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1 Supplementary methods

1.1 Experiment 1: Advisors description

After the participant confirmed their initial perceptual decision response with the space-
bar, one of four different advisors appeared centrally as a head-shot picture. The ad-
visors pictures were all Caucasian, smiling female characters (Tottenham et al., 2009),
randomly assigned per participant to the four accuracy/calibration conditions described
below. Advice was provided in the form of spoken sentences (2 s long), that expressed a
binary level of confidence (low vs. high) and either agreement or disagreement with the
participant’s judgment. Low confidence was expressed by the sentences “I think it was on
the [LEFT/RIGHT]” and “It was on the [LEFT/RIGHT], I think”, with one of the two
versions randomly assigned on every trial. Similarly, high confidence was expressed by the
sentences “I’m sure it was on the [LEFT/RIGHT]!” and “It was on the [LEFT/RIGHT],
I’m sure!”. The use of two inverted sentences for each confidence cue (“I’m sure” vs. “I
think”) was to avoid over-repetition of a single sentence and to balance the differences in
emphasis that the English language conveys when using the confidence cues at the begin-
ning or end of the sentence. The selection of LEFT or RIGHT depended on the advisor’s
choice and accuracy as described below. The spoken advice was pre-recorded from four
female native English speakers, again randomised to conditions across participants.

Advisor calibration was defined as the strength of co-variation between confidence
judgments and accuracy, and quantified as Type 2 AROC (A′′ROC), a method which that
not make assumptions about the generative model of confidence (Fleming & Lau, 2014).
Uncalibrated advisors both had an A′′ROC of 0.5, meaning that confidence was totally
uninformative in predicting the advisor’s trial-level accuracy. Due to the experimental
design—in which overall accuracy of advisors was fixed at 60% or 80%, and calibrated
advisors were always correct when high in confidence—calibrated advisors differed in their
metacognitive sensitivity according to this metric.

1.2 Advice Value as Information Gain

Experiment 1 We formalised an advisor’s informational value as the mean absolute
information gained after each possible social encounter with a specific advisor. Informa-
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tion gain is the difference between the posterior and prior probability of participant’s
correct response:

IG = p(d = w|e)− p(d = w) (1)

where posterior probability correct p(d = w|e) represents the probability that the
decision d is equal to the correct decision w, conditional on the specific social encounter e.
Social encounter e represents one of the four possible events: the advisor (1) confidently
disagrees, (2) unconfidently disagrees, (3) unconfidently agrees, (4) confidently agrees
(where “confidently” and “unconfidently” refer to the level of confidence expressed by
the advisor on that trial). Posterior probability p(d = w|e) was computed using Bayes’
theorem and was proportional to participant’s prior probability correct p(d = w) and
the likelihood of the social event given participant’s accuracy p(e|d = w). Given the
staircase procedure, we used 70% as prior p(d = w). The probability of agreement (or
disagreement) conditional on correct response and the overall probability of agreement (or
disagreement) were known by design. The mean absolute information gain so computed
was lowest for the Inaccurate Uncalibrated advisor (0.08), intermediate for the Accurate
Calibrated and Accurate Uncalibrated advisors (0.29 and 0.26 respectively) and highest
for the Calibrated but Inaccurate advisor (0.38). This can be intuitively understood
by looking at Table 1, in the main text. Although the Inaccurate Calibrated advisor’s
accuracy rate is lower than the Accurate Calibrated advisor, outcomes can be better
predicted by its judgment. In particular, its judgments correlate strongly positively
when sure and strongly negatively when unsure with the correct answer. On the contrary
when the Accurate Calibrated advisor is unsure there is a much higher uncertainty about
the final outcome. We also computed an expected information gain IGe for each advisor
(Table 1 in the main text) by scaling IG by the overall probability of each event:

IGe = IG ∗ p(e) (2)

where p(e) is the overall probability of each social event (i.e., confident disagreement,
unconfident disagreement, unconfident agreement, confident agreement). The expected
information gain captures the idea that extremely informative but very unlikely events
are not very valuable. IGe values for each advisor were: Accurate Calibrated = .063,
Accurate Uncalibrated = .063, Inaccurate Calibrated = .084, Inaccurate Uncalibrated =
.021; suggesting that the Inaccurate Calibrated advisor’s advice was the most informative.

Experiment 2 Similar to Experiment 1, we used conditional probabilities and the
participants’ expected accuracy to compute the informational value of each advisor. Ad-
visors’ mean absolute information gain IG and expected information gain IGe were com-
puted as in the previous experiment. Contrary to Experiment 1, however, advisors did
not express different levels of confidence. This created only two possible social situations
e on each trial (instead of four as in the previous experiment), namely either agreement
or disagreement. Information gain was highest for the accurate advisors (.28 and .27 for
the high and low agreement advisors respectively) and the lowest for inaccurate advisors
(.03 and .06 for the high and low agreement advisors respectively).

Experiment 3 The intuition that the anti-bias advisor was the most informative of the
three advisors designed for Experiment 3 was confirmed using a numerical simulation.
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We used numerical simulation rather than analytic calculations here because, in Experi-
ment 3, the profile of the advisors cannot be calculated a priori but is dependent on the
specific distribution of confidence of the participant. The simulations were based on an
ideal Bayesian observer performing the task, with a Gaussian distribution of confidence
centred on 25 and with a standard deviation of 10. For each initial confidence judgment,
the information gained from observing agreement or disagreement was computed for each
advisor as the difference between posterior confidence and prior confidence. Contrary to
previous Experiments, prior probability correct was here defined on a trial level based
on pre-advice confidence. An expected information gain was computed by multiplying
the information gain so obtained by the normalisation term in the Bayes formula. This
produced a curve of expected information gains after agreeing or disagreeing with each
advisor over possible pre-advice confidence levels (Figure S1). The average area under
the expected information gain curve was taken as an objective measure of advisor infor-
mativeness. Average areas under the curve were 14.74 for the unbiased advisor, 14.63 for
the bias-sharing advisor and 15.78 for the anti-bias advisor. This procedure thus quanti-
fied and confirmed the intuition that the anti-bias advisor provided the most informative
advice.

