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Underlying Structure of Male and Female Face Impressions in Study 1 

Principal Components Analysis Procedure 

 When summarizing and visualizing the results of the orthogonal PCAs in Studies 1a and 1b, we 

followed the Kaiser rule: For both male and female faces, we reported the first two components, i.e., PC1 and 

PC2, because they had eigenvalues bigger than 1 (Table S1). This indicates that the third and following 

components were unable to explain a variance larger than a single input variable (i.e., a trait rating) alone, so 

we deemed it as unnecessary to include them. For consistency, in Study 1c we restricted the number of 

components to two although the PCA solution found four components with eigenvalue > 1 for both face 

genders (see Table S1 for details). However, it should be noted that the 14 trait impressions used in Studies 1a 

and 1b were selected in a data-driven fashion after recoding of free-response descriptions of person 

impressions from faces (Oosterhof & Todorov, 2008), whereas there is no report that the 15 traits used in 

Study 1c were chosen in a data-driven way (Ma, Correll, & Wittenbrink, 2015). 

Comparison between 2008 and 2018 Face Evaluation Structures 

 In addition to the main analyses, we examined the similarity between the dataset of Oosterhof & 

Todorov (2008; Study 1a) and the newly collected data (Study 1b). When face genders were collapsed across, 

the two datasets led to highly similar PCA solutions, suggesting the same structure of impressions between 

the two datasets collected about ten years apart (see the main text for details). When face genders were 

considered and separate PCAs were conducted for male and female ratings, the two datasets led to highly 

similar PCA solutions again, suggesting the gender specific structures of impressions from the dataset of 

Oosterhof and Todorov (2008) and from the present dataset (Study 1b) are highly similar. Specifically, we ran 

correlational analyses of the PCA loadings of the trait ratings on PC1 and PC2 across the two datasets. A high 

correlation between the PCA loadings of the two datasets indicates high similarity between the impression 

structures. Between the 2008 data and the current data, the component loadings of the traits were highly 

similar for both male (R = .97) and female face impressions (R = .98), suggesting high stability of the 

impressions of male and female faces over time. 
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Analysis of the Effects of Raters’ Gender Stereotype Endorsement 

When testing for the effect of the raters’ GSE on facial impressions (see Table S2 for the traits used in 

the GSE questionnaire), we conducted an additional analysis on the structure of impressions using four factor 

scores of GSE (each of which represents specific subtypes of gender stereotypes) in addition to the analyses 

reported in the main text (Study 1b). In the analyses reported in the main text, we used the GSE score, the sum 

of each rater’s responses to all items in the questionnaire (see the main text for details). The additional 

analysis yielded consistent results with the main analyses.   

To examine if the relationship between the impression differentiation and the rater GSE is affected by 

gender- or valence-specificity of stereotypes, we computed four factor scores for each rater – stereotype 

gender [male/female] × stereotype valence [positive/negative]. Each factor score represented the extent to 

which each rater supported gender- and valence-specific stereotypes. The four-factor confirmatory factor 

model revealed an acceptable albeit minimum level of fitness (χ2(164) = 826.21, P < .001; CFI = 0.827; RMSEA 

= 0.093, 90% CI = [0.087,0.099]; SRMR = 0.067). The resulting factor loadings of this four-factor solution 

showed the expected relationships between the factors and the questionnaire responses (see Table S2 for 

details). 

We then simply replicated the analyses reported in the main text using each GSE factor score rather 

than the GSE sum score. Although we explored the relationship between impression differentiation and the 

rater GSE in relation to the specific subtypes of stereotype (gender × valence), people’s attitudes towards the 

four subtypes (i.e., male and positive, male and negative, female and positive, and female and negative) go 

hand in hand (Glick & Fiske, 1996; Glick et al., 2000, 2004). That is, if one holds one subtype of gender 

stereotypes, say, stereotypes about stereotypically male and positive traits (e.g., “men are more analytical 

than women”), then the person is likely to hold the other three gender stereotype subtypes as well (e.g., “men 

are more hostile than women”, “women are more gullible than men”, “women are more nurturing than men”). 

