Δ CFI = .007, Δ RMSEA = .001, Δ SRMR = .019, compared to configural invariance model), against the recommended cut-offs Δ CFI \leq .010, supplemented by Δ RMSEA \leq .015 or Δ SRMR \leq .030 (Chen, 2007).

Finally, the analysis confirmed that the majority of the 6 items achieved scalar invariance (i.e., similar item intercepts) in all three countries. The fit statistics were χ^2 (816.27)/*df* (390) = 2.09, CFI = .924, RMSEA = .090, SRMR = .076 (Δ CFI = .010, Δ RMSEA = .004, Δ SRMR = .007, compared to metric invariance model), against the recommended cut-offs Δ CFI \leq .010, supplemented by Δ RMSEA \leq .015 or Δ SRMR \leq .010 (Chen, 2007).

Taken together, these results suggested that our single-factor trust measure was crossculturally comparable for both correlation/regression analyses and mean comparisons (Chen, 2008).

Criterion Scales. Based on a literature review, we identified emotional closeness (intimacy) and the willingness to help/share as two criteria for close and trusting relationships (McAllister, 1995; Wieselquist et al., 1999; Williamson, 1993). Two shorter scales (4 items each) were constructed based on the existing measures in the Western interpersonal world and in the East Asian interpersonal world (Jing, 2009; Lau, 2005; Sternberg, 1997). We first tested these two scales in the U.S.A. and China, validating its two-factor structure and predictive relationships with other measures, such as the Inclusion of Other in the Self (IOS) scale (Aron, Aron, & Smollan, 1992), and the dictator game. We then tested these two scales in Japan. Appendix of this section includes all final items.

Cross-Cultural Measurement Invariance. A multiple-group CFA was conducted on the two scales across all three levels of relational distance. First and foremost, the analysis confirmed the configural invariance for the two-factor structure in all three countries. The fit statistics were χ^2 (1095.62)/*df* (639) = 1.71, CFI = .932, RMSEA = .073, SRMR = .061, against the recommended cut-offs CFI \geq .90, RMSEA < .10, and SRMR \leq .80.

Second, the analysis also confirmed that the majority of the 8 items achieved metric invariance in all three countries. The fit statistics were χ^2 (1183.46)/*df* (663) = 1.78, CFI = .922, RMSEA = .076, SRMR = .071 (Δ CFI = .010, Δ RMSEA = .001, Δ SRMR = .010, compared to configural invariance model), against the recommended cut-offs Δ CFI \leq .010, supplemented by Δ RMSEA \leq .015 or Δ SRMR \leq .030.

Finally, the analysis confirmed that the majority of items for the willingness to help/share achieved scalar invariance in all three countries. The fit statistics were χ^2 (1223.12)/*df* (675) = 1.81, CFI = .918, RMSEA = .077, SRMR = .073 (Δ CFI = .004, Δ RMSEA = .001, Δ SRMR = .002, compared to partial metric invariance model), against the recommended cut-offs Δ CFI \leq .010, supplemented by Δ RMSEA \leq .015 or Δ SRMR \leq .010. On the other hand, items for emotional closeness failed to achieve scalar invariance in all three countries. Further inspections indicated that the latent means for emotional closeness with close others seemed to be largely underestimated for American participants.

Taken together, these results suggested that the two criterion scales were cross-culturally comparable for correlation/regression analyses, but the scale of emotional closeness was not comparable for mean comparisons (Chen, 2008). As a result, we only used these scales for correlational analyses that validate trust measures' predictive power.

Manipulation Check

As a manipulation check, we tested relational distance (manipulation condition)'s effect on interaction frequency across the three countries. Given that interaction frequency was an ordinal variable measured repeatedly, we used Generalized Estimating Equation (GEE) in SPSS (v. 22) to model our data. By means of GEE regression, we first regressed the reported interaction frequency on the condition of relational distance for American, Chinese, and Japanese participants separately. In all three countries, we found significant main effects of social distance (US: χ^2 [2] = 127.32, *p* < .001; China: χ^2 [2] = 52.33, *p* < .001; Japan: χ^2 [2] = 199.71, *p* < .001) in the expected way that participants interacted with close others most frequently and with distant others least frequently (*ps* < .001). These results confirmed the effectiveness of our manipulation.

In addition, across all participants we found a significant interaction between the condition of relational distance and the origin of country on reported interaction frequency, $\chi^2(4) = 29.54$, p < .001. Planned comparisons indicated that the differences between close others and distant others, and between acquaintances and distant others were smaller in the U.S.A. than in Japan (b = -1.08, *odds ratio* = .34, p = .001, and b = -.69, *odds ratio* = .50, p = .005, respectively), as well as smaller in China than in Japan (b = -1.62, *odds ratio* = .20, p < .001, and b = -.83, *odds ratio* = .44, p = .002, respectively).

Descriptive Statistics

Table S7 displays descriptive statistics for the aforementioned criterion measures in each of the three countries.

Correlations between Trust Measures and Criterion Scales

Tables S8-S10 display zero-order correlations (Pearson's r) between attitudinal trust, behavioral trust (the trust game), emotional closeness, and the willingness to help/share at each level of relational distance and in each of the three countries. As illustrated in these tables, attitudinal trust had substantial, positive correlations with emotional closeness and the willingness to help/share across different target persons and in each country. Attitudinal trust was also positively associated with behavioral trust. These results supported the predictive relationships between our trust measures and criterion scales.

Appendix

Final Items of Interpersonal Trust Scale (6 Items).

This person would not cheat me, even if there was no chance that he/she would get caught. I rarely worry that this person might take advantage of me. I have no doubt that this person is always on my side.

Thave no doubt that this person is always on my state

I am confident that this person would never harm me.

I am confident in this person's ability to keep his/her word. I am able to count on this person in times of need.

Final Items of Emotional Closeness Subscale (4 Items).

I experience intimate interactions with this person.

This person and I often share secrets and private feelings.

I feel emotionally close to this person.

This person and I often tell each other everything we are going through.

Final Items of the Willingness to Help Subscale (4 Items).

I would not be too picky about equality with this person, such as when sharing resources or providing help.

I am willing to help and protect him/her unconditionally, even at cost of my own interests. I feel the responsibility to promote the well-being of this person.

I am willing to offer him/her any material and social support with no expectation of return, if it would not hurt my own interests.

Study 3

Country-Level Measures

Societal In-Group Favoritism. In-group favoritism is considered a core facet of collectivism in relation to cooperation and trust (Triandis, 1995; Yamagishi et al., 1998). Van de Vliert developed and validated a national index of societal in-group favoritism for 178 countries around the globe (Van de Vliert, 2011). A nation's societal prevalence of in-group favoritism was indexed by its enacted norms and practices of compatriotism (e.g., give priority to compatriots over immigrants for scarce jobs), nepotism (e.g., senior management positions are held by relatives), and familism (e.g., children live at home with their parents until they get married), as judged by both ordinary citizens and experts. Importantly, these data came from diverse sources surveyed earlier than the collection time of our extracted WVS dataset, mitigating common method bias.

Status of Sociopolitical Institutions. We sourced statistics reflecting a nation's economic, political, and religious configuration. The quality of each nation's economic institution was assessed by its income inequality—GINI coefficient (The Central Intelligence Agency, 2017). The quality of a nation's political institution was assessed by three indicators of the Worldwide Governance Indicators (The World Bank, 2016)¹, including regulatory quality, rule of law, and

¹ For country indices compiled annually, we sourced data from the year of 2004; if 2004 data were not available, we sourced data from other years close to 2004. This was to improve the inference of a country-

control of corruption; previous research has indicated that these political indexes were connected with the citizenry's trusting tendencies or trustworthiness (Gächter & Schulz, 2016; Muethel & Bond, 2013); Cronbach's alpha for these three indicators was .97 across 204 countries, so we created an index of "governance quality" by averaging the three indicators for each included country. Last, given that Protestantism is considered an important religious tradition that depresses in-group favoritism or parochialism (Hruschka & Henrich, 2013), we also assessed the prevalence of Protestantism in each country by calculating the percentages of WVS respondents who self-identified as Protestants. In our analyses, we used the square-root-transformed scores of Protestantism to adjust for its skewed distribution.

Natural and Social Stressors. We sourced two national indicators tapping into a nation's natural and human-generated survival challenges, including stress of infectious diseases and intergroup conflict. These natural and social stressors have been linked with in-group-bounded cooperation and trust (Fincher & Thornhill, 2012; White et al., 2012). A nation's stress of infectious diseases was indexed by the severity and prevalence of human infectious diseases, viz., combined parasite-stress indices (Fincher & Thornhill, 2012). We also sourced the Global Peace Index (The Institute for Economics and Peace, 2017), assessing the existence or absence of peace in a nation. This index was compiled based on various indicators, such as number of domestic and international conflicts fought and military expenditure, which we re-labeled as "conflict status" or "absence of peace". Higher scores on stress of infectious diseases and conflict status indicated greater existential threats faced by a nation.

Additional National Indexes. First, to check the robustness of our findings concerning societal collectivism, we also sourced another well-established national-cultural indicator, viz., Hofstede's individualism index (Hofstede et al., 2010), from the authors' website (<u>https://geerthofstede.com/research-and-vsm/dimension-data-matrix/</u>). Second, a recent study has linked in-group-bounded pro-sociality (e.g., lower out-group trust) with a nation's shorter historical exposure to the Western Catholic Church (which weakened familism) or more intensive kin-based institutions during the premodern era (Schulz et al., 2019). As a result, we added these two historical indexes to our main indexes of a nation's contemporary conditions. Last, we also sourced an indicator from Schulz et al.'s (2019) dataset to assess a nation's overall religiosity (i.e., the emphasis of religion) in addition to its endorsement of a particular religion (e.g., Protestantism).

Country Information and Descriptive Statistics for National Indexes

level variable's temporal influence on the WVS (2005-2014) trust responses. In fact, most countries' annual country indices were pretty stable over the past 10-15 years.

Table S11 displays scores for the main national indexes in each of the included countries.

Test of Cross-Level Interaction between Relational Distance and Human Ecology

We ran a series of two-level hierarchical linear modelings (as described in the main text) to test the cross-level interaction between relational distance and each of the included ecocultural indicators, while controlling for other ecocultural indicators' main effects on the national average levels of interpersonal trust.² Likewise, we also performed a series of tests in which the moderating effect of societal in-group favoritism was pitted against the moderating effect of each of the other ecocultural indicators. Below, we report results for each of these tests separately.

Governance Quality. We found a significant main effect of relational distance (p < .001), but this effect was qualified by a significant cross-level interaction between relational distance and a nation's governance quality (b = .09, df = 438,514, 95% CI = [.06, .12], p < .001). Figure S1 plots this interaction.

Stress of Infectious Diseases. We found significant main effects of relational distance (p < .001) and stress of infectious diseases (p = .031), but these effects were qualified by a significant cross-level interaction between relational distance and a nation's governance quality (b = -.01, df = 438,514, 95% CI = [-.03, -.00], p = .025). Figure S2 plots this interaction.