Figure S1: Information gained after agreeing and disagreeing with each advisor type
(color code) for each initial subjective prior confidence. Information gain is scaled by
the likelihood of agreement and disagreement events. Advice informativeness can be
quantified by the area under the curve.
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Experiment 1 Advisors

Accurate Accurate Inaccurate Inaccurate
Calibrated Uncalibrated Calibrated Uncalibrated

A′′ROC .72 .5 0.84 .5
IG 0.29 0.26 0.38 0.08
IGe 0.063 0.063 0.084 0.021

Experiment 2 Advisors

High Accuracy High Acc. Low Acc. Low Acc.
High Agreement Low Agr. High Agr. Low Agr.

IG 0.28 0.27 0.03 0.06
IGe 0.09 0.13 0.01 0.03

Advisors

Bias-sharing Unbiased Anti-bias

AUC(IGe) 14.63 14.74 15.78

Table S1: Experiment 1-3 information gain and expected information gain—IG and IGe

respectively—indicate average informational value of the advice, computed as information
gain and expected information gain respectively. Experiment 1 also shows advisors’
calibration, measured as type II AROC.

1.3 Measures of interest

Two measures of estimated advice reliability were defined. The first was the explicit
trust that participants expressed in the advisors as collected by the brief questionnaires
presented to participants every two blocks. In Experiment 1, four questions asked par-
ticipants to directly rate on a scale from 1 (“Not at all”) to 50 (“Extremely”) how much
they thought each advisor was accurate (Q1), confident (Q2a), trustworthy (Q3) and
influential on their own choices (Q4). In Experiments 2 and 3, due to the absence of
a confidence judgment from advisors, question 2 was replaced with a question asking
about how much participants liked each advisor (Q2b: likeability question). For all Ex-
periments, the first questionnaire was presented immediately after the practice blocks
but before any interaction with the advisors took place so to provide a baseline measure.
Baseline ratings were subtracted from following ratings to account for confounding factors
related to advisors’ appearance and inter-individual differences in the use of the scale.
A principal component analysis (PCA) was performed for dimensionality reduction on
normalised difference scores and the first component was taken as a unitary measure of
expressed trust.

In Experiment 1, question loadings for the Feedback condition were 0.52 (Q1), 0.44
(Q2a), 0.50 (Q3), 0.52 (Q4); and for the No-Feedback condition were 0.51 (Q1), 0.39
(Q2), 0.54 (Q3), 0.52 (Q4).

In Experiment 2, question loadings for the Feedback condition were 0.53 (Q1), 0.39
(Q2b), 0.53 (Q3), 0.52 (Q4); and for the No-Feedback condition were 0.51 (Q1), 0.41
(Q2), 0.53 (Q3), 0.51 (Q4).

In Experiment 3, question loadings for the Feedback condition were 0.53 (Q1), 0.42
(Q2b), 0.53 (Q3), 0.50 (Q4); and for the No-Feedback condition were 0.48 (Q1), 0.47
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(Q2), 0.53 (Q3), 0.50 (Q4).

The second measure of interest was an implicit index of advisor’s influence on partici-
pant’s opinions, quantifying participants’ confidence change from pre- to post-advice:

δC = Cpost − Cpre. (3)

where Cpre is, for Experiment 1 and 2, an integer value between +1 and +5 and Cpost

is an integer value between -5 and +5 (negative Cpost representing changes of mind). Pos-
itive δC values mean increases in confidence from pre- to post-advice and negative values
represent decreases in confidence. Notice that δC values have a negative skew, ranging
from -10 (moving from highest confidence in one judgment to highest confidence in the
opposite judgment) to +4 (moving from lowest to highest confidence rating for a single
judgment). In Experiment 3, given the difference scale used, Cpost can assume values
between -50 and 50, while δC can range from -100 to 49. Agreement and disagreement
trials typically have opposite effects on confidence change: agreement usually leads to
increases in confidence while disagreement to confidence decreases. The absolute mag-
nitude of confidence shifts in both agreement and disagreement trials can be expected
to grow larger as the participant makes more use of the advice received. Thus a uni-
tary measure of influence was obtained by subtracting average δC in disagreement from
average δC in agreement:

I = δ̄aC − δ̄dC (4)

where I assumes greater values as participant’s confidence increases in agreement and
confidence decreases in disagreement become larger.

2 Supplementary Results

2.1 Confidence change by agreement

Previous research has shown that confidence inversely predicts advice taking and that
people discount disagreeing advice. The crucial aim of our investigation is to show that
confidence and agreement not only influence how each piece of agreeing/disagreeing ad-
vice is weighted, but are also aggregated across interactions to discern something about
the advisors themselves (i.e., their overall reliability). This aim was reflected in the defi-
nition of our influence measure, which assesses pre- to post-advice changes in confidence
separately for trials with agreeing vs. disagreeing advice from each advisor, and calcu-
lates influence as the difference between these changes. Thus, via our influence measure,
we can show that advisors who more regularly disagree with a participants’ choices are
less influential, even on those trials where their advice happens to agree with the par-
ticipants’ view. Conversely, we can show that advisors who more regularly agree with
the participant are more influential on those trials where their opinion diverges from the
participants’ initial choice. To further explore these effects, and provide further evidence
that the observed influence differences reflect gradually-learned evaluations of advisors’
relative reliability, we repeated the analysis and plots reported in the main text, but now
assessing confidence change as a function of agreement, separately for each advisor. If
people are simply discounting disagreeing advice (even if proportionally to their initial
confidence) we would not expect to see differences across advisors, because all agreement

5



(/disagreement) trials should count the same, independently of who is agreeing. Instead
if people are forming a durable representation of others’ competence, we would expect
to observe differences in confidence change when people agree (disagree) with different
advisors. In particular, we would expect a greater influence (i.e., confidence change) of
advisors that are believed to be more more competent.