Thus, we did not expect any uniquely distinct effect of the stereotype subtypes on the effect of GSE on 

impression differentiation. As we expected, the results for all four subtypes (factor scores) were consistent 

with the results reported in the main text. First, when a rater GSE factor score increased, regardless of the 
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subtype of GSE, the correlation between impressions became stronger for both male and female faces, and the 

quadratic regression model explained more variance than the linear regression model (Fig. S2). Second, 

female face impressions had stronger inter-correlations and larger amount of variance explained by valence 

than male face ratings did (see below and Figure S2 for details). 

Role of Raters’ Gender Stereotypes about Male × Positive Traits. The linear regression model was 

significant for the ratings of both face genders (male faces: R2 = .93, F(1,136) = 1713.94, P < .001; female faces: 

R2 = .79, F(1,136) = 515.78, P < .001), but the quadratic model (male faces: R2 = .94, F(2,135) = 1070.56, P 

< .001; female faces: R2 = .86, F(2,135) = 428.11, P < .001) explained significantly more variance (male faces: 

F(1,136) = 32.33, P < .001; female faces: F(1,136) = 71.83, P < .001). Correspondingly, the amount of variance 

in the ratings explained by the valence component (PC1) followed the same quadratic pattern of change 

across the male × positive GSE factor score: The linear regression model was significant (male faces: R2 = .95, 

F(1,136) = 2468.34, P < .001; female faces: R2 = .84, F(1,136) = 717.14, P < .001), but the quadratic model 

(male faces: R2 = .95, F(2,135) = 1343.58, P < .001; female faces: R2 = .88, F(2,135) = 496.27, P < .001) 

explained a larger amount of variance than the linear models did (male faces: F(1,136) = 12.38, P < .001; 

female faces: F(1,136) = 44.74, P < .001). Across the factor score, female face ratings had higher correlational 

coefficients (ts > 6.32, Ps < .001) and larger amount of variance explained by the valence component than 

male face ratings (ts > 12.87, Ps < .001). 

Role of Raters’ Gender Stereotypes about Male × Negative Traits. The linear regression model was 

significant for the ratings of both face genders (male faces: R2 = .84, F(1,136) = 712.15, P < .001; female faces: 

R2 = .89, F(1,136) = 1076.63, P < .001), but the quadratic model (male faces: R2 = .91, F(2,135) = 697.08, P 

< .001; female faces: R2 = .96, F(2,135) = 1442.86, P < .001) explained significantly more variance (male faces: 

F(1,136) = 110.20, P < .001; female faces: F(1,136) = 203.78, P < .001). Correspondingly, the amount of 

variance in the ratings explained by valence followed the same quadratic pattern of change across the male × 

negative GSE factor score: The linear regression model was significant (male faces: R2 = .83, F(1,136) = 648.12, 

P < .001; female faces: R2 = .93, F(1,136) = 1725.88, P < .001), but the quadratic model (male faces: R2 = .90, 

F(2,135) = 579.89, P < .001; female faces: R2 = .97, F(2,135) = 2129.94, P < .001) explained a larger amount of 
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variance than the linear models did (male faces: F(1,136) = 89.57, P < .001; female faces: F(1,136) = 186.02, P 

< .001). Across the factor score, female face ratings had higher correlational coefficients (ts > 7.43, Ps < .001) 

and larger amount of variance explained by valence than male face ratings (ts > 14.35, Ps < .001). 