Conflict Status. We found a significant main effect of relational distance (p < .001), but this effect was qualified by a significant cross-level interaction between relational distance and a nation's conflict status (b = -.18, df = 438,514, 95% CI = [-.26, -.10], p < .001). Figure S3 plots this interaction.

GINI. We found a significant main effect of relational distance (p < .001), but this effect was qualified by a significant cross-level interaction between relational distance and a nation's GINI score (b = -.004, df = 438,514, 95% CI = [-.008, -.000], p = .039). Figure S4 plots this interaction.

Protestantism. We found a significant main effect of relational distance (p < .001), but this effect was qualified by a significant cross-level interaction between relational distance and a nation's prevalence of Protestantism (b = .20, df = 438,514, 95% CI = [.04, .35], p = .012). Figure S5 plots this interaction.

Hofstede's Individualism Index. We found a significant main effect of relational distance (p < .001), but this effect was qualified by a significant cross-level interaction between relational distance and a nation's individualism (b = .004, df = 370,871, 95% CI = [.003, .005], p < .001).

² For the main analyses, we regressed the outcome variable on societal in-group favoritism (or Hofstede's individualism), governance quality, pathogen prevalence, absence of peace, GINI, and Protestantism simultaneously. For additional analyses, we regressed the outcome on these main country-level predictors as well as religiosity, the exposure to the Western Church, and kinship intensity simultaneously.

As illustrated in Figure S6, this interaction was consistent with how relational distance interacted with societal in-group favoritism.

Religiosity. We found a significant main effect of relational distance (p < .001), but this effect was qualified by a significant cross-level interaction between relational distance and a nation's religiosity (b = -.08, df = 411,813, 95% CI = [-1.23, -.03], p = .011). Figure S7 plots this interaction.

The Exposure to the Western Catholic Church. We found a significant main effect of relational distance (p < .001), but this effect was qualified by a significant cross-level interaction between relational distance and a nation's exposure to the Western Church (b = .02, df = 411,813, 95% CI = [.02, .03], p < .001). Figure S8 plots this interaction.

Kinship Intensity. We found a significant main effect of relational distance (p < .001), but this effect was qualified by a significant cross-level interaction between relational distance and a nation's historical kinship intensity (b = -.03, df = 411,813, 95% CI = [-.07, -.00], p = .033). Figure S9 plots this interaction.

The Unique Moderating Effect of Societal In-Group Favoritism. We found that societal in-group favoritism remained a significant moderator (ps < .01), after controlling for the moderating effect of each of the abovementioned moderators (one at a time). On the contrary, after controlling for the moderating effect of societal in-group favoritism, governance quality, the stress of infectious diseases, conflict status, GINI, and Protestantism, as well as religiosity and kinship intensity, each lost its power to moderate how relational distance (close vs. distant) affected interpersonal trust levels (ps > .10).³ As illustrated in Table S12, comparisons of model fit statistics (e.g., AIC, BIC) further indicated that societal in-group favoritism contributed to the micro-macro interplay of current interest over and beyond each of these competing country-level moderators.

Summary. Taken together, these converging pieces of evidence indicated that relational distance interacted with various sociopolitical and natural environments, in addition to national collectivism (or individualism), to influence people's interpersonal trust levels. Similar to the findings for national collectivism, interpersonal trust was more bounded by relational distance in countries embedded within more constraining sociopolitical and natural ecologies (e.g., less effective governance, higher pathogen prevalence, a greater emphasis on religion) as well as historical conditions (i.e., historical religious and socioecological institutions associated with

³ The exposure to the Western Church still remained a significant moderator, but comparisons of model fit indicated that societal in-group favoritism outperformed this indicator in predicting the micro-macro interaction (see Table S12).

more intensive kinship). Additionally, the levels of trusting non-close persons (intermediate others or distant others) were generally higher in countries within less constraining ecologies, whereas such national differences disappeared in the context of trusting close others. Importantly, national collectivism had unique explanatory power for the micro-macro interplay compared to other ecocultural variables.

Comparisons between Two-Level and Three-Level Modeling

In this study, each respondent reported their interpersonal trust at different relational distances (close, intermediate, and distant). So, unlike our ignoring of this within-respondent data dependency in our two-level multilevel modeling, we could build a three-level model in which trust responses were nested within respondents and respondents were nested within countries. More specifically, in this three-level model each respondent's intercept of trust responses (i.e., the level of trusting close persons) was set to vary between respondents, and each country's intercept (i.e., the average level of trusting close persons) and slope (i.e., the main effect of relational distance on trust) was set to vary between countries. Then, we used national indexes of interest to predict the variation in these country-level intercepts and slopes (i.e., testing the cross-level interaction between relational distance and a given ecocultural predictor).

We compared the results of our two-level modeling and this three-level modeling for the moderating effect of national collectivism. As illustrated in Table S13, the two models produced almost identical results for the cross-level interaction, though the three-level model fit the data better (smaller AIC and BIC) than the two-level model did. We decided to use two-level modeling in this study, given that the three-level modeling was much more computational costly (e.g., taking much longer time to compute).

Test of Spatial Autocorrelation

Following the recommended procedures (Dray, 2020; Jombart, 2015), we assessed the strength of positive spatial autocorrelation, viz., data are more similar between neighboring countries compared to their counterparts, based on spatial weighting matrix that represents the spatial connections between the 77 countries (e.g., which countries are neighbors, how proximate and distant these countries are, etc.). With the help of R software's adespatial package (Dray et al., 2020) and based on each country's geographic coordinates (i.e., latitude and longitude), we visually identified that a minimum spanning tree—a method to model the geometric connectivity—compared to other candidate methods (Bauman et al., 2018) more accurately described how the 77 countries are spatially connected (e.g., which countries are neighbors on the map). As a result, we employed this method to generate a spatial weighting matrix and then calculated a global R^2 statistic across all three types of interpersonal trust to assess positive spatial

12

autocorrelation (Dray et al., 2020; Jombart et al., 2008). The significance of this statistic was tested using the robust, Monte-Carlo permutation test (number of permutations = 999) as provided by the adespatial package.

To account for spatial autocorrelation present in this dataset, we also generated predictors of spatial pattern underlying our cross-country trust data. More specifically, using the selection method ("FWD") as implemented in the adespatial package (Bauman et al., 2018a; Bauman et al., 2018b) we extracted three orthogonal predictors that parsimoniously explained spatial autocorrelation of current interest. These spatial predictors then served as covariates in our multilevel modeling analyses and thereby "absorbed" spatial autocorrelation in regression residuals (Dray et al., 2012).

Study 4

Provincial-Level Measures

Provincial Collectivistic Orientations. Even though China is widely regarded as a prototypically collectivistic country, nuanced regional differences in collectivistic orientation have been found across different Chinese provinces (Van de Vliert et al., 2013; Talhelm et al., 2014). Van de Vliert and his colleagues have developed a provincial-level index of collectivistic orientation for 31 Chinese provinces, which reflected each province's enacted values and norms related to in-group identity, attachment, and obedience (Van de Vliert et al., 2013). More specifically, they first gathered and aggregated individual endorsements of in-group bounded collectivistic values (sample items: "*I view myself as a member of a social group*" [in-group identity and attachment] and "*As an employee, I have to respect decisions made by my organization*" [in-group obedience]) for 15 Chinese provinces, and then interpolated scores for all 31 provinces based on the assumed relationship between climate, affluence, and collectivism; the observed and predicted values were highly similar by means of this interpolation.

Our pilot analysis also found supporting evidence for this provincial cultural index. For instance, single-person households and residential mobility, both of which are sociological indicators of individualistic lifestyle (Grossmann & Varnum, 2015; Oishi & Graham, 2010), were substantially lower in more collectivistic-oriented Chinese provinces as identified by Van de Vliert et al (47).

In our analyses, we log-transformed this index to adjust for its skewed distribution in this sample.

Status of Sociopolitical Institutions. Each province's affluence was assessed by its annual per capita disposable income (PCDI) averaged across 2012-2015 (National Bureau of Statistics of

the People's Republic of China, 2010-2016). In our analyses, we log-transformed PCDI scores to adjust for their skewed distribution. Income inequality was assessed by a province's annual GINI coefficients averaged across 1995-2010 (Duan & Chen, 2010; Tian, 2012). On the other hand, we used expert judgments to assess the quality of local governance in each province (the "government by law" index), as reflected by the provincial city government's perceived accountability, transparency, and effectiveness (The China University of Political Science and Law, 2013); greater scores indicated more effective and impartial governance.

Natural Stressor. As with Study 3, we created a measure of infectious-disease-stress for each Chinese province. Specifically, we sourced annual incidence rates (number of cases per 100,000 people) of notifiable infectious diseases from Chinese Health Statistics Yearbooks (The Ministry of Health of the People's Republic of China, 2003-2013). Over the period of 2002 to 2012, four types of diseases including viral hepatitis, tuberculosis, syphilis, and dysentery had average national incidence rates greater than 10/100,000 per year, a threshold for high incidence (Zhang & Jin, 2011). Among them, our pilot analysis found that only the prevalence of hepatitis C virus (HCV) infection was reliably associated with a province's average levels of trusting other persons.⁴ This is consistent with the fact that HCV infection is an exemplary contagious disease that provokes disgust and rejection towards infected persons (Oaten et al., 2009). For the sake of simplicity, we only used the average annual incidence rates of HCV infection across 2002-2012 to compare each province's infectious-disease-stress in relation to interpersonal trust.

Province Information and Descriptive Statistics for Provincial Indexes

Table S14 displays provincial average scores for the aforementioned measures in each of the included provinces.

Test of Cross-Level Interaction between Relational Distance and Human Ecology

Following Study 3's approach, we ran a series of two-level hierarchical linear modelings to test whether and how relational distance interacts with human ecology to influence interpersonal trust levels across Chinese provinces. In addition, we performed a series of tests in which the moderating effect of provincial collectivistic orientation was pitted against the moderating effect of other ecocultural indicators. Below, we report results for each of these tests separately.

HCV Prevalence. We found a significant main effect of relational distance (p < .001), but this effect was qualified by a significant cross-level interaction between relational distance and a province's HCV prevalence (b = -.01, df = 32,286,95% CI = [-.01, -.00], p = .012). Figure S10 plots this interaction.

⁴ The total incidence rates of all notifiable diseases also were not related to any provincial levels of interpersonal trust.

PCDI. We found a significant main effect of relational distance (b = -1.81, df = 32,286,95%CI = [-3.13, -.48], p = .007), suggesting that across all provinces the average levels of trusting close others were higher than the average levels of trusting intermediate others and distant others. By contrast, the main effect of PCDI and the cross-level interaction were not significant (ps > .250).

Governance Quality. We found a significant main effect of relational distance (p < .001), but this effect was qualified by a significant cross-level interaction between relational distance and a province's governance quality (b = .003, df = 32,286, 95% CI = [.001, .005], p < .001). Figure S11 plots this interaction.