2.2 Experiment 1

We replicate the results observed for the aggregate influence measure (Equation 3) also
for agreement and disagreement trials separately. Figure S2 shows the confidence change
observed for each advisor, broken down by agreeing and disagreeing trials. As expected,
accurate and calibrated advisors produced larger confidence changes in both agreement
and disagreement trials.

Figure S2: Experiment 1 - Confidence change in agreement and disagreement trials for
different advisors. We observe an effect of both advisor’s accuracy and calibration (see
table S2) in both agreement and disagreement trials. This suggests that people accumu-
lated a representation of others’ competence irrespective, instead of simply discounting
disagreeing evidence.
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Effect F(1,44) p ges

Agreement

fb 0.75731824 3.888921e-01 1.082965e-02
acc 9.22407505 4.006146e-03** 1.969010e-02
cal 4.00170962 5.164876e-02. 4.576533e-03
conf 69.29001445 1.388161e-10*** 1.311394e-01
fb:acc 0.01367809 9.074292e-01 2.978340e-05
fb:cal 0.06240406 8.038984e-01 7.169104e-05
fb:oc 4.65711595 3.642327e-02 * 1.004259e-02
acc:cal 0.41823365 5.211792e-01 4.502113e-04
acc:conf 0.43401602 5.134579e-01 3.094162e-04
cal:conf 3.37609059 7.290780e-02 . 2.128078e-03
fb:acc:cal 0.41563349 5.224712e-01 4.474136e-04
fb:acc:conf 0.17938831 6.739627e-01 1.279117e-04
fb:cal:conf 2.98407362 9.110176e-02 . 1.881440e-03
acc:cal:conf 0.74141098 3.938773e-01 2.551690e-04
fb:acc:cal:conf 1.83713762 1.822040e-01 6.320432e-04

Disagreement

fb 0.006121536 9.379917e-01 1.011952e-04
acc 15.304270849 3.133341e-04 ** 1.725678e-02
cal 18.823806847 8.256714e-05 *** 1.270240e-02
conf 38.697718603 1.598035e-07 *** 8.451080e-02
fb:acc 0.105297640 7.471003e-01 1.208017e-04
fb:cal 0.812641129 3.722487e-01 5.551212e-04
fb:conf 0.377914265 5.418879e-01 9.006905e-04
acc:cal 0.164358350 6.871398e-01 1.563503e-04
acc:conf 2.652761665 1.105102e-01 1.045018e-03
cal:conf 7.753482060 7.874907e-03 * 3.359669e-03
fb:acc:cal 0.814506124 3.717056e-01 7.743419e-04
fb:acc:conf 0.572707598 4.532184e-01 2.257951e-04
fb:cal:conf 0.189169288 6.657348e-01 8.223868e-05
acc:cal:conf 4.049781660 5.032305e-02 . 8.000137e-04
fb:acc:cal:conf 2.531817122 1.187317e-01 5.002976e-04

Table S2: Experiment 1 - confidence change broken down by agreement. We find similar
results reported for influence reported in the main text, namely main effects for advisor’s
accuracy and calibration. Columns from left to right: Effect, F statistic (numerator’s
degrees of freedom, denominator’s degrees of freedom), p-value, generalized η2G measure
of effect size. Effect abbreviations: fb (feedback), acc (advisor accuracy), cal (advisor
calibration), conf (advisor confidence). Significance values: . (< .1), * (< .05), ** (< .01),
*** (< .001).
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2.3 Experiment 2

Figure S3: Confidence change in agreement and disagreement trials for different advisors.
We observe an effect of both accuracy and agreement rates (see table S3) in both agree-
ment and disagreement trials. This suggests that people accumulated a representation of
others’ competence irrespective, instead of simply discounting disagreeing evidence.
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Effect F(1,44) p ges

Agreement

fb 0.9773923 0.328249136 1.718636e-02
acc 11.0912363 0.001762675 ** 2.126074e-02
agr 11.6915961 0.001364394 ** 1.796254e-02
fb:acc 0.8654221 0.357301932 1.692091e-03
fb:agr 2.0170753 0.162585940 3.145717e-03
acc:agr 0.0122558 0.912353006 1.609034e-05
fb:acc:agr 1.1344127 0.292646089 1.487152e-03

Disagreement

fb 3.50257108 0.067931311 . 4.962705e-02
acc 13.31128416 0.000695565 *** 4.141194e-02
agr 12.24407362 0.001081278 ** 3.128264e-02
fb:acc 0.35848098 0.552421231 1.162077e-03
fb:agr 1.64668779 0.206128216 4.324237e-03
acc:agr 0.03461100 0.853268206 6.699501e-05
fb:acc:agr 0.03595038 0.850489994 6.958741e-05

Table S3: We find the same main effects reported for influence reported in the main
text. Columns from left to right: Effect, F statistic (numerator’s degrees of freedom,
denominator’s degrees of freedom), p-value, generalized η2G measure of effect size. Effect
abbreviations: fb (feedback), acc (advisor accuracy rate), agr (advisor agreement rate).
Significance values: . (< .1), * (< .05), ** (< .01), *** (< .001).
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2.4 Experiment 3

Figure S4: Confidence change in agreement and disagreement trials for different advi-
sors. We observe an interaction between feedback and advisor type in both agreement
(n.s.) and disagreement trials (Table S4). This suggests that people accumulated a rep-
resentation of others’ competence irrespective, instead of simply discounting disagreeing
evidence.