Role of Raters’ Gender Stereotypes about Female × Positive Traits. The linear regression model was 

significant for the ratings of both face genders (male faces: R2 = .91, F(1,136) = 1345.46, P < .001; female faces: 

R2 = .75, F(1,136) = 399.19, P < .001), but the quadratic model (male faces: R2 = .95, F(2,135) = 1387.28, P 

< .001; female faces: R2 = .87, F(2,135) = 449.27, P < .001) explained significantly more variance (male faces: 

F(1,136) = 132.10, P < .001; female faces: F(1,136) = 127.64, P < .001). Correspondingly, the amount of 

variance in the ratings explained by valence followed the same quadratic pattern of change across the female 

× positive GSE factor score: The linear regression model was significant for both genders (male faces: R2 = .88, 

F(1,136) = 953.66, P < .001; female faces: R2 = .78, F(1,136) = 482.23, P < .001), but the quadratic model (male 

faces: R2 = .95, F(2,135) = 1270.04, P < .001; female faces: R2 = .89, F(2,135) = 535.72, P < .001) explained a 

larger amount of variance than the linear models did (male faces: F(1,136) = 198.88, P < .001; female faces: 

F(1,136) = 130.40, P < .001). Across the factor score, female face ratings had higher correlational coefficients 

(ts > 10.60, Ps < .001) and larger amount of variance explained by valence than male face ratings (ts > 17.16, 

Ps < .001). 

Role of Raters’ Gender Stereotypes about Female × Negative Traits. The linear regression model was 

significant for the ratings of both face genders (male faces: R2 = .93, F(1,136) = 1715.09, P < .001; female faces: 

R2 = .56, F(1,136) = 176.45, P < .001), but the quadratic model (male faces: R2 = .93, F(2,135) = 954.42, P 

< .001; female faces: R2 = .64, F(2,135) = 121.59, P < .001) explained significantly more variance (male faces: 

F(1,136) = 15.16, P < .001; female faces: F(1,136) = 29.61, P < .001). Correspondingly, the amount of variance 

in the ratings explained by valence followed the same quadratic pattern of change across the female × 

negative GSE factor score: The linear regression model was significant (male faces: R2 = .94, F(1,136) = 

2115.56, P < .001; female faces: R2 = .63, F(1,136) = 233.82, P < .001), but the quadratic model (male faces: R2 

= .95, F(2,135) = 1258.17, P < .001; female faces: R2 = .70, F(2,135) = 157.86, P < .001) explained a larger 

amount of variance than the linear models did (male faces: F(1,136) = 25.15, P < .001; female faces: F(1,136) = 



 6 

30.75, P < .001). Across the factor score, female face ratings had higher correlational coefficients (ts > 2.14, Ps 

< .033) and larger amount of variance explained by valence than male face ratings (ts > 7.69, Ps < .001). 

It should be noted that in all four cases, although the quadratic models explained significantly more 

variance than the linear models, the magnitude of the quadratic effects was much smaller than the magnitude 

of the linear effects, and the increase in the intercorrelations of trait ratings as a function of GSE was largely 

monotonic (Fig. S2).  

Analysis of the Effects of Rater Gender  

When testing for the effect of raters’ gender on facial impressions, we conducted an additional analysis 

using a 2 [face gender] × 2 [rater gender] repeated measures ANOVA on the absolute values of the inter-

impression correlational coefficients in addition to the analyses reported in the main text (Study 1b). In the 

analyses reported in the main text, we used Jennrich (1970) tests of matrix equality (see the main text for 

details) instead of an ANOVA because the dataset violates the assumption of sample independence. However, 

given that ANOVA is known to be rather robust to violations of independence, we report the additional result 

below in the Supplemental Material. The additional analysis yielded consistent results with the main analyses 

(we calculated a generalized eta-squared (ηG2) as the measure of the effect size of each effect (Olejnik & 

Algina, 2003) to account for the repeated measures design). 