GINI. We found a significant main effect of relational distance (b = -1.17, df = 32,286,95%CI = [-1.54, -.80], p < .001), suggesting that across all provinces the average levels of trusting close others were higher than the average levels of trusting intermediate others and distant others. By contrast, the main effect of GINI and the cross-level interaction were not significant (ps > .250).

The Unique Moderating Effect of Provincial Collectivistic Orientation. Given that only HCV prevalence and governance quality were significant moderators, we only performed analyses pitting provincial collectivistic orientation against each of these two indicators. We found that both provincial collectivistic orientation and governance quality had unique moderating effects over and beyond each other's influences (ps < .05). On the contrary, both provincial collectivistic orientation and HCV prevalence lost their explanatory power for the micro-macro interplay, after controlling for each other's influences (ps > .10). As illustrated in Table S15, comparisons of model fit statistics also suggested that provincial collectivistic orientation contributed to the micro-macro interplay of current interest over and beyond governance quality but not over and beyond HCV prevalence.

Summary. Taken together, we found that relational distance interacted with political and natural environments, in addition to provincial collectivism, to influence interpersonal trust levels across Chinese provinces. Similar to the findings for provincial collectivism, interpersonal trust was more bounded by relational distance in provinces embedded within more constraining political and natural ecologies (i.e., less effective governance and higher HCV prevalence). Additionally, the average levels of trusting distant others tended to be higher in provinces within less constraining ecologies, but the magnitude of such provincial differences became appreciably reduced in the context of trusting intermediate others and close others. Last, provincial collectivism had unique explanatory power over and above governance quality, but not over and above HCV prevalence, for the micro-macro interplay of interest.

15

Comparisons between Two-Level and Three-Level Modeling

As in Study 3, we also compared the results of our two-level modeling and an alternative three-level modeling for the moderating effect of provincial collectivism. As illustrated in Table S16, the two models produced very similar results for the cross-level interaction.

Test of Spatial Autocorrelation

Our procedures for testing and controlling for spatial autocorrelation were identical to Study 3, except for the method based on which spatial weighting matrix was generated. The selection function implemented in adespatial package, this time, helped us visually identify a Gabriel's graph as the most accurate weighting method to represent the geometric connectivity between the 28 Chinese provinces. We generated spatial weighting matrix and calculated the global R^2 statistic accordingly in this study.

Replication of HCV-Related Results using World-Wide Data

In this study, a novel finding was that relational distance interacted with the prevalence of HCV infection to influence the levels of interpersonal trust across Chinese provinces. To test whether this finding is generalizable, we sourced infection rates of HCV around the world (Gower, Estes, Blach, Razavi-Shearer, & Razavi, 2014), and replicated Chinese HCV results using Study 3's cross-country dataset. Similar to within-China comparisons, a two-level hierarchical linear modeling also found a significant cross-level interaction between relational distance and HCV prevalence (log-transformed) on interpersonal trust levels around the world (*b* = -.16, df = 344,023,95% CI = [-.28, -.05], p = .006).

Figure S12 plots this interaction: first, relational distance had a greater impact on interpersonal trust levels in countries where HCV infection was more prevalent. Secondly, the average levels of trusting intermediate others and distant others tended to be higher in countries less plagued by HCV infection, whereas such national differences became negligible in the context of trusting close others. These findings generally replicated within-China results.

The Cross-Level Interaction between Relational Distance and A Nation's Governance Quality

Note. Governance quality is plotted at -1.5 SD (low level), mean (moderate level), and +1.5 SD (high level) of all nations' scores. Error bars display ± 1 SE.

The Cross-Level Interaction between Relational Distance and A Nation's Absence of Peace

The Cross-Level Interaction between Relational Distance and A Nation's Income Inequality

The Cross-Level Interaction between Relational Distance and A Nation's Prevalence of Protestantism

The Cross-Level Interaction between Relational Distance and A Nation's Individualism

The Cross-Level Interaction between Relational Distance and A Nation's Religiosity

The Cross-Level Interaction between Relational Distance and A Nation's Historical Exposure to the Western Catholic Church

The Cross-Level Interaction between Relational Distance and A Chinese Province's Prevalence

Note. HCV prevalence is plotted at -1.5 SD (low level), mean (moderate level), and +1.5 SD (high level) of all provinces' scores. Error bars display ± 1 SE.

The Cross-Level Interaction between Relational Distance and A Nation's HCV Prevalence

Measurement	Trust component	Measurement name	How trust is assessed
type			
Attitudinal questionnaire	Global trusting attitudes	Inglehart's (1997) general trust question	<i>"Generally speaking, most people can be trusted."</i>
		The World Values Survey (WVS)'s general trust question	"Generally speaking, would you say that most people can be trusted or that you can't be too careful in dealing with people?"
		The WVS's specific trust question	"Can you trust the following people? Strangers."
	Trusting attitudes related to the trustee's good intentions or pro- relationship motivations	Casimir et al.'s (2006) trust in leader scale	Sample item: "My manager can be relied on to uphold my best interests."
		Chu and Choi's (2011) scale measuring trust in social networking sites contacts	Sample item: "My contacts on my 'friends' list on the SNS offer honest opinions." (SNS = Social Networking Sites)
		Gefen and Straub's (2004) trusting disposition scale	Sample item: "I feel that people are generally well meaning."
		Huff and Kelley's (2005) scale	Sample item: "I believe that people usually keep their promises."

Operationalization of Interpersonal Trust in Included Trust Measurements

Larzelere and	Sample item: "My partner is
Huston's (1980)	perfectly honest and truthful
dyadic trust scale	with me."
Rotter's (1967)	Sample item: "Most people
interpersonal trust	can be counted on to do what
scale	they say they will do."
Wang and Clegg's	The item tested "the extent to
(2002) trust in	which a manager believed that
employees'	subordinates are willing to
psychological maturity	take responsibility for their
	work, and obtains information
	on trust in employees'
	psychological maturity."
Wheeless and Grotz's	Semantic differential type
(1977) individualized	items regarding a specific
trust scale	person, such as "benevolent-
	exploitive".
Wrightsman's (1974)	Sample item: "people usually
trustworthiness scale	tell the truth, even when they
	know they would be better off
	lying."
Yamagishi and	Sample item: "Most people
Yamagishi's (1994)	are basically good and kind."
general trust scale	
Yamagishi's (1988)	Sample item: "Most people tell
scale	a lie when they can benefit by
	doing so." (dishonesty)
Yum and Hara's	Sample item: "I know what
(2006) relational	her/his likes are."
partner trust scale	

	Rempel et al.'s (1985) trust scale	Sample item: "I can count on my partner to be concerned about my welfare."
Trusting attitudes related to the trustee's competence and expertise	McAllister's (1995) cognitive-based trust scale	Sample item: "Given this person's track record, I see no reason to doubt his/her competence and preparation for the job."
	Wang and Clegg's (2002) trust in employees' job maturity	The item tested "whether a good manager should provide his employees with detailed and complete indications on the way they should do their jobs."
Trusting attitudes related to everyday interdependent behavior.	Atuahene-Gima and Li's (2002) supervisee trust scale	Sample item: "My supervisor and I have a sharing relationship; we freely share our ideas, feelings, and hopes about the work we do."
	McAllister's (1995) affective-based trust scale	Sample item: "I can talk freely to this individual about difficulties I am having at work and know that (s)he will want to listen."
	Schoorman et al.'s (1996) trust in supervisor scale	Sample item: "I would be willing to let my supervisor have complete control over my future in the organization."
	Zhang and Bond's (1993) interpersonal trust behavioral scale	Sample item: "You can let him/her read your personal diary."

Behavioral game	Trust choices with economic consequences	Berg et al.'s (1995) trust game	Trust is measured by the trustee's decision to entrust the trustor with a variable amount of money, in the face of the risk of being exploited.
		Cook et al.'s (2005) modified prisoner's dilemma game	Similar to Berg et al.'s trust game.
		Ozer et al.'s (2012) forecasting sharing game	Trust is measured by the similarity between the trustor's production decision in response to the trustee's potentially inflated demand forecast, and the trustor's decision in response to the computer's unbiased demand request.
	Trust-related choices (cooperation in the face of risks) with economic consequences	Prisoner's Dilemma Game	Trust is reflected by the participant's decision to cooperate with the partner, in the face of the risk of being exploited.
		Public goods game	Trust is reflected by the participant's decision to contribute to a group resource, in the face of the risk of being exploited by other "free- riders".
		Resource goods game	Trust is reflected by the participant's decision to refrain from taking from a

group resource, in the face of the risk of being exploited by other selfish partners (who will take from the same group resource).

Study	Measurement	Western	East Asian	Target of	Response
-		sample	sample	trust	scale
Chun et al.	Rotter's interpersonal	American	Korean	People in	Likert-
(1975)	trust scale and			general	scale
× /	Wrightsman's			U	
	trustworthiness scale				
	(Rotter, 1967:				
	Wrightsman, 1974)				
	((IIghtofilan, 1) / ()				
Hayashi et al.	The World Values	American	Japanese	Most	Binary
(1982)	Survey (WVS)'s			people	2
. ,	general trust question				
Huff and	Huff and Kelley's	American	Mainland	Most	Likert-
Kelley (2005)	scale		Chinese,	people	scale
• • /			Hong		
			Kongese,		
			Japanese,		
			Korean, and		
			Taiwanese		
Igarashi et al.	Yamagishi and	Australian	Japanese	Most	Likert-
(2008)	Yamagishi's general	British	Korean	people	scale
. ,	trust scale (Yamagishi				
	& Yamagishi, 1994)				
Ishii (2007)	Yamagishi and	American	Japanese	Most	Likert-
~ /	Yamagishi's general		I	people	scale
	trust scale (Yamagishi				
	& Yamagishi, 1994)				
Kim and Son	Yamagishi's scale	American	Korean	Most	Likert-
(1998)	(Yamagishi, 1988)	(Yamagishi,		people	scale
. ,		1988)			
Kuwabara et	Yamagishi and	American	Japanese	Most	Likert-
al. (2014)	Yamagishi's general		_	people	scale

Table S2Coding Description of Attitudinal Studies Assessing Trust in Unfamiliar Persons

	trust scale (Yamagishi				
	& Yamagishi, 1994)				
Miller and	The WVS's general	American	Japanese	Most	Likert-
Mitamura	trust question			people	scale
(2003)					
Miller and	The WVS's general	American	Japanese	Most	Binary
Mitamura	trust question			people	
(2003)					
Mortenson	Inglehart's general	American	Chinese	Most	Likert-
(2009)	trust question			people	scale
	(Inglehart, 1997)				
Schumann et	Gefen and Straub's	Australian	Chinese	Most	Likert-
al. (2007)	trusting disposition			people	scale
	scale (Gefen &				
	Straub, 2004)				
World Values	The WVS's general	American,	Japanese,	Most	Binary
Survey	trust question	British,	Mainland	people	
(1994-1999)		Australian,	Chinese,		
		and	Taiwanese,		
		New	and		
		Zealander	Korean		
World Values	The WVS's general	American	Chinese,	Most	Binary
Survey	trust question	and	Japanese,	people	
(1999-2004)		Canadian	Korean, and		
			Singaporean		
World Values	The WVS's specific	American,	Mainland	Strangers	Likert-
Survey	trust question	British,	Chinese,		scale
(2005-2009)		Australian,	Taiwanese,		
		and	and		
		Canadian	Korean		
World Values	The WVS's general	American,	Mainland	Most	Binary
Survey	trust question	Canadian,	Chinese,	people	
(2005-2009)		British,	Taiwanese,		

		New	Hong		
		Zealander,	Kongese,		
		and	Korean, and		
		Australian	Japanese		
Yamagishi	Yamagishi's scale	American	Japanese	Most	Likert-
(Yamagishi,	(Yamagishi, 1988)			people	scale
1988)					
Yamagishi	Yamagishi and	American	Japanese	Most	Likert-
and	Yamagishi's general			people	scale
Yamagishi	trust scale (Yamagishi				
(1994)	& Yamagishi, 1994)				
Zhang and	Interpersonal trust	American	Mainland	Strangers	Likert-
Bond (1993)	behavioral scale		Chinese and		scale
	(Zhang & Bond,		Hong		
	1993)		Kongese		

Note. The WVS datasets were extracted from the WVS official longitudinal aggregate file (World Values Survey Association, 2016).