10



Effect DFn DFd F p ges

Agreement

fb 1 46 1.3045963 0.2592860 0.022652313
adv 2 92 0.8914123 0.4135879 0.003529282
fb:adv 2 92 1.3948125 0.2530714 0.005511361

Disagreement

fb 1 46 0.5992415 0.44282813 0.007701738
adv 2 92 1.6127341 0.20492582 0.013972922
fb:adv 2 92 4.2738736 0.01679238 * 0.036194829

Table S4: Experiment 3: confidence change broken down by agreement. In agreement
trials, we observe the same numerical trend as reported in the main text, although these
results are not significant. In disagreement trials on the contrary, the same interaction
between feedback condition and advisor type is observed as the one reported in the main
text, suggesting that disagreement trials might have been driving the main results. One
possibility for this difference is the ceiling effect observed in agreement trials, which
left more room for confidence change in the disagreement than in the agreement part.
Columns from left to right: Effect, numerator’s degrees of freedom, denominator’s degrees
of freedom, F statistic, p-value, generalized η2G measure of effect size. Effect abbreviations:
fb (feedback), adv (advisor type). Significance values: . (< .1), * (< .05), ** (< .01),
*** (< .001).

3 Three heuristics for advisor competence estima-

tion

We used the models to explore how people would estimate advisor reliability if they were
using three simple heuristic algorithms that make use of readily available information
in the decision process: objective feedback, if available; the degree to which advisors
agree with the participants’ own initial judgments; and advisors’ agreement with the
participants’ own judgments, scaled by the confidence with which those initial judgments
are made. Notice that these models do not intend to be a faithful representation of
the cognitive underpinnings of our human participants but a proof of concept showing
that even in the absence of external feedback, confidence and agreement signals can be
accumulated over time to form stable impressions of advisor’s accuracy and reliability.
Importantly, once these impressions are formed, they can inform a more flexible use of
advice. For example, instead of simply down-weighting advice by confidence (as prior
studies have shown), a stable representation of the advisor’s underlying accuracy can be
used to down-weight their advice also when their advice agrees with one’s own current
opinion. However, as thoroughly investigated in the main text, this strategy relies on the
independence of one’s own and one’s advisor’s judgments. If this independence is broken
(e.g. if the self and the advisor are more likely to agree on incorrect choices) then this
adaptive strategy backfires because it systematically overestimates the accuracy of highly
agreeing individuals.
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3.1 Model Description

Experiment 1 showed that people are sensitive to similar dimensions in the advice they
receive both when objective feedback is available and when it was not provided. It
is unclear what cues people are following to estimate their partners’ reliability when
feedback is taken away. Two simple explanations can be offered. The first one is that
different advisors agreed differently often with participants and this in turn was taken as
an indicator of good performance. In a binary choice task, if we assume that two people’s
judgments are independent, agreement rate between the two will scale linearly with the
accuracy of each individual as long as performance is above chance. Thus, accumulating
the number of agreement events over time for each individual advisor separately allows
a subject to form a stable opinion about the other person’s underlying accuracy.

A related, but subtler and potentially more powerful, strategy participants could have
used is to accumulate over time the estimated probability of the advice being correct on
a given trial. This quantity can be generated based on internal metacognitive signals of
confidence, which provide a representation (albeit imperfect) of the uncertainty associated
with a given perceptual judgment. In other words, given that confidence in a decision
is a probabilistic representation of the correctness of that decision, it can also be used
to estimate the likelihood that the advice received is correct or incorrect. Accumulating
such evidence over time can help a decision maker to estimate the reliability underlying
advice whenever more secure signals are not available.

To formalise such hypotheses we implemented a simple model that uses different
pieces of information depending on different experimental conditions to estimate advisors’
reliability. This simple model can then be compared with human observers to provide
insight into the strategies they are using to evaluate advice reliability. Three different
model variants are described below that account for the Feedback condition, the No-
Feedback condition without metacognitive insight and the No-Feedback condition with
metacognitive insight respectively.

3.2 Accuracy Model

When objective feedback is given to participants by the experimenter, the model can use it
to infer the accuracy rate of its advisors. The accuracy of the advisor (Acc = {0, 1}) is the
same as the accuracy of the subject in agreement trials, while is opposite in disagreement.
By counting correct and error rates for each advisor separately, the model obtains a trial-
by-trial estimation of the advisor’s accuracy rate, θ, as the ratio between the number of
advisor’s correct trials and the total encounters with that advisor:

θi =
αi

αi + βi
(5)

where αi and βi are the correct and error counts respectively, during the past trials
with advisor i:

αi =
n∑

t=1

Acct (6)

βi =
n∑

t=1

1− Acct (7)
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t = 1 here represents the first encounter with advisor i while t = n represents the last
one. A slight complication in Experiment 1, however, is that advisors also provided a
binary confidence judgment associated with the advice. A simple way for the model to
make use of advisor’s confidence is by treating it as a linear scaler of the advice received.
We applied a set of arbitrary weights to the four possible advice scenarios, namely the
advisor is (1) correct and confident, (2) correct but unsure, (3) incorrect and unsure
and (4) incorrect but confident (Table S5). Although arbitrary, any set of weights that
preserves the order of such events would result in similar final advisor preferences.

Event Observed

Inaccurate Inaccurate Accurate Accurate
Confident Unsure Unsure Confident

Feedback -1 -0.5 +0.5 +1

Disagree Disagree Agree Agree
Confident Unsure Unsure Confident

No-Feedback -1 -0.5 +0.5 +1

Table S5: Model weights (w) applied to different advice events observed in the Feedback
and No-Feedback scenario.

Thus instead of simple accuracies, α and β in equations 6 and 7 can now be reformu-
lated as:

αi =
n∑

t=1

.5 + .5 ∗ wt (8)

βi =
n∑

t=1

.5− .5 ∗ wt (9)

This set of equations results in values of 1, 0.75, 0.25 and 0 for the four events listed
above respectively. Although these values could be simply summed to obtain α and β
values, the unusual formulation of the equations 8 and 9 was preferred to be coherent
with the equations describing the following models. They show how a simple model can
take into account feedback, advice received and advisors’ expressed confidence to track
over time the objective reliability of its advisors.