 The 2 [face gender] × 2 [rater gender] repeated measures ANOVA on the absolute values of the 

intercorrelational coefficients between trait ratings yielded a significant effect of the rater gender (F(1,90) = 

24.36, P < .001, η2G = .03) with the female raters showing a higher level of correlations between trait ratings 

(M|r| = 0.59, SD|r| = 0.23) than the male raters (M|r| = 0.50, SD|r| = 0.23), indicating that female raters had less 

differentiated face impressions. This main effect was qualified by a significant interaction between the rater 

gender and face gender (F(1,90) = 4.87, P < .05, η2G = .01). Female raters showed a stronger cross-trait 

intercorrelations for female (M|r| = 0.61, SD|r| = 0.21) than for male faces (M|r| = 0.56, SD|r| = 0.25; t(90) = 2.50, 

P = .01, Bonferroni correction), whereas male raters showed the same level of cross-trait correlations for 

female (M|r| = 0.51, SD|r| = 0.21) and for male faces (M|r| = 0.50, SD|r| = 0.25; t(90) = 0.41). This finding 

suggests that the less differentiated impressions of female faces are primarily due to female raters.  
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Building of Male and Female Face Impression Models in Study 2 

A data-driven face modeling approach allows one to build models of impressions without a priori 

assumptions about the effect of specific facial features (e.g., the size of the nose) for impressions (Dotsch & 

Todorov, 2012; Funk, Walker, & Todorov, 2016; Gosselin & Schyns, 2001; Jack & Schyns, 2017; Mangini & 

Biederman, 2004; Oosterhof & Todorov, 2008; Todorov, Dotsch, Wigboldus, & Said, 2011; Walker & Vetter, 

2009; 2016). In the standard, hypothesis-driven approach, different facial features are manipulated. However, 

the combinations of features rapidly proliferate as the number of features increases (Jack & Schyns, 2017; 

Todorov et al., 2011), damaging the feasibility and/or the statistical power of the investigation. For example, a 

simple factorial design for the investigation of the effect of even only ten binary facial features (e.g., a long vs. 

short nose) would lead to 210 experimental conditions. The data-driven approach prevents this by presenting 

a relatively small number of faces (e.g., 300 faces), which randomly vary in their features.  

In Studies 2–3, we used the statistical face space model of FaceGen 3.2 (Singular Inversions) that 

captures the variance from a large sample of real human faces with 100 orthogonal dimensions (Todorov et 

al., 2011; Todorov & Oosterhof, 2011). Each dimension represents the variance in a holistic combination of 

features. A single face is represented as a vector in the statistical space (i.e., an array of 100 numbers). 

Using this approach, one can generate an unlimited number of faces by randomly sampling parameters 

and generating the corresponding faces as images. Participants then judge the randomly sampled faces on a 

trait of interest, e.g., trustworthiness. One can model the trait judgment by extracting the change in face 

parameters that are correlated with the change in the trait judgment. With the resulting model, we can 

visualize what aspects of facial appearance change when an impression of the trait changes.  

 The trait model can be applied to any new face to make it appear more or less trait-like (e.g., 

trustworthy) by moving its corresponding parameters across the modeled judgment. With these manipulated 

faces, one can study what types of facial cues (e.g., emotional facial gestures, perceived physical strength) 

predict the perceived level of the trait. In addition, a data-driven statistical face model allows one to vary a 

particular perceived trait of faces while specifically controlling for another trait (Oh, Buck, & Todorov, 2019; 

Todorov, Dotsch, Porter, & Oosterhof, 2013). For example, Oh and colleagues (2019) manipulated the 



 8 

perceived competence of faces while controlling for facial attractiveness, thereby effectively suppressing the 

halo effect underlying competence impressions. This procedure found that facial masculinity is one of the 

ingredients of competence impressions, revealing gender biases in competence impressions. 
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Validation of Male and Female Face Impression Models in Study 3 

To create the face stimuli for the validation studies, we manipulated their level of perceived 

trustworthiness and dominance. We added -3, -2, -1, 0, 1, 2, and 3SDs to the trustworthiness or dominance 

value of the 25 randomly generated male and 25 randomly generated female faces, using either the male or 

the female model. In other words, we moved the coordinates of the faces in the face space along one of the 

four gender-specific trait models.  