Study	Measurement	Western	East Asian	Target of trust	Response
		sample	sample		scale
Atuahene-	Supervisee trust	American	Chinese	Supervisors	Likert-
Gima and Li	scale				scale
(2002)					
Casimir et al.	Trust in leader	Australian	Chinese	Leaders	Likert-
(2006)	scale				scale
Chu and	A scale measuring	American	Chinese	Friends	Likert-
Choi (2011)	trust in social				scale
	networking sites				
	contacts				
Chua et al.	Affect-based trust	American	Chinese	Business	Likert-
(2009)	scale and			partners	scale
	cognitive-based				
	trust scale				
	(McAllister,				
	1995)				
Feng and	Wheeless and	American	Chinese	Family	Likert-
Feng (2012)	Grotz's (1977)			members,	scale
	individualized			friends, and	
	trust scale			roommates	
Gere and	Larzelere and	American	Chinese	Spouses	Likert-
McDonald	Huston's (1980)	and			scale
(2013)	dyadic trust scale	Canadian			
MacDonald	Rempel et al.'s	Australian	Japanese	Romantic	Likert-
et al. (2012)	(1985) trust scale			partners	scale
Wang and	Trust in	Australian	Chinese	Employees	Likert-
Clegg (2002)	employees'				scale
	psychological				
	maturity and job				
	maturity scale				

Table S3Coding Description of Attitudinal Studies Assessing Trust in Familiar Persons

Wasti et al.	Trust in	American	Singaporean	Supervisors	Likert-
(2007)	supervisor scale				scale
	(Schoorman et al.,				
	1996)				
World	The WVS's	American,	Mainland	Family members	Likert-
Values	specific trust	Canadian,	Chinese,	and	scale
Survey	question	British,	Taiwanese,	acquaintances	
(2005-2009)		and	and		
		New	Korean		
		Zealander			
Yum and	Trust in relational	American	Japanese and	Online friends	Likert-
Hara (2006)	partner scale		Korean		scale
Zhang and	Interpersonal trust	American	Mainland	Family	Likert-
Bond (1993)	behavioral scale		Chinese and	members/close	scale
			Hong	others and	
			Kongese	acquaintances	

Study	Measurement	Western	East Asian	Target of	Response
		sample	sample	trust	scale
Buchan et	Trust game	American	Chinese,	Unfamiliar	Continuous
al. (2006)			Japanese, and	partner	
			Korean		
Cook et al.	Modified	American	Japanese	Unfamiliar	Continuous
(2005)	prisoner's			partner	
	dilemma game				
	(PD/R)				
Hayashi et	Prisoner's	American	Japanese	Unfamiliar	Binary
al. (1999)	Dilemma Game			partner	
	(PDG)				
Kiyonari et	Trust game	American	Japanese	Unfamiliar	Binary
al. (2006)				partner	
Ozer et al.	Forecasting	American	Chinese	Unfamiliar	Continuous
(2012)	sharing game			partner	
Ozer et al.	Trust game	American	Chinese	Unfamiliar	Continuous
(2012)				partner	
Sell et al.	Resource goods	American	Chinese	Unfamiliar	Continuous
(2002)	game			partner	
Sell et al.	Public goods	American	Chinese	Unfamiliar	Continuous
(2002)	game			partner	
Wu et al.	PDG	American	Chinese	Unfamiliar	Binary
(2009)		(data from		partner	
		Dreber et al.,			
		2008)			
Yamagishi	Public goods	American	Japanese (data	Unfamiliar	Continuous
(1988)	game (under no-		from	partner	
	sanction		Yamagishi,		
	condition)		1986)		
Yamagishi	PDG	Australian	Japanese	Unfamiliar	Continuous
et al. (2005)				partner	

Coding Description of Included Behavioral Studies Assessing Trust in Unfamiliar Persons

Study	Measurement	Western	East	Target of	Response
		sample	Asian	trust	scale
			sample		
Cadsby et	Repeated public	Canadian	Japanese	Acquainted	Continuous
al. (2007)	goods game			partner	
Cook et al.	Cook et al.'s	American	Japanese	Acquainted	Continuous
(2005)	modified prisoner's			partner	
	dilemma game				
	(PD/R)				
Cook et al.	Repeated prisoner's	American	Japanese	Acquainted	Continuous
(2005)	dilemma game (PDG)			partner	
Gächter et	Repeated public	American,	Chinese	Acquainted	Continuous
al. (2010)	goods game (under	British, and	and	partner	
	no punishment	Australian	Korean		
	condition)				
Ishii and	Public goods game	American	Japanese	Acquainted	Continuous
Kurzban		(data from		partner	
(2008)		Kurzban et			
		al., 2001)			

Coding Description of Included Behavioral Studies Assessing Trust in Familiar Persons

Source	Type of the	Type of	Response	Effect	Variance	Western	East
	trustee	measure	scale	size g	of g	sample	Asian
						size	sample
A (1	<u> </u>	A	T '1 /	0.17	0.01	100	size
Atuanene-	Supervisors	Attitudinal	Likert	0.17	0.01	190	157
Gima et al.		Survey					
(2002)	** 0 11		~ .	0.4 7	0.04		
Buchan et	Unfamiliar	Behavioral	Continuous	-0.15	0.06	22	24
al. (2006)	persons	game					
Cadsby et	Acquainted	Behavioral	Continuous	0.18	0.01	160	160
al. (2007)	partners	game					
Casimir et	Supervisors	Attitudinal	Likert	0.63	0.02	119	122
al. (2006)		Survey					
Chu and	Friends	Attitudinal	Likert	-0.49	0.01	363	300
Choi (2011)		Survey					
Chua et al.	Coworkers	Attitudinal	Likert	0.29	0.01	130	203
(2009)		Survey					
Chun et al.	Unfamiliar	Attitudinal	Likert	0.14	0.01	88	182
(1975)	persons	Survey					
Cook et al.	Unfamiliar	Behavioral	Continuous	0.72	0.05	44	44
(2005)	persons	game					
Cook et al.	Acquainted	Behavioral	Continuous	0.50	0.03	63	63
(2005), the	partners	game					
sample		-					
playing							
PD/R							
Cook et al.	Acquainted	Behavioral	Continuous	-0.24	0.05	36	50
(2005) the	partners	game				20	
sample	Purmero	Durine					
nlaving							
rDU							

Table S6Summary of Effect Sizes of Each Included Study

41

Feng and	Family	Attitudinal	Likert	0.15	0.04	94	34
Feng (2012)	members	Survey					
Feng and	Friends	Attitudinal	Likert	-0.07	0.01	124	204
Feng		Survey					
(2012)							
Feng and	Roommates	Attitudinal	Likert	0.41	0.09	20	26
Feng		Survey					
(2012)							
Gächter et	Acquainted	Behavioral	Continuous	-0.22	0.02	51	90
al. (2010)	partners	game					
Gere and	Spouses	Attitudinal	Likert	-0.37	0.01	104	100
McDonald		Survey					
(2013)							
Hayashi et	Unfamiliar	Attitudinal	Binary	0.51	0.00	1571	2032
al. (1982)	persons	Survey					
Hayashi et	Unfamiliar	Behavioral	Binary	0.82	0.15	29	25
al. (1999)	persons	game					
Huff and	Unfamiliar	Attitudinal	Likert	1.40	0.01	160	160
Kelley	persons	Survey					
(2005)							
Igarashi et	Unfamiliar	Attitudinal	Likert	-0.08	0.01	103	104
al. (2008)	persons	Survey					
Ishii (2007)	Unfamiliar	Attitudinal	Likert	0.42	0.04	42	70
	persons	Survey					
Ishii and	Acquainted	Behavioral	Continuous	-0.35	0.03	100	50
Kurzban	Partners	game					
(2008)							
Kiyonari et	Unfamiliar	Behavioral	Binary	0.35	0.02	128	134
al. (2006)	persons	game					
Kuwabara	Unfamiliar	Attitudinal	Likert	0.52	0.02	93	112
et al. (2014)	persons	Survey					
MacDonald	Romantic	Attitudinal	Likert	0.65	0.02	83	159
et al. (2012)	partners	Survey					

Miller and	Unfamiliar	Attitudinal	Likert	0.39	0.01	169	293
Mitamusa	persons	Survey					
(2003)							
Mortenson	Unfamiliar	Attitudinal	Likert	-0.40	0.01	237	268
(2009)	persons	Survey					
Ozer et al.	Unfamiliar	Behavioral	Continuous	0.55	0.03	74	78
(2012),	persons	game					
sample one							
Ozer et al.	Unfamiliar	Behavioral	Continuous	1.10	0.12	18	20
(2012),	persons	game					
sample two							
Ozer et al.	Unfamiliar	Behavioral	Continuous	1.47	0.13	18	20
(2012),	persons	game					
sample							
three							
Ozer et al.	Unfamiliar	Behavioral	Continuous	1.46	0.14	18	18
(2012),	persons	game					
sample four							
Ozer et al.	Unfamiliar	Behavioral	Continuous	1.52	0.13	20	20
(2012),	persons	game					
sample five							
Schumann	Unfamiliar	Attitudinal	Likert	-0.23	0.01	136	126
et al. (2007)	persons	Survey					
Sell et al.	Unfamiliar	Behavioral	Continuous	1.05	0.11	20	20
(2002),	persons	game					
sample one							
Sell et al.	Unfamiliar	Behavioral	Continuous	1.07	0.11	20	20
(2002),	persons	game					
sample two							
Wang and	Employees	Attitudinal	Likert	0.29	0.01	112	216
Clegg		Survey					
(2002)							
Wasti et al.	Supervisors	Attitudinal	Likert	0.54	0.01	334	207
(2007)		Survey					