3.3 Consensus Model

When feedback is removed from the participants, as in the No-Feedback conditions of
our experiments, the model does not have access to the advisors’ objective accuracy. It
must then rely on different proxies for objective accuracy and integrate those instead over
time. The first cue to underlying accuracy rate we considered is agreement rate. When
two independent agents express judgments on a binary task, the agreement rate between
the two linearly scales with the accuracy of each whenever the accuracy rate is higher
than chance: Agr = Acc1 ∗Acc2 +(1−Acc1)∗ (1−Acc2). We thus adapted the equations
of the Accuracy model above to exploit this covariation. Instead of tracking the accuracy
rates of its advisors, the Consensus model tracks their agreement rates with subjective
judgments. Thus equations 8 and 9 can be used to estimate a θ value by now using as
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wt the scaled agreement observed on encounter t as described in Table S5. To take into
account the fact that in Experiment 1 advisors expressed a binary confidence judgment
themselves associated with the advice, we used the same linear weights applied to the
Accuracy model also to scale agreement (Table S5). In other words this model perfectly
conflates accuracy with agreement, assuming that whenever an advisor agrees with the
subjective original judgment, the advisor must be correct. Although this clearly is a
simplifying assumption, the model offers a useful proof of concept to understand what
inferences an agent lacking metacognitive insight can make simply by using heuristics. It
can thus provide a benchmark to quantify the information that is present in the advice
received.

3.4 Confidence Model

A more nuanced strategy that could be employed to estimate advisors’ reliability when
feedback is not directly available is through use of internal metacognitive signals. Trial-
level variability in subjective confidence is known to covary with objective accuracy in
a perceptual task (Henmon, 1911) and it theoretically represents the estimated likeli-
hood of having made a correct judgment and/or selected the correct response (Pouget,
Drugowitsch, & Kepecs, 2016). Thus, instead of simply using agreement rates as a cue
for accuracy rate, a model endowed with metacognitive insight could accumulate over
time the subjective probability that an advisor expressed a correct judgment. A Confi-
dence model was created under the assumption that the trial-by-trial subjective reports
of confidence are directly related to the true underlying estimated probabilities of having
chosen the correct answer. On agreement trials the model estimates the probability of
the advice being correct as the subjective probability of a correct answer. Conversely
on disagreement trials the model estimates the probability of the advice being correct
as the probability of having itself made an error. In other words trial-level agreement
(Agr = {0, 1}) is scaled by trial-confidence expressed as a probability over outcomes
(correct vs. incorrect response). Thus equations 8 and 9 above become according to this
model:

αi =
n∑

t=1

.5 + (pt(corr)− .5) ∗ wt (10)

βi =
n∑

t=1

.5− (pt(corr)− .5) ∗ wt (11)

where wt represents the scaled trial-level agreement as described in Table S5 and
p(corr) represents pre-advice confidence. As described below, rather than taking partic-
ipants’ confidence as a pure index of subjective p(corr), we transformed the value to (1)
reduce inter-subjects variability and (2) increase scale sensitivity. Regardless, the crucial
point is that this model capitalises on the fact that being in agreement or disagreement
with an advisor is more informative when the model is itself confident that it gave a
correct answer than when it is more likely to have made a mistake.

Experiments 2-3. In Experiments 2 and 3, advisors did not express a level of con-
fidence with their judgments. This allowed to simplify the above equations describing
the three models. The Accuracy model could be simplified using equations 6 and 7 to
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compute α and β for each advisor instead of equations 8 and 9. Similarly, the Consensus
model now computes α and β values for each advisor i separately as:

αi =
n∑

t=1

.5 + .5 ∗ Agrt (12)

βi =
n∑

t=1

.5− .5 ∗ Agrt (13)

where Agrt is the partner’s consensus (Agr = {−1, 1}) observed on encounter t.
Finally, the simplified Confidence model computes α and β values as:

α =
n∑

t=1

.5 + (p(corr)− .5) ∗ Agrt (14)

β =
n∑

t=1

.5− (p(corr)− .5) ∗ Agrt (15)

where p(corr) is the pre-advice confidence expressed in probability scale as described
in equation 18.

3.5 Bayesian update

All model variants can use the current estimated advisor’s reliability θ to appropriately
update the pre-advice probability of having selected the correct answer p(corr) into a
normative posterior, based on the binary advice A received (agree vs. disagree):

p(corr|Ai) =
p(corr)p(Ai|corr)

p(corr)p(Ai|corr) + p(err)p(Ai|err)
(16)

where p(err) is the subjective probability of making a mistake on the current trial and
p(Ai|corr) is the probability that advisor i agrees or disagrees given that the participant’s
choice is correct. Prior probability p(corr) is estimated from a simple linear transforma-
tion of the pre-advice trial-level confidence data obtained from the participants after
appropriate pre-processing. Pre-processing consisted in a parameter-free transformation
that (a) brings all subjective confidence distributions on to a similar scale thus reducing
the inter-subject variability and (b) expands the centre of the original subjective confi-
dence distributions so to increase the informativeness of the average trial. This operation
was inspired by recent models of adaptive information gain control (Cheadle et al., 2014).
According to these proposals, the brain adapts the gain of neuronal firing to the range
of information available over different time scales and cognitive domains (Carandini &
Heeger, 2011; Cheadle et al., 2014). Here it serves the purpose of increasing the dis-
criminability or information gain of different trials so that trials that are close together
on confidence scale gets pulled apart on to a probability scale. The transformation uses
parameters obtained from the data:

Ĉpre = N ∗ normcdf(Cpre) (17)

where normcdf(C) is the normal cumulative density function of the pre-advice con-
fidence C ratings distribution, and N is the number of confidence ratings available on
each interval of the scale (in Experiments 1,2: N = 5; in Experiment 3: N = 50). This
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simple transformation has the property of translating a normal distribution into a uni-
form distribution in the range [0, N ]. Notice that this transformation does not affect the
ranking of confidence judgments but only their spacing along a probability scale. After
pre-processing, confidence ratings were translated into a probability scale with the linear
transformation:

p(corr) = 0.5 + (0.1− ε) ∗ Ĉpre (18)

where ε is a small jitter (ε = .002) introduced to avoid maximum confidence ratings
being turned into probability of one and zero, which would in turn cause inconsistencies
within the Bayesian formula (e.g., no confidence change regardless of advice reliability).
Thus p(corr) represents trial-level confidence on a probability scale, which can be inter-
preted as the probability that the participant assigns to having given a correct answer
on a given trial. From p(corr) we can also derive the subjective probability that a given
trial will end up in an error: p(err) = 1− p(corr).