This was a different approach from that of previous validation studies, which did not control for the 

gender of the faces: Todorov and colleagues (2013) manipulated the trait dimension of randomly generated 

faces to take specific values (i.e., -3, -2, -1, 0, 1, 2, and 3SDs on each trait model). These procedures are 

inappropriate when validating gender-specific trait models that are inherently correlated with gender in 

raters’ perception. For instance, male faces are perceived as more dominant than female faces, and female 

faces are perceived as more trustworthy than male faces (e.g., Sutherland et al., 2013; Studies 1a and 1b in the 

main text). Because of these correlations, these procedures would decrease gender-related differences 

between male and female face sets, as they would project all the faces, regardless of their gender, onto the 

trait dimensions with the same values. As a result, we would essentially be generating less male-like male 

faces and less female-like female faces for the validation stimulus set.  

Note that the parameters of the average male face and the parameters of the average female face used 

here were based on samples of actual male and female faces. That is, 3D laser scans of these male and female 

faces were used to construct the FaceGen statistical face space and extract the 100 face parameters. In the 

current project, by adding dimension values of [-3 to 3SDs] to the original faces (rather than assigning the 

faces to the dimension values as in the previous approach), we maintained the gender-related facial 

information in the male and female faces. 

When cross-validating gender-specific impression models using ANOVAs, we calculated a generalized 

eta-squared (ηG2) as the measure of the effect size of each effect (Olejnik & Algina, 2003) to account for the 

repeated measures design of the experiment. 
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Figure S1. The distribution of raters’ responses to gender stereotype endorsement (GSE) questions in 

Study 1b. In every question, raters showed a bias away from the middle score (blue dotted line) in the 

direction consistent with gender stereotypes (ts > 7.02, Ps < .001). The bigger purple (traits associate with 

women) and green dot (traits associate with men) denote the mean response, and the smaller black dots raw 

responses. All missing values were replaced using 10-nearest neighbor imputation. 
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Figure S2. The level of intercorrelations across impressions (A) and the amount of variance in the 

impressions explained by valence (B) as a function of the raters’ GSE score in Study 1b. Each data point 

(A: the absolute value of correlational coefficients between all impression rating pairs, B: the amount of 

variance explained by PC1 (valence) in the PCA of ratings per gender) was calculated from two rater 

subgroups (nhigh-GSE = 235, nlow-GSE = 234). We divided the participants into high- and low-GSE raters for each 

trait, using the median split per trait (range of median = [112.5,126.0] across traits). For the raters whose 

GSEs were exactly at the median per trait (n = 13), we categorized 7 of them with higher GSEs in the high-GSE 

group and 6 with lower GSEs in the low-GSE group, regardless of which trait they evaluated faces on. The 

intercorrelations and the variance explained were higher in female than in male impressions among both 

high- (M|r| = 0.57, SD|r| = 0.23 vs. M|r| = 0.55, SD|r| = 0.26, χ2(91) = 799.53, P < .001; 62.62 % vs. 58.30 %) and 

low-GSE raters (M|r| = 0.52, SD|r| = 0.20 vs. M|r| = 0.50, SD|r| = 0.23, χ2(91) = 545.05, P < .001; 57.59 % vs. 