WVS	Unfamiliar	Attitudinal	Likert	0.59	0.00	1424	1429
(2005-2009)	persons	Survey					
WVS	Unfamiliar	Attitudinal	Binary	-0.04	0.00	1450	1145
(1994-1999)	persons	Survey					
WVS	Unfamiliar	Attitudinal	Binary	0.08	0.00	1549	1228
(1999-2004)	persons	Survey					
WVS	Unfamiliar	Attitudinal	Binary	0.12	0.00	1336	1308
(2005-2009)	persons	Survey					
WVS	Family	Attitudinal	Likert	14	0.00	1311	1467
(2005-2009)	members	Survey					
Wu et al.	Unfamiliar	Behavioral	Binary	0.18	0.01	104	94
(2009)	persons	game					
Yamagishi	Unfamiliar	Behavioral	Continuous	0.26	0.01	192	192
(1986,	persons	game					
1988)							
Yamagishi	Unfamiliar	Attitudinal	Likert	0.57	0.00	532	734
(1988), and	persons	Survey					
Kim & Son							
(1998)							
Yamagishi	Unfamiliar	Attitudinal	Likert	0.76	0.01	244	206
&	persons	Survey					
Yamagishi							
(1994),							
adult							
sample							
Yamagishi	Unfamiliar	Attitudinal	Likert	0.46	0.01	199	913
and	persons	Survey					
Yamagishi							
(1994),							
college							
sample							
Yamagishi	Unfamiliar	Behavioral	Continuous	0.74	0.04	49	56
et al. (2005)	persons	game					

Yum and	Online	Attitudinal	Likert	1.03	0.01	112	124
Hara (2006)	friends	Survey					
Zhang and	Unfamiliar	Attitudinal	Likert	-0.33	0.02	49	78
Bond	persons	Survey					
(1993)							
Zhang and	Close	Attitudinal	Likert	-0.20	0.02	49	78
Bond	others	Survey					
(1993)							

		Emotional closeness	Willing to help/share
U.S.A.			
	Close	7.57 (1.46)	8.18 (1.11)
	Intermediate	3.47 (2.17)	5.52 (1.93)
	Distant	3.84 (2.38)	5.61 (2.19)
China			
	Close	7.68 (1.64)	7.78 (1.50)
	Intermediate	4.49 (2.08)	5.24 (1.77)
	Distant	3.61 (2.51)	4.78 (2.08)
Japan			
	Close	7.39 (1.77)	6.74 (1.58)
	Intermediate	3.78 (1.95)	4.24 (1.69)
	Distant	2.16 (1.61)	3.17 (1.72)

Means and Standard Deviations for Emotional Closeness, and the Willingness to Offer Help at Different Relational Distances in Each of the Three Countries

Note. Standard deviations are reported in parentheses.

		Behavioral trust	Emotional close	Willing to help
U.S.A.				
	Attitudinal trust	.16	.41***	.65***
	Behavioral trust		.00	.22**
	Emotional close			.62***
China				
	Attitudinal trust	.53***	.74***	.73***
	Behavioral trust		.49***	.50***
	Emotional close			.77***
Japan				
	Attitudinal trust	.11	.60***	.66***
	Behavioral trust		.01	.07
	Emotional close			.68***

Zero-Order Correlations within Close Relationships in Each of the Three Countries

Note. Statistical inference is based on Pearson's r. ** p < .01. *** p < .001.

_

		Behavioral trust	Emotional close	Willing to help
U.S.A.				
	Attitudinal trust	.33***	.62***	$.80^{***}$
	Behavioral trust		.14	.36***
	Emotional close			.72***
China				
	Attitudinal trust	.50***	.66***	.76***
	Behavioral trust		.48***	.48***
	Emotional close			.68***
Japan				
	Attitudinal trust	.32***	.54***	$.60^{***}$
	Behavioral trust		.27**	.27**
	Emotional close			.68***

Zero-Order Correlations within Intermediate Relationships in Each of the Three Countries

Note. Statistical inference is based on Pearson's r. ** p < .01. *** p < .001.

		Behavioral trust	Emotional close	Willing to help
U.S.A.				
	Attitudinal trust	.47***	.62***	.78***
	Behavioral trust		.31***	.43***
	Emotional close			.79***
China				
	Attitudinal trust	.57***	.72***	.78***
	Behavioral trust		.52***	.55***
	Emotional close			.71***
Japan				
	Attitudinal trust	.45***	.53***	.72***
	Behavioral trust		.19*	.39***
	Emotional close			.73***

Zero-Order Correlations within Distant Relationships in Each of the Three Countries

Note. Statistical inference is based on Pearson's *r*. * p < .05. ** p < .01. *** p < .001.

National Scores for the Key Variables in Each Included Con	ıntry
--	-------

Country/Region Name	Cultural Zone	Family trust	Acquaitance trust	Stranger trust	In-group favoritism	Conflict Status	GINI	Governance Quality	Parasite Stress	Prevalence of Protestantism
Algeria	North Africa	3.82	2.69	1.66	0.68	2.38	35.30	-0.57	1.48	0.00
Andorra	Latin Europe	3.80	3.11	1.89	NA	. NA	NA	1.23	-3.04	0.01
Argentina	Latin America	3.90	3.13	2.05	0.08	1.90	45.80	-0.66	0.73	0.01
Armenia	Eastern Europe	3.96	2.95	1.77	0.56	2.27	30.30	-0.31	-1.98	0.00
Australia	Anglo	3.81	3.38	2.35	-1.51	1.65	30.30	1.88	-2.59	0.23
Azerbaijan	Eastern Europe	3.47	2.36	1.37	1.25	2.29	33.70	-0.85	-1.39	0.00
Bahrain	Middle East	3.32	2.74	2.44	0.02	2.03	NA	0.67	-3.13	NA
Belarus	Eastern Europe	3.86	2.98	1.94	0.70	2.19	26.50	-1.14	-1.92	0.02
Brazil	Latin America	3.60	2.61	1.63	0.21	2.17	51.90	-0.10	3.75	0.03
Bulgaria	Eastern Europe	3.89	3.13	1.98	1.03	1.90	35.40	0.21	-2.70	0.00
Burkina Faso	Sub-Sahara Africa	3.79	2.73	2.01	0.95	2.06	39.50	-0.35	5.32	0.08
Canada	Anglo	3.81	3.43	2.40	-1.41	1.45	32.10	1.73	-3.26	0.15
Chile	Latin America	3.82	2.79	1.85	-0.12	1.58	52.10	1.37	-0.73	0.14
China	Confucian Asia	3.89	2.96	1.91	0.51	1.98	46.90	-0.42	1.45	0.03
Colombia	Latin America	3.77	2.70	1.66	0.16	2.76	53.50	-0.27	3.84	0.02
Cyprus	Middle East	3.86	2.97	1.60	0.88	1.85	34.80	1.01	-2.76	0.00
Ecuador	Latin America	3.77	2.33	1.72	0.89	2.27	48.50	-0.70	2.00	0.00
Egypt	Middle East	3.97	3.41	2.11	0.79	1.99	30.80	-0.31	0.66	0.00
Estonia	Nordic Europe	3.88	3.16	1.98	-1.06	1.70	32.90	1.06	-2.37	0.08
Ethiopia	Sub-Sahara Africa	3.86	2.80	2.08	0.99	2.44	33.00	-0.83	5.15	0.19
Finland	Nordic Europe	3.90	3.39	2.46	-1.16	1.43	26.80	2.10	-3.62	0.00
France	Latin Europe	3.74	3.62	2.31	-1.00	1.71	30.10	1.34	-2.50	0.02
Georgia	Eastern Europe	3.91	3.04	1.97	0.84	2.84	46.00	-0.58	-1.69	0.00
Germany	Germanic Europe	3.75	3.12	2.10	-1.19	1.48	27.00	1.66	-3.42	0.00
Ghana	Sub-Sahara Africa	3.57	2.70	1.84	-0.62	1.72	42.30	-0.24	4.28	0.57
Hong Kong	Confucian Asia	3.81	3.21	2.08	-0.24	1.61	53.70	1.83	NA	0.05
Hungary	Eastern Europe	3.85	3.12	2.18	0.19	1.58	24.70	0.91	-3.22	0.15
India	Southern Asia	3.80	2.98	2.07	0.34	2.36	33.60	-0.26	2.71	0.01
Indonesia	Southern Asia	3.79	3.05	2.00	0.62	1.98	36.80	-0.78	3.60	0.07
Iraq	Middle East	3.97	3.05	1.87	NA	3.51	30.90	-1.70	1.23	0.00
Italy	Latin Europe	3.86	2.72	1.93	0.00	1.65	31.90	0.68	-2.84	0.00
Japan	Confucian Asia	3.73	2.95	1.83	-0.92	1.36	37.90	1.21	-2.23	0.00
Jordan	Middle East	3.93	3.06	1.92	0.89	1.97	39.70	0.34	-0.89	0.00
Kazakhstan	Central Asia	3.91	3.00	1.84	0.64	2.02	28.90	-0.87	-1.94	0.01
Kuwait	Middle East	3.85	3.20	2.08	0.78	1.79	NA 22.40	0.68	-2.20	NA
Kyrgyzstan	Central Asia	3.94	2.82	1.80	0.45	2.30	33.40	-0.72	-1.54	0.00
Lebanon	Middle East	3.42	2.88	2.02	0.37	2.84	NA	-0.31	-1.33	0.01
Libya	North Africa	3.93	3.15	1.80	0.17	1.93	NA	-1.00	-0.53	0.00
Malaysia	Southern Asia	3.83	2.88	1.72	-0.25	1.72	46.20	0.50	1.64	0.02
Man	Sub-Sanara Africa	3.90	3.12	2.23	1.10	2.24	40.10	-0.38	5.31	0.01
Mexico	Latin America	3./1	2.66	1.01	0.52	2.19	48.50	-0.08	1.80	0.00
Moldova	Eastern Europe	3.78	2.84	1./1	0.00	2.09	33.00	-0.60	-2.05	0.03
Morocco	Middle East	3.89	3.03	1.85	1.43	1.95	40.90	-0.10	-0.12	0.00
Netherlands	Germanic Europe	3.54	3.11	2.08	-1.94	1.61	25.10	1.86	-5.28	0.04
Nigeria	Sub-Sanara Africa	3.8/	2.77	1.91	0.26	2.72	45.70	-1.35	0.18	0.25
Norway	Nordic Europe	3.90	3.59	2.67	-1.65	1.54	26.80	1.81	-3.35	0.63
Pakistan Dalaatina	Southern Asia	3.79	2.80	2.05	-0.32	2.69	29.60	-0.92	1.58	0.00
Palesune	Latin America	2.60	2.65	1.70	0.05	2.65	35.50	-0.44	1NA	0.00
Dhilinging	Cautham Ania	2.09	2.41	1.42	0.03	2.05	45.50	-0.21	2.50	0.11
Philippines	Southern Asia	3.84	2.96	1.95	0.69	2.39	46.00	-0.48	1.64	0.02
Poland	Middle East	2.09	2.93	2.00	0.34	1.69	52.40	0.44	-5.00	0.01
Qatar Damania	Fastar Fast	2.09	3.51	2.10	0.01	1.09	41.10	0.58	-1.57	NA
Romania Danaia	Eastern Europe	2.00	2.55	1.09	0.18	1.01	27.50	-0.09	-1.98	0.04
Russia	Eastern Europe	2.71	3.02	1.65	0.30	2.78	42.00	-0.57	2.72	0.01
Kwanda Saabia	Sub-Sanara Airica	2.01	3.00	2.23	1.00	2.05	40.80	-0.65	3.72	0.23
Serbia	Eastern Europe	3.91	3.11	2.01	1.00	2.11	38.70	-0.55	-2.58	0.01
Singapore	Confuctan Asia	2.02	3.20	2.14	-0.04	1.07	40.40	1.98	-1.70	0.10
Slovenia	Eastern Europe	3.82	3.00	1./4	0.21	1.49	23.70	0.93	-3.17	0.01
South Arrica	Angio Carfusian Asia	3.70	2.86	2.18	-0.55	2.41	62.50	0.41	2.81	0.20
South Korea	Lotin Europo	3.65	2.90	2.17	0.33	1.69	30.20	1.27	-0.29	0.22
Spann	Nordia Europa	3.92	3.20	2.17	-0.34	1.00	24.00	1.27	-2.13	0.01
Sweden	Gormonia Europe	3.90	2 21	2.00	-2.32	1.47	24.90	1.93	-3.31	0.00
Taiwan	Confusion Asia	2.84	3.31	2.44	-1.17	1.47	28.70	1.07	-3.03	0.38
Theiland	Southern Asia	2.04	2.14	1.00	0.20	2.42	49.40	0.07	2.07	0.02
Trinidad	Lotin America	3.61	2.83	1.00	0.30	2.42	40.40	0.07	0.32	0.00
Tunicia	Laun America North Africa	2.04	2.94	1.79	-0.30	1.20	40.00	0.17	0.52	0.42
Turkey	Middle East	3.94	2.01	1.09	0.36	2.40	40.00	0.10	-0.62	0.00
I di Key	Fastern Europa	2.94	2.01	1.8/	0.29	2.40	40.20	0.01	-0.18	0.00
United Vin-1-	Lastern Europe	3.84	3.01	2.03	0.24	2.10	28.20	-0.68	-1.55	0.01
United States	Anglo	2.65	2.19	2.38	-1.39	1.60	45.00	1.78	-5.49	0.25
United States	Ailgio	3.00	3.22	2.22	-1.51	2.23	45.00	1.03	-1./4	0.27
Uruguay	Cantral Aria	3.80	2.93	2.02	0.58	1.61	45.30	0.51	-1.98	0.01
UZDEKIStan	Central Asia	3.97	3.00	1.69	0.98	2.38	36.80	-1.33	-1.46	0.00
Vietnam	Southern Asia	3.88	2.85	2.10	0.47	1.72	57.60	-0.59	2.11	0.01
1 emen	widdle East	3.92	3.04	1.96	0.51	2.35	57.90	-1.03	1.68	0.00
Zambia	Sub-Sanara Africa	3.59	2.67	1.75	0.81	1.86	57.50	-0.57	4.18	0.46
Zimbabwe	Sub-Sahara Africa	3,78	2.76	1.71	-0.04	2.51	50.10	-1.70	3,16	0.68