To estimate the likelihood term p(Ai|corr) in equation 16 we applied a simple heuristic
that uses the reliability θ of a given advisor:

p(Ai|corr) = θA ∗ (1− θ)1−A (19)

The equation above simply states that the probability of observing advisor i’s agree-
ment (Ai = 1) when the participant is correct is equal to the accuracy rate of the advisor
itself, assuming advisor’s and participant’s judgments are independent. Conversely, the
probability of observing disagreement (Ai = 0) on the same trials is the advisor’s error
rate. In other words, the probability of agreement in trials when the participant is correct
is the probability that the advisor too is correct. Similarly, the probability of disagree-
ment in trials when the participant is correct is equal to the probability that the advisor
is wrong.

3.6 Model results

Trial-by-trial agreement, reported confidence and objective feedback from the experimen-
tal data of the 46 participants in Experiment 1 were used to estimate rated competence
and influence that the our three heuristic model variants would show with each advisor
if they had experienced the corresponding advice profiles of the four virtual advisors.
Separate model runs simulated the evolution of the accuracy estimate (theta parameter)
according to the three learning rules described above: the Accuracy model that learns
based on trial-by-trial feedback, which by hypothesis should capture patterns of rated
competence and influence from participants the Feedback condition, and the Consensus
and Confidence models, which provide distinct computational accounts of the evolution
of rated competence and influence in the No Feedback condition—whether it depends
purely on rates of agreement, or whether agreement is weighted according to partici-
pants’ confidence in their own initial judgments.

Experiment 1 The three model variants were applied to the actual series of each par-
ticipant’s decisions and (where appropriate) their associated confidence, and the advice
they received and (where appropriate) its accuracy, in Experiment 1. The aim of the
following analyses was to verify how the pattern of final model’s trust (Θ) in each advi-
sor differed when different pieces of information were used to compute it. The models
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are not intended as a mechanistic description of participants’ behaviour, but rather aim
to explore how simple accuracy estimation rules lead to differentiated patterns of trust
across advisors according to the type of information used to update estimates of advi-
sor accuracy. For this analysis, data from the Feedback and No-Feedback groups were
pooled together to increase statistical power, as the presence of feedback did not affect
the variables that model’s variants were based on, namely advisors’ accuracy, agreement
rates and participant’s pre-advice confidence ratings respectively. Our analysis focuses
on the resulting values for each model variant across simulated participants, as a direct
measure of the model’s belief about advisor accuracy.

The three model variants’ final Θ values were analyzed using a 2x2 repeated measures
ANOVA with factors of advisor Accuracy (high vs low) and Calibration (high vs. low).
Scaling factors were applied to agreement to take into account the fact that in this
experiment advisors provided a confidence judgment with their advice. The Accuracy
variant is, in this experiment, fully pre-determined by the advisors’ set accuracy rates and
thus no statistical analysis was run due to the absence of variability across participants.
We plot however its trust value for visual reference as it shows that when the model is
provided with information about the objective performance of the participant (and thus
of the advisors), it is able to distinguish advisors both in terms of their Accuracy rate and
their confidence Calibration. The difference between calibrated and uncalibrated advisors
is larger for inaccurate than accurate advisors, due to the weights used to convey advice
confidence (Figure S5).

In the absence of objective feedback, both the Consensus variant—which estimates
advisors’ reliability by assuming that advisors are correct whenever they agree with the
participant’s own first decision, and wrong otherwise—and the Confidence variant—which
uses agreement as a proxy for feedback like the Consensus variant, but scales them by
pre-advice confidence—show greater trust for Accurate (F (1, 45) > 165.84, p < .001, η2G =
.44) and Calibrated (F (1, 45) > 32.70, p < .001, η2G = .13) advisors compared to inac-
curate or uncalibrated ones. Neither variant showed a significant interaction between
the two factors (F (1, 45) < 2.65, p > .11, η2G = .01). Notice that advisors were not con-
strained to agree with the participant a pre-determined number of times, thus explaining
the variability observed across participants according to the specific sequence of decisions
they made and advice they received. Taken together, these modeling results show that
simple computations of advisor reliability perform well at this task even when trial-level
feedback is absent, effectively capturing key patterns of trust observed in the human data
across feedback conditions. For the task used in Experiment 1, the three variants do not
make contradictory predictions on which advisors should be trusted. In particular the
two No-Feedback variants (that base trust on simple agreement, or agreement weighted
by confidence) cannot be disentangled using the data collected from this experiment, with
both showing sensitivity to both accuracy and calibration of an advisor.
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Figure S5: Experiment 1 - Heuristic models

Experiment 2 The models described above were applied to data from Experiment 2,
to understand whether the Consensus and Confidence model variants behaved differently
in scenarios where advice accuracy and advice agreement rate are dissociated. In this
experiment, advisors did not express a confidence judgment about their opinions. Thus,
all model variants could be simplified by not taking into account advice confidence. Trial-
by-trial pre-advice confidence and advice were input to each of the three model variants
and resulting Θ-values for each advisor were compared (Figure S6). Both the Accuracy
and the Confidence models’ Θ values showed a significant effect of Accuracy (F (1, 45) >
8.85, p < .005, η2G > .05), while the Consensus model only showed a non significant
marginal effect (F (1, 45) = 3.22, p = .07, η2G = .02). Both the Confidence and Consensus
models show a significant effect of Agreement (F (1, 45) > 434.7, p < .001, η2G > .71), but
no reliable interaction between the two factors (F (1, 45) < 2.04, p > .15, η2G < .007).