43.70 %). These results replicate the results in the main text: Figure 3 shows consistent results, with 

individual differences in the GSE level better preserved. The error bars denote ±SE. GSE = gender stereotype 

endorsement. PCA = principal component analysis.  
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Figure S3. The level of intercorrelations across impressions (the left column in each subpanel) and the 

amount of variance in the impressions explained by valence (the right column in each subpanel) as a 

function of the raters’ GSE factor scores in Study 1b. Each data point was calculated from a rater subgroup 

(nrater = 10 per trait, nrater = 140 in total per subgroup). Each subgroup was sampled from a sliding window on 

the rater GSE factors (nrater ≥ 10 per trait), in which the X value is the middle point of the sliding window. GSE 

factors represent the degree to which raters endorsed gender stereotypes about either stereotypically male 

and positive (e.g., analytical; top left), male and negative (e.g., hostile; top right), female and positive (e.g., 

nurturing; bottom left), or female and negative traits (e.g., nagging; bottom right). The factor scores were 

derived from a four-solution confirmation factor analysis. The shaded regions show 95% CIs estimated from 

1,000 bootstrapped replications per face gender for each factor score. The intercorrelations of face 

impressions (ts > 2.14, Ps < .033) and the amount of variance explained by PC1 (ts > 7.69, Ps < .001) were 
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significantly higher in female than in male impressions across every GSE factor score. See Supplemental Text 

for details. GSE = gender stereotype endorsement. CI = confidential interval. PC = principal component. 
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Figure S4. A sample of randomly generated synthetic female faces (A) and male faces (B) in Study 2. 

For each gender, 300 faces were generated as variations of the gender-specific average face. The face shape 

and face reflectance were varied randomly. 
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Figure S5. A scatterplot of the dominance and trustworthiness ratings of faces as a function of gender 

in Study 2. The density functions along the X and Y axes represent the distributions of male (green) and 

female faces (purple) for the trustworthiness and dominance ratings, respectively. 
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Figure S6. Similarities between gender-specific trustworthiness and dominance models. Similarities 

between models are represented with angles, e.g., 0 rad when ρ = 1, π/2 rad when ρ = 0, π when ρ = -1. Each 

model was built on the ratings of either only male faces (green line) or only female faces (purple line). 
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Figure S7. Twenty-five female (A) and twenty-five male (B) synthetic face identities used in the 

validation of the data-driven, computational models in Study 3a. These faces were randomly generated 

by a statistical face model with the constraint to be maximally distinctive from each other. 
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Figure S8. Twenty-five female (A) and twenty-five male (B) real-life face identities used in the 

validation of the data-driven, computational models in Study 3b. Images from Face research lab London 

set, by L. M. DeBruine and B. C. Jones, 2017. Retrieved from http://dx.doi.org/10.6084/m9.figshare.5047666 
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Table S1. Eigenvalues of PCs and the Amount of Variance Explained by the PCs in Study 1. 