Note. The prevalence of Protestantism was square-root-transformed in our analyses.

Comparisons of the Explanatory Power of National Collectivism against Other Country-Level Moderators

Country-level moderator	ΔΑΙΟ	ΔΒΙϹ	Likelihood ratio
The main comparisons			
COL vs. governance	-11.00	11.00	14.98***
COL vs. conflict	-30.00	-7.90	33.88***
COL vs. GINI	-42.00	-20.00	45.98***
COL vs. parasite stress	-39.10	-16.90	42.92***
COL vs. Protestantism	-41.10	-19.20	45.10***
Additional comparisons			
COL vs. religiosity	-30.10	-8.20	34.02***
COL vs. the Church	-18.30	3.60	22.25***
COL vs. kin intensity	-37.50	-15.60	41.53***

Note. COL = Societal in-group favoritism. In each row, we compared statistics of model-fit between two models—a cross-level model with both societal in-group favoritism and a competing variable as the moderators and a cross-level model with only the competing variable as the moderator. For the main comparisons, the trust outcome was regressed on societal in-group favoritism, governance quality, conflict status, GINI, parasite stress, and Protestantism simultaneously, controlling for their common variances; for additional comparisons, the trust outcome was regressed on these key national predictors as well as religiosity, the exposure to the Western Church, and kinship intensity simultaneously. A negative Δ AIC or Δ BIC, as well as a significant likelihood ratio, indicates that societal in-group favoritism improves the model's explanatory power over its competitor. If one of these fit statistics disagreed with the other, we relied on the majority of these statistics to determine a better-fit model. *** *p* < .001.

-		с ,
Outcome: Attitudinal trust	Two-level	Three-level
Intercept	3.79***	3.79***
Relational distance	91***	91***
COL	.02	.02
Relational distance \times COL	12***	12***
Model fit		
AIC	896708.20	882043.80
BIC	896851.10	882197.70

Comparisons between Results of Two-Level and Three-Level Multilevel Modeling in Study 3

Note. COL = Societal in-group favoritism. The main effects of governance quality, GINI, conflict status, pathogen prevalence, and Protestantism were controlled. A smaller AIC or BIC indicates a better-fit model. *** p < .001.

Province name	Kin trust	Acquaintance trust	Stranger trust	Collectivistic orientations	Incidence rates of HCV (per 100, 000 persons)	Per Capita Disposable Income	Government by law	GINI
Anhui	4.34	2.99	2.24	3.59	3.14	16770.80	199.56	0.38
Beijing	4.30	3.03	2.15	3.56	7.57	44592.20	224.18	0.27
Fujian	4.41	3.04	2.18	3.54	3.73	23317.72	197.06	0.37
Gansu	4.30	2.89	1.78	3.70	21.02	12201.90	199.09	0.44
Guangdong	4.17	3.06	2.06	3.51	10.79	25654.86	234.43	0.39
Guangxi	4.20	2.85	1.80	3.50	13.41	15504.27	198.18	0.42
Guizhou	3.76	3.01	2.25	3.55	4.95	12383.58	214.66	0.43
Hebei	4.33	2.78	1.74	3.65	4.64	16651.71	171.18	0.33
Henan	4.59	2.93	1.94	3.60	21.11	15674.55	194.18	0.37
Heilongjiang	4.13	2.70	1.55	3.93	11.73	17300.16	214.83	0.35
Hubei	4.34	2.99	2.14	3.61	6.53	18260.42	184.98	0.36
Hunan	4.27	2.90	2.05	3.58	6.23	17648.04	207.87	0.39
Jilin	4.05	2.86	1.73	3.86	21.55	17400.74	184.49	0.40
Jiangsu	4.35	2.92	2.16	3.57	2.21	27162.39	214.17	0.34
Jiangxi	4.39	2.95	1.97	3.60	2.78	16756.99	222.75	0.35
Liaoning	4.20	2.63	1.74	3.76	11.12	22737.86	186.62	0.34
Inner Mongolia	4.12	2.82	1.78	3.74	15.96	20520.77	171.10	0.39
Ningxia	4.20	2.87	1.78	3.45	5.37	15933.88	154.99	0.42
Qinghai	4.16	2.71	1.83	3.71	20.79	14378.17	172.23	0.45
Shandong	4.46	3.25	2.23	3.61	1.54	20858.55	202.56	0.38
Shanxi	4.23	2.81	1.75	3.67	11.93	16503.90	157.30	0.39
Shaanxi	4.20	3.06	2.02	3.64	9.89	15867.76	168.50	0.44
Shanghai	3.81	2.71	1.76	3.50	2.09	46002.21	230.44	0.28
Sichuan	4.05	3.08	2.15	3.54	5.22	15733.65	221.14	0.38
Tianjin	4.31	2.92	1.87	3.51	3.88	28827.62	180.70	0.28
Yunnan	4.29	2.89	1.98	3.52	7.82	13857.55	190.83	0.37
Zhejiang	4.23	3.10	2.14	3.52	3.42	32656.55	214.13	0.35
Chongqing	4.26	3.05	1.99	3.55	5.14	18343.56	212.19	0.42

Provincial Scores for the Key Variables in Each Included Chinese Province

Note. Provincial collectivistic orientation and PCDI were log-transformed in our analyses. We

utilized the "government by law" index to assess each province's governance quality.

Comparisons of the Explanatory Power of Provincial Collectivism against Governance Quality and HCV Prevalence

Provincial-level moderator	ΔΑΙϹ	ΔΒΙϹ	Likelihood ratio
COL vs. governance	-2.31	6.08	4.30*
COL vs. HCV	.06	17.83	2.94

Note. COL = Provincial collectivistic orientation. The trust outcome was regressed on provincial collectivistic orientation, governance quality, PCDI, GINI, and HCV prevalence simultaneously, controlling for their common variances. * p < .05.

1 5		6 5
Outcome: Attitudinal trust	Two-level	Three-level
Intercept	3.19	3.29
Relational distance	1.11	1.09
COL	1.48	1.38
Relational distance ×COL	-4.07*	-4.04*
Model fit		
AIC	85131.70	83445.67
BIC	85232.30	83554.65

Comparisons between Results of Two-Level and Three-Level Multilevel Modeling in Study 4

Note. COL = Provincial collectivistic orientation. The main effects of governance quality, PCDI, GINI, and HCV were controlled. * p < .05.