Not surprisingly, when provided with objective feedback on trial-by-trial performance,
a simple model of reliability estimation (Accuracy variant) distinguished advisors based
on their accuracy but not their agreement profile. More surprisingly, a model without
access to feedback but endowed with metacognitive insight (Confidence variant) was also
able to discriminate between equally agreeing but differently accurate partners. As shown
in Table 2 (main text), the accurate agreeing advisor tends to agree more often than
the inaccurate agreeing advisor when the participant is objectively correct (6.5 times
out of 7 against 5.5 times out of 7) and less often when the participant is objectively
wrong (1.5 times out of 3 against 2.5 times out of 3). Trials when participants’ initial
judgment is correct are usually associated with greater confidence ratings (Fleming et al.,
2014; Henmon, 1911; Koriat, 2012), thus a strategy of reliability estimation relying on
confidence can exploit this covariation to detect differences in accuracy, notwithstanding
equal agreement rates.
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Figure S6: Experiment 2 - Heuristic models

Experiment 3 The following simulations and analyses explored the differing patterns
of trust across advisors predicted by simple models of estimating advisor reliability. Sim-
ulations are also useful in this experiment as a check that our designs were controlled
as intended (e.g., for agreement rates across advisors) even though we had less precise
control over conditions because counterbalancing depended on an evolving estimate of
participants’ confidence distributions. Figure S7 shows the pattern of results (modeled
-values) that the three model variants produce.

Both when the model has access to trial-by-trial feedback (Accuracy variant), and
when it only has access to past agreement (Consensus variant), no significant effect of
Advisor is observed (F (2, 94) < 1.70, p > .18, η2G < .02), nor is there a difference between
the bias-sharing and the anti-bias advisor. These patterns are expected because the three
advisors were matched for accuracy and agreement rates by design in this experiment.
On the contrary, a Confidence variant which uses metacognitive information and past
agreement (but lacked access to trial-level feedback) showed a significant effect of Advisor
(F (2, 94) = 7.95, p < .001, η2G = .10). Specifically, simulated trust was higher for the bias-
sharing advisor than the anti-bias advisor (t(47) = 3.54, p = .001, d = .74), and higher
for the unbiased advisor than the anti-bias advisor (t(47) = 2.99, p = .004, d = .57). Sim-
ulated trust was higher for the unbiased than the bias-sharing advisor, but this difference
was not reliable (t(47) = 1.21, p = .22, d = .25). These findings indicate that by accessing
metacognitive signals (as provided in the model by participants’ confidence ratings) the
model was able to discriminate among different advisors. This model correctly predicts
greatest levels of trust in a bias-sharing advisor, but also predicts lowest levels of trust in
anti-bias advisors, whereas our experimental participants expressed (numerically) lowest
levels of trust in unbiased advisors.
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Figure S7: Experiment 3 - Heuristic models

4 Post-advice confidence correlations.

Our main analyses for each experiment focused on qualitative predictions arising from
different strategies for inferring advisor reliability. Collectively, the results are consistent
with the hypothesis that people use their internal sense of confidence in making these
inferences—showing sensitivity to advisor accuracy in the absence of objective feedback,
even when advisors are matched for agreement rate, and developing differing patterns of
trust when advisor agreement rates vary with their own expressed decision confidence.
Our final analysis of the empirical data attempted a more quantitative comparison of
model predictions, specifically focusing on whether the Consensus or Confidence models
better predicted post-advice confidence ratings across trials for the participants in the
No Feedback conditions of Experiments 1-3.

For this analysis we used Bayes rule to infer the trial-by-trial post-advice confidence
ratings that each variant would express given a participant’s expressed pre-advice con-
fidence and advisor agreement (as defined above). The within-participant correlation
between participants’ post-advice confidence and model’s post-advice confidence was
computed for each experiment, for No-Feedback groups only. Second-order statistics
were performed to test, across experiments, which variant was more strongly correlated
with the human data. A 2x2 ANOVA on correlation coefficients with Model (Consen-
sus vs. Confidence) and Experiment as factors showed that the Confidence variant was
significantly more correlated with participants’ responses than the Consensus variant
(F (1, 22) = 8.18, p = 0.009, η2G = 0.0049). No significant effect of experiment nor in-
teraction between the two were found (F (2, 44) < 1.3, p > .25), suggesting that, across
experiments, the Confidence model’s post-advice confidence more strongly covaried with
participants’ true post-advice responses. As a check for the soundness of this model com-
parison method, the same 2x2 ANOVA was run on the correlation coefficients between
participants’ post-advice confidence and the model’s post-advice confidence predictions,
after randomly shuffling trials within each participant. This operation should ensure that
any advantage of the Confidence variant over the Consensus variant is not due to un-
specific factors (like being overall more conservative in updating confidence), but rather
to trial-level variability. After reshuffling, the Consensus and Confidence variants were
not significantly different from each other (F (1, 22 = 1.95, p = 0.17, η2G = 9.54e − 04),
corroborating our conclusions.
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5 Agent-based simulation

5.1 Model description

An agent-based model was programmed using NetLogo (Wilensky, 1999) and is available
at https://github.com/chri4354/trust formation without feedback. The model
was initialised as a fully connected directed network of N agents. A directed edge from
agent i to agent j represents the trust θi,j that i has in j’s opinions. We simulate agents
on a lattice network performing repeated binary A/B decisions, receiving advice from
other agents, inferring their reliability and updating their own initial decisions. We let
the simulation run for a 1000 steps. A signal s with strength S was drawn from a uniform
distribution between −S