References

- Aron, A., Aron, E. N., & Smollan, D. (1992). Inclusion of other in the self scale and the sturcture of interpersonal closeness. *Journal of Personality and Social Psychology*, 63(4), 596–612. https://doi.org/10.1037/0022-3514.63.4.596
- Atuahene-Gima, K., & Li, H. (2002). When does trust matter? Antecedents and contingent effects of supervisee trust on performance in selling new products in China and the United States. *Journal of Marketing*, 66(3), 61–81. https://doi.org/10.1509/jmkg.66.3.61.18501
- Bauman, D., Drouet, T., Dray, S., & Vleminckx, J. (2018a). Disentangling good from bad practices in the selection of spatial or phylogenetic eigenvectors. *Ecography*, 41(10), 1638-1649. https://doi.org/10.1111/ecog.03380
- Bauman, D., Drouet, T., Fortin, M. J., & Dray, S. (2018b). Optimizing the choice of a spatial weighting matrix in eigenvector-based methods. *Ecology*, 99(10), 2159-2166. https://doi.org/10.1002/ecy.2469
- Berg, J., Dickhaut, J., & McCabe, K. (1995). Trust, reciprocity, and social history. *Games and Economic Behavior*, 10(1), 122–142. https://doi.org/https://doi.org/10.1006/game.1995.1027
- Borenstein, M. (2009). Effect sizes for continuous data. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), *The handbook of research synthesis and meta-analysis* (pp. 279-293). Russell Sage Foundation.
- Borenstein, M., Hedges, L. V, Higgins, J. P. T., & Rothstein, H. R. (2009). Multiple comparisons within a study. In *Introduction to meta-analysis* (pp. 239–242). John Wiley & Sons.
- Buchan, N. R., Johnson, E. J., & Croson, R. T. A. (2006). Let's get personal: An international examination of the influence of communication, culture and social distance on other regarding preferences. *Journal of Economic Behavior & Organization*, 60(3), 373–398. https://doi.org/10.1016/j.jebo.2004.03.017
- Cadsby, C. B., Hamaguchi, Y., Kawagoe, T., Maynes, E., & Song, F. (2007). Cross-national gender differences in behavior in a threshold public goods game: Japan versus Canada. *Journal of Economic Psychology*, 28(2), 242–260. https://doi.org/10.1016/j.joep.2006.06.009
- Casimir, G., Waldman, D. A., Bartram, T., & Yang, S. (2006). Trust and the relationship between leadership and follower performance: Opening the black box in Australia and China. *Journal of Leadership & Organizational Studies*, *12*(3), 68–84. https://doi.org/10.1177/107179190601200305

- Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. *Structural Equation Modeling*, *14*(3), 464-504. https://doi.org/10.1080/10705510701301834
- Chen, F. F. (2008). What happens if we compare chopsticks with forks? The impact of making inappropriate comparisons in cross-cultural research. *Journal of Personality and Social Psychology*, 95(5), 1005–1018. https://doi.org/10.1037/a0013193
- Chu, S.-C., & Choi, S. (2011). Electronic word-of-mouth in social networking sites: A crosscultural study of the United States and China. *Journal of Global Marketing*, 24(3), 263–281. https://doi.org/10.1080/08911762.2011.592461
- Chua, R. Y. J., Morris, M. W., & Ingram, P. (2009). Guanxi vs networking: Distinctive configurations of affect- and cognition-based trust in the networks of Chinese vs American managers. *Journal of International Business Studies*, 40(3), 490–508. https://doi.org/10.1057/palgrave.jibs.8400422
- Chun, K.-T., Campbell, J. B., & Yoo, J.-H. (1975). Perceived trustworthiness of occupations: Personality effects and cross-cultural generalizability. *Journal of Cross-Cultural Psychology*, 6(4), 430–443. https://doi.org/10.1177/002202217564006

Cohen, J. (1969). Statistical power analysis for the behavioral sciences. Academic Press.

- Cook, K. S., Yamagishi, T., Cheshire, C., Cooper, R., Matsuda, M., & Mashima, R. (2005). Trust building via risk taking: A cross-societal experiment. *Social Psychology Quarterly*, 68(2), 121–142. https://doi.org/10.1177/019027250506800202
- Dray, S. (2020). Moran's Eigenvector Maps and related methods for the spatial multiscale analysis of ecological data. https://cran.rproject.org/web/packages/adespatial/vignettes/tutorial.html.
- Dray, S., Bauman, D., Blanchet G., Borcard, D., Clappe, S., Guenard, G., ... & Wagner, H. H. (2020). adespatial: Multivariate multiscale spatial analysis (R package version 0.3-8). https://cran.r-project.org/web/packages/adespatial/index.html.
- Dray, S., Pélissier, R., Couteron, P., Fortin, M. J., Legendre, P., Peres-Neto, P. R., Bellier, E., Bivand, R., Blanchet, F. G., De Cáceres, M., Dufour, A. B., Heegaard, E., Jombart, T., Munoz, F., Oksanen, J., Thioulouse, J., & Wagner, H. H. (2012). Community ecology in the age of multivariate multiscale spatial analysis. *Ecological Monographs*, 82(3), 257–275. https://doi.org/10.1890/11-1183.1
- Van de Vliert, E. Van, Yang, H., Wang, Y., & Ren, X. (2013). Climato-economic imprints on Chinese collectivism. *Journal of Cross-Cultural Psychology*, 44(4), 589–605. https://doi.org/10.1177/0022022112463605

- Dreber, A., Rand, D. G., Fudenberg, D., & Nowak, M. A. (2008). Winners don't punish. *Nature*, 452(7185), 348-351.
- Duan, J., & Chen, J. (2010). The estimation of regional GINI coefficients for urban and rural communities based on the distribution of family income. *The Journal of World Economy*, 1, 100–122. (In Chinese)
- Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics*, 56(2), 455–463. https://doi.org/10.1111/j.0006-341X.2000.00455.x
- Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta analysis detected by a simple, graphical test. *BMJ*, *315*(7109), 629–634. https://doi.org/10.1136/bmj.315.7109.629
- Feng, B., & Feng, H. (2012). Examining cultural similarities and differences in responses to advice: A comparison of American and Chinese college students. *Communication Research*, 40(5), 623–644. https://doi.org/10.1177/0093650211433826
- Fincher, C. C. L., & Thornhill, R. (2012). Parasite-stress promotes in-group assortative sociality: The cases of strong family ties and heightened religiosity. *Behavioral and Brain Sciences*, 35(2), 61–79. https://doi.org/10.1017/S0140525X11000021
- Fleiss, J. L., & Berlin, J. A. (2009). Effect sizes for dichotomous data. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), *The handbook of research synthesis and meta-analysis* (pp. 237-256). Russell Sage Foundation.
- Gächter, S., Herrmann, B., & Thöni, C. (2010). Culture and cooperation. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences*, 365(1553), 2651–2661. https://doi.org/10.1098/rstb.2010.0135
- Gächter, S., & Schulz, J. F. (2016). Intrinsic honesty and the prevalence of rule violations across societies. *Nature*, 531(7595), 1–11. https://doi.org/10.1038/nature17160
- Gefen, D., & Straub, D. W. (2004). Consumer trust in B2C e-Commerce and the importance of social presence: experiments in e-Products and e-Services. *Omega*, 32(6), 407–424. https://doi.org/10.1016/j.omega.2004.01.006
- Gere, J., & Macdonald, G. (2013). Assessing relationship quality across cultures: An examination of measurement equivalence. *Personal Relationships*, 20(3), 422–442. https://doi.org/10.1111/pere.12001
- Gleser, L. J., & Olkin, I. (1994). Stochastically dependent effect sizes. In H. Cooper, L. V.
 Hedges, & J. C. Valentine (Eds.), *The handbook of research synthesis and meta-analysis* (pp. 339–356). Russell Sage Foundation.

- Gleser, L. J., & Olkin, I. (2009). Stochastically dependent effect sizes. In L. Cooper, L. V Hedges, & J. C. Valentine (Eds.), *The handbook of research synthesis and meta-analysis* (pp. 357–376). Russell Sage Foundation.
- Gower, E., Estes, C., Blach, S., Razavi-Shearer, K., & Razavi, H. (2014). Global epidemiology and genotype distribution of the hepatitis C virus infection. *Journal of Hepatology*, 61(1), S45–S57. https://doi.org/10.1016/j.jhep.2014.07.027
- Grossmann, I., & Varnum, M. E. W. (2015). Social structure, infectious diseases, disasters, secularism, and cultural change in America. *Psychological Science*, 26(3), 311–324. https://doi.org/10.1177/0956797614563765
- Hayashi, C., Suzuki, T., Suzuku, G., & Murakami, M. (1982). *A study of Japanese national character*. Idemitsushoten.
- Hayashi, N., Ostrom, E., Walker, J., & Yamagishi, T. (1999). Reciprocity, trust, and the sense of control: A cross-societal study. *Rationality and Society*, 11(1), 27–46. https://doi.org/10.1177/104346399011001002
- Hedges, L. V. (1981). Distribution theory for Glass's estimator of effect size and related estimators. *Journal of Educational Statistics*, 6(2), 107-128.
- Hofstede, G., Hofstede, G. J., & Minkov, M. (2010). Cultures and organizations: Software of the mind (revised and expanded 3rd edition). McGraw-Hill.
- Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural equation modelling: Guidelines for determining model fit. *The Electronic Journal of Business Research Methods*, 6(1), 53–60. https://doi.org/10.1037/1082-989X.12.1.58
- Hruschka, D. J., & Henrich, J. (2013). Institutions, parasites and the persistence of in-group preferences. *PLoS ONE*, 8(5): e63642. https://doi.org/10.1371/journal.pone.0063642
- Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. *Structural Equation Modeling: A Multidisciplinary Journal*, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
- Huff, L., & Kelley, L. (2005). Is collectivism a liability? The impact of culture on organizational trust and customer orientation: a seven-nation study. *Journal of Business Research*, 58(1), 96–102. https://doi.org/10.1016/S0148-2963(02)00478-2
- Igarashi, T., Kashima, Y., Kashima, E. S., Farsides, T., Kim, U., Strack, F., Werth, L., & Yuki, M. (2008). Culture, trust, and social networks. *Asian Journal of Social Psychology*, 11(1), 88–101. https://doi.org/10.1111/j.1467-839X.2007.00246.x
- Inglehart, R. F. (1997). *Modernization and postmodernization: Cultural, economic, and political change in 43 societies.* Princeton University Press.

- Ishii, K. (2007). Do differences in general trust explain cultural differences in dispositionism? Japanese Psychological Research, 49(4), 282–287. https://doi.org/10.1111/j.1468-5884.2007.00354.x
- Ishii, K., & Kurzban, R. (2008). Public goods games in Japan: Cultural and individual differences in reciprocity. *Human Nature*, 19(2), 138–156. https://doi.org/10.1007/s12110-008-9034-4
- Jombart, T. (2015). A tutorial for the spatial Analysis of Principal Components (sPCA) using adegenet 2.1.0. https://adegenet.r-forge.r-project.org/files/tutorial-spca.pdf.
- Jombart, T., Devillard, S., Dufour, A.-B., & Pontier, D. (2008). Revealing cryptic spatial patterns in genetic variability by a new multivariate method. *Heredity*, 101(1), 92–103. doi: 10.1038/hdy.2008.34
- Jing, Y. (2009). The fluid constructive mechanism of 'differential mode of association' [M.S. Dissertation, Departement of Psychology, Peking University].
- Johnson-George, C., & Swap, W. C. (1982). Measurement of specific interpersonal trust: Construction and validation of a scale to assess trust in a specific other. *Journal of Personality and Social Psychology*, 43(6), 1306–1317. https://doi.org/10.1037//0022-3514.43.6.1306
- Kim, Y., & Son, J. (1998). Trust, cooperation and social risk: A cross-cultural comparison. *Korea Journal*, 38(1), 131–153.
- Kiyonari, T., Yamagishi, T., Cook, K. S., & Cheshire, C. (2006). Does trust beget trustworthiness? Trust and trustworthiness in two games and two cultures: A research note. *Social Psychology Quarterly*, 69(3), 270–283. https://doi.org/10.1177/019027250606900304
- Kurzban, R., McCabe, K., Smith, V. L., & Wilson, B. J. (2001). Incremental commitment and reciprocity in a real-time public goods game. *Personality and Social Psychology Bulletin*, 27(12), 1662–1673. https://doi.org/10.1177/01461672012712009
- Kuwabara, K., Vogt, S., Watabe, M., & Komiya, A. (2014). Trust, cohesion, and cooperation after early versus late trust violations in two-person exchange: The role of generalized trust in the united states and japan. *Social Psychology Quarterly*, 77(4), 344–360. https://doi.org/10.1177/0190272514546757
- Larzelere, R. E., & Huston, T. L. (1980). The dyadic trust scale: Toward understanding interpersonal trust in close relationships. *Journal of Marriage and Family*, 42(3), 595–604. https://doi.org/10.2307/351903
- Lau, K. H. (2005). *Indigenous modeling on Chinese interpersonal behaviors by using guanxi* [MPhil Dissertation, Department of Psychology, the Chinese University of Hong Kong].

Little, T. D. (2013). Longitudinal structural equation modeling. Guilford Press.

- MacDonald, G., Marshall, T. C., Gere, J., Shimotomai, A., & Lies, J. (2012). Valuing romantic relationships: The role of family approval across cultures. *Cross-Cultural Research*, 46(4), 366–393. https://doi.org/10.1177/1069397112450854
- McAllister, D. J. (1995). Affect- and cognition-based trust as foundations for interpersonal cooperation in organizations. *Academy of Management Journal*, 38(1), 24–59. https://doi.org/10.5465/256727
- Miller, A. S., & Mitamura, T. (2003). Are surveys on trust trustworthy? Social Psychology Quarterly, 66(1), 62–70. https://doi.org/10.2307/3090141
- Mortenson, S. T. (2009). Interpersonal trust and social skill in seeking social support among chinese and americans. *Communication Research*, 36(1), 32–53. https://doi.org/10.1177/0093650208326460
- Muethel, M., & Bond, M. H. (2013). National context and individual employees' trust of the outgroup: The role of societal trust. *Journal of International Business Studies*, 44(9), 312–333. https://doi.org/10.1057/jibs.2013.9

Muthén, B. O., & Muthén, L. K. (2012). Mplus (Version 7.0). Muthén & Muthén.

- National Bureau of Statistics of the People's Republic of China. (2010-2016). *Chinese Statistics Yearbooks*. http://www.stats.gov.cn/tjsj/ndsj/
- Oaten, M., Stevenson, R. J., & Case, T. I. (2009). Disgust as a disease-avoidance mechanism. *Psychological Bulletin*, *135*(2), 303–321. https://doi.org/10.1037/a0014823
- Oishi, S., & Graham, J. (2010). Social ecology: Lost and found in psychological science. *Perspectives on Psychological Science*, 5(4), 356–377. https://doi.org/10.1177/1745691610374588
- Ozer, O., Zheng, Y., & Ren, Y. (2012). *Trust, trustworthiness, and information sharing in supply chains bridging China and the U.S.* http://ssrn.com/abstract=1961774.
- Rempel, J. K., Holmes, J. G., & Zanna, M. P. (1985). Trust in close relationships. *Journal of Personality and Social Psychology*, 49(1), 95–112. https://doi.org/10.1037//0022-3514.49.1.95
- Rotter, J. B. (1967). A new scale for the measurement of interpersonal trust1. *Journal of Personality*, 35(4), 651–665. https://doi.org/10.1111/j.1467-6494.1967.tb01454.x
- Schoorman, F. D., Mayer, R. C., & Davis, J. H. (1996). Organizational trust: Philosophical perspectives and conceptual definitions. *The Academy of Management Review*, 21(2), 337– 340.

- Schulz, J. F., Bahrami-Rad, D., Beauchamp, J. P., & Henrich, J. (2019). The Church, intensive kinship, and global psychological variation. *Science*, 366(6466), eaau5141. DOI: 10.1126/science.aau5141
- Schumann, J. H., Wangenheim, F. V., Yang, Z., Praxmarer, S., Jimenez, F. R., Komor, M., & Shainesh, G. (2007). Cross-cultural differences in the development of trust in relational service exchange: An empirical analysis of trust building in high versus low uncertainty avoidance cultures. Paper Presented at 4th Workshop on Trust within and between Organizations, Amsterdam, Netherlands. http://ro.uow.edu.au/cgi/viewcontent.cgi?article=2888&context=commpapers.
- Sell, J., Chen, Z.-Y., Hunter-holmes, P., & Johansson, A. C. (2002). A cross-cultural comparison of public good and resource good settings. *Social Psychology Quarterly*, 65(3), 285–297. DOI: 10.2307/3090124
- Simonsohn, U., Nelson, L. D., & Simmons, J. P. (2014). P-curve: A key to the file-drawer. Journal of Experimental Psychology: General, 143(2), 534–547. https://doi.org/10.1037/a0033242
- Simonsohn, U., Simmons, J. P., & Nelson, L. D. (2015). Better P-curves: Making P-curve analysis more robust to errors, fraud, and ambitious P-hacking, a reply to Ulrich and Miller (2015). *Journal of Experimental Psychology: General*, 144(6), 1146–1152.
- Sternberg, R. J. (1997). Construct validation of a triangular love scale. *European Journal of Social Psychology*, 27(3), 313–335.
- Sterne, J. A. C., Becker, B. J., & Egger, M. (2005). The funnel plot. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), *Publication bias in meta-analysis: Prevention, assessment* and adjustments (pp. 75–98). John Wiley & Sons.
- Sutton, A. J. (2009). Publication bias. In L. Cooper, L. V Hedges, & J. C. Valentine (Eds.), *The handbook of research synthesis and meta-analysis* (pp. 435–452). Russell Sage Foundation.
- Talhelm, T., Zhang, X., Oishi, S., Shimin, C., Duan, D., Lan, X., & Kitayama, S. (2014). Largescale psychological differences within China explained by rice versus wheat agriculture. *Science*, 344(6184), 603–608. https://doi.org/10.1126/science.1246850

The Central Intelligence Agency. (2017). *The world factbook*. https://www.cia.gov/library/publications/the-world-factbook/fields/2172.html.

- The China University of Political Science and Law. (2013). Assessment report of government by law in China. *China Law*, *1*, 37–46. (In Chinese)
- The Institute for Economics and Peace. (2017). *Global peace index*. https://en.wikipedia.org/wiki/Global_Peace_Index.

- The Ministry of Health of the People's Republic of China. (2003-2013). *Chinese health statistics yearbooks*. http://www.nhfpc.gov.cn/zwgkzt/tjnj/list.shtml.
- The World Bank. (2016). The worldwide governance indicators. www.govindicators.org.
- Tian, W. (2012). Analysis of temporal trend in GINI coefficients for people's incomes in each province. *Economic Science*, 2, 48–59. (In Chinese)

Triandis, H. C. (1995). Individualism and collectivism. Westview.

- Van Assen, M. A. L. M., Van Aert, R. C. M., & Wicherts, J. M. (2015). Meta-analysis using effect size distributions of only statistically significant studies. *Psychological Methods*, 20(3), 293–309. https://doi.org/10.1037/met0000025
- Van de Vliert, E. (2011). Climato-economic origins of variation in ingroup favoritism. *Journal of Cross-Cultural Psychology*, *42*(3), 494–515. https://doi.org/10.1177/0022022110381120
- Wang, K. Y., & Clegg, S. (2002). Trust and decision making: Are managers different in the People's Republic of China and in Australia? *Cross-Cultural Management: An International Journal*, 9(1), 30–45. https://doi.org/10.1108/13527600210797334
- Wasti, S. A., Tan, H. H., Brower, H. H., & Önder, Ç. (2007). Cross-cultural measurement of supervisor trustworthiness: An assessment of measurement invariance across three cultures. *The Leadership Quarterly*, 18(5), 477–489. https://doi.org/10.1016/j.leaqua.2007.07.004
- Wheeless, L. R., & Grotz, J. (1977). The measurement of trust and its relationship to selfdisclosure. *Human Communication Research*, *3*, 250–257. https://doi.org/10.1111/j.1468-2958.1977.tb00523.x
- White, A. E., Kenrick, D. T., Li, Y. J., Mortensen, C. R., Neuberg, S. L., & Cohen, A. B. (2012). When nasty breeds nice: Threats of violence amplify agreeableness at national, individual, and situational levels. *Journal of Personality and Social Psychology*, 103(4), 622–634. https://doi.org/10.1037/a0029140
- Wieselquist, J., Rusbult, C. E., Foster, C. A, & Agnew, C. R. (1999). Commitment, prorelationship behavior, and trust in close relationships. *Journal of Personality and Social Psychology*, 77(5), 942–966. https://doi.org/10.1037/0022-3514.77.5.942
- Williamson, O. E. (1993). Calculativeness, trust, and economic organization. *The Journal of Law and Economics*, 36(1), 453–486. https://doi.org/10.1086/467284
- World Values Survey Association. (2016). World Values Survey 1981-2014 longitudinal aggregate v.20150418. [Data set]. http://www.worldvaluessurvey.org/WVSDocumentationWVL.jsp.
- Wrightsman, L. (1974). Assumptions about human nature: A social-psychological analysis. Brooks/Cole Publishing Company.

- Wu, J.-J., Zhang, B.-Y., Zhou, Z.-X., He, Q.-Q., Zheng, X.-D., Cressman, R., & Tao, Y. (2009).
 Costly punishment does not always increase cooperation. *Proceedings of the National Academy of Sciences of the United States of America*, 106(41), 17448–17451.
 https://doi.org/10.1073/pnas.0905918106
- Yamagishi, T., & Yamagishi, M. (1994). Trust and commitment in the United States and Japan. *Motivation and Emotion*, 18(2), 129–166. https://doi.org/10.1007/BF02249397
- Yamagishi, T. (1986). The provision of a sanctioning system as a public good. *Journal of Personality and Social Psychology*, *51*(1), 110–116.
- Yamagishi, T. (1988). The provision of a sanctioning system in the United States and Japan. *Social Psychology Quarterly*, *51*(3), 265–271. https://doi.org/10.2307/2786924
- Yamagishi, T., Jin, N., & Miller, A. S. (1998). In-group bias and culture of collectivism. Asian Journal of Social Psychology, 1(3), 315–328. https://doi.org/10.1111/1467-839X.00020
- Yamagishi, T., Makimura, Y., Foddy, M., Matsuda, M., Kiyonari, T., & Platow, M. J. (2005). Comparisons of Australians and Japanese on group-based cooperation. *Asian Journal of Social Psychology*, 8(2), 173–190. https://doi.org/10.1111/j.1467-839x.2005.00165.x
- Yum, Y., & Hara, K. (2005). Computer-mediated relationship development: A cross-cultural comparison. *Journal of Computer-Mediated Communication*, 11(1), 133–152. https://doi.org/10.1111/j.1083-6101.2006.tb00307.x
- Zhang, J., & Bond, M. H. (1993). Target-based interpersonal trust: Cross-cultural comparison and its cognitive model. *Acta Psychologica Sinica*, 25(2), 164-172. (in Chinese with English Abstract)
- Zhang, Y., & Jin, Q. (2011). Differential responses of infectious diseases to economic growth in China. International Journal of Infectious Diseases, 15(8), e578–e579. https://doi.org/10.1016/j.ijid.2011.04.006