2
and +S

2
. This represents the decision quantity to estimate (e.g.,

difference in dots or true state of the world). The task of each agent was to determine
if s was positive (event A) or negative (event B). Each agent estimated the posterior
probability of A given the perceptual information generated by s as follows:

p′(A) = p(A|Ep) =
p(A)Ep

p(A)Ep + p(Ā)Ēp

(20)

Ep = L(s+N (0, σ)) (21)

where p(A) is the prior probability of observing As before seeing any stimulus, L
is a logistic sigmoid mapping from sensory evidence to probability; Ep is the percep-
tual evidence resulting from such mapping and N is independent individual perceptual
Gaussian noise with mean 0 and standard deviation σ. Bars represent complement prob-
ability. Each agent’s perceptual noise (and thus accuracy) was manipulated by varying
the noise parameter σ. Each agent’s bias was manipulated by varying the initial value
p(A). Agents’ confidence was represented as the distance from the uncertainty point 0.50:

C = .50 + |p′(A)− .50| (22)

Trust, represented by the network’s edges, was initialized to 0.50 for every agent and
updated after social interaction. After making a judgment, agents selected one other
agent to interact with either at random (random sampling) or proportionally to their
trust (biased sampling). Agents then updated their initial judgment p′(A) as follows:

p̂(A) = p(A|Es) =
p′(A)Es

p′(A)Es + p′(Ā)Ēs

(23)

where Es represents social evidence and is obtained from the advisor’s judgment
either by taking the advisor’s raw judgment p′(A) (without advice discounting) or by
discounting the advisor’s judgment proportionally to the agent’s trust in the advisor
(with advice discounting). Advice discounting consisted in a linear regression toward the
uncertainty point 0.50 using the following equation:

E ′s = 0.5 + (θ ∗ (p′(A)− 0.5)) (24)

The above equation regresses any confidence judgment p′(A) toward the uncertainty
point 0.50 proportionally to trust. A trust level of 1 would leave the advisor’s judgment
p′(A) untouched, while a trust level of 0 would make any advisor’s judgment equal to 0.50
and thus entirely uninformative. After updating their judgments, each agent i updated
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its trust judgments (i.e., outward edges θi) based on the available information about other
agents. If feedback is available, the agent updates its current trust in agent j by virtue
of a delta rule in the form:

θt+1
i,j = θti,j + α(Fj − θti,j) (25)

where Fj is the accuracy of agent j and α is a learning rate set to 0.1. If feedback

is not available on the contrary, the agent replaces F with F̂ , or the estimated partner’s
accuracy. F̂ was calculated using the agreement or agreement-in-confidence heuristics
described above. In our simulations, we assessed the effect of feedback availability as it
varied parametrically, from being available after every decision (i.e., p-feedback = 1.0),
available after only some decisions (i.e., 0 < p-feedback < 1), or never available (i.e., p-
feedback = 0), rather than the simpler case of feedback presence/absence that we studied
experimentally above.

The emergence of trust patterns when using agreement-based heuristics can be ex-
pected to track true accuracy when judgments are independent but generate clustering of
populations when judgment correlations emerge within such populations. We defined a
network’s clustering coefficient as the ratio between average trust toward agents who ini-
tially share the same bias (in-group trust) and total average trust: θ̄in−group/(θ̄in−group +
θ̄out−group). A ratio of 0.5 represents no preference (i.e., no difference in trust) toward
agents sharing the same initial bias, while a ratio greater than 0.5 represents a preference
toward agents sharing the same initial biases. We test how network clustering is shaped
by the presence or absence of objective feedback and show that bias-specific segregation
arises only when feedback is rarely available.

Finally, once bias-specific segregation is established, we ask whether such clustering
remains stable. In particular, after 500 iterations we allow agents to dynamically change
their original bias as a function of experience. For example, it is known that the bias
observed in people performing binary judgments is influenced by their recent history
of decisions (Akaishi, Umeda, Nagase, & Sakai, 2014; Zylberberg, Wolpert, & Shadlen,
2018). In the present context, if an agent systematically reports “A” but receives neg-
ative feedback, they should reduce their bias by decreasing their prior probability p(A).
Similarly, when feedback is absent, an agent who systematically reports “A” but finds
themselves, after interacting with other agents, believing that Bs are more frequent than
expected, should reduce their bias towards As. Conversely, bias should get stronger if the
social contexts reinforces it (although see (Bail et al., 2018)). We modelled bias update
with a delta rule:

p(A)t+1 = p(A)t + α(I t − p(A)t) (26)

where I t is an indicator variable that represents the final belief in the event A. When
objective feedback is available, I takes the value of 1 if an event A occurred and 0
otherwise. When feedback is not available, I is set to the discrete or continuous final
subjective belief in the event A. In the following section, we show the results obtained
when a discrete final belief is used in the absence of feedback:

I =

{
1, if p̂(A) ≥ 0.5

0, otherwise

Similar results were obtained setting I to the continuous belief p̂(A).
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The following figures supplement figures in the main text.

Figure S8: Trust of each subpopulation toward Population 2. Left panel: Trust of Pop-
ulation 2 towards Population 2 is inversely proportional to the noise of Population 2
agents (y-axis), but are (unsurprisingly) unaffected by the noise of Population 1 (x-axis).
Right panel: Trust of Population 1 toward Population 2 is affected by both the noise of
Population 2 and the noise of Population 1. Although the former correctly tracks Popu-
lation 2’s true underlying reliability, the latter reflects an interaction between the judge’s
characteristics and the advisor’s characteristics, cf Kruger and Dunning (1999).
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Figure S9: Average agreement rate as a function of probability of feedback and noise.
Agreement with ingroup appears to decrease as a function of increasing noise, while
agreement with outgroup tends to increase as a function of noise. On the contrary,
feedback availability does not affect agreement rates.
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Figure S10: Average trust as a function of probability of feedback and noise. Trust
appears to decrease as noise increases and feedback availability decreases.
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probability 

of feedback

Figure S11: Bias distribution and evolution in simulations where agents discount advice
proportionally to trust in the advisor.
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