 Study 1a  Study 1b  Study 1c 

 
Female 
Faces 

Male 
Faces  

Female 
Faces 

Male 
Faces  

Female 
Faces 

Male 
Faces 

 
Component 

λ 
% 

Variance 
Explained 

λ 
% 

Variance 
Explained 

 λ 
% 

Variance 
Explained 

λ 
% 

Variance 
Explained 

 λ 
% 

Variance 
Explained 

λ 
% 

Variance 
Explained 

1 10.04 71.69% 8.18 58.40%  9.47 67.66% 8.67 61.94%  6.13 40.87% 4.74 31.60% 

2  1.95 13.93% 3.38 24.16%  2.34 16.74% 3.45 24.65%  1.96 13.08% 3.13 20.84% 

3  0.83  5.91% 0.86  6.17%  0.58  4.15% 0.55  3.91%  1.66 11.03% 1.94 12.91% 

4  0.39  2.78% 0.60  4.32%  0.39  2.77% 0.37  2.62%  1.45 9.67% 1.30 8.65% 

5  0.17  1.22% 0.32  2.26%  0.28  2.03% 0.24  1.70%  0.99 6.61% 0.85 5.67% 

6  0.15  1.05% 0.16  1.17%  0.20  1.43% 0.17  1.20%  0.76 5.05% 0.78 5.20% 

7  0.12  0.85% 0.14  1.03%  0.16  1.11% 0.14  0.98%  0.57 3.83% 0.60 3.97% 

8  0.10  0.71% 0.10  0.68%  0.15  1.05% 0.11  0.82%  0.46 3.06% 0.38 2.50% 

9  0.08  0.55% 0.07  0.53%  0.13  0.92% 0.08  0.56%  0.29 1.91% 0.31 2.09% 

10  0.05  0.36% 0.06  0.41%  0.10  0.69% 0.07  0.49%  0.21 1.39% 0.27 1.83% 

11  0.04  0.32% 0.04  0.29%  0.08  0.59% 0.05  0.37%  0.15 0.97% 0.22 1.45% 

12  0.03  0.23% 0.03  0.22%  0.05  0.36% 0.04  0.31%  0.14 0.91% 0.19 1.23% 

13  0.03  0.21% 0.02  0.18%  0.05  0.34% 0.04  0.27%  0.11 0.75% 0.13 0.84% 

14  0.03  0.18% 0.02  0.17%  0.02  0.17% 0.03  0.19%  0.07 0.45% 0.11 0.76% 

15 (n/a) (n/a) (n/a) (n/a)  (n/a) (n/a) (n/a) (n/a)  0.06 0.40% 0.07 0.46% 

Note. Boldface indicates eigenvalue > 1.00. PC = principal component.



 20 

Table S2. Factor Loadings of GSE Items from the CFA in Study 1b.   

Trait 
Gender 

Trait 
Valence Trait Item Factor 1 Factor 2 Factor 3 Factor 4 

Stereotypical 
Male Traits 

Positive 

dominant  .79 .00 .00 .00 

competitive .68 .00 .00 .00 

quantitative .53 .00 .00 .00 

analytical  .50 .00 .00 .00 

Negative 

aggressive .00 .75 .00 .00 

hostile  .00 .72 .00 .00 

egotistical .00 .71 .00 .00 

boastful .00 .70 .00 .00 

arrogant .00 .67 .00 .00 

cynical .00 .31 .00 .00 

Stereotypical 
Female Traits 

Positive 

sensitive .00 .00 .78 .00 

nurturing .00 .00 .75 .00 

artistic .00 .00 .30 .00 

intuitive .00 .00 .21 .00 

Negative 

emotional .00 .00 .00 .80 

nagging .00 .00 .00 .71 

subordinate .00 .00 .00 .58 

whiny .00 .00 .00 .58 

servile .00 .00 .00 .56 

gullible .00 .00 .00 .48 

Note. Boldface indicates factor loading > .3. Each question read “How do the average man and 

the average woman compare with each other on how [TRAIT TERM] they are?” GSE = Gender 

Stereotype Endorsement. CFA = Confirmatory Factor Analysis.
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Table S3. Similarity between Face Impression Models in Studies 2–3.  

Note. Numbers indicate pairwise Pearson coefficients between computational impression 

models (100 parameters each). Boldface indicates P < .001. Figure S5 visualizes the same 

information except for the bottom two rows in the table. The original trustworthiness and 

dominance models from Oosterhof & Todorov (2008) were built without taking into account 

face gender. 

 

  

 Male models Female models 

Trait Model 
Trust- 

worthiness 
Dominance 

Trust-
worthiness 

Dominance 

Male 
Trustworthiness 

- - - - 

Male 
Dominance 

-.16 - - - 

Female 
Trustworthiness 

.68 -.44 - - 

Female 
Dominance 

-.14 .85 -.38 - 
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Table S4. Interrater Reliabilities of Ratings of Synthetic Faces Manipulated by 

Trustworthiness and Dominance Models in Study 3a. 

 

  

 Trait model and  
original face gender 

Cronbach’s α based 
on face ratings  

Face × Model  
Gender-Congruent Faces 

Male faces manipulated with 
male trustworthiness model 

.97 

Male faces manipulated with  
male dominance model 

.96 

Female faces manipulated with  
female trustworthiness model 

.96 

Female faces manipulated with  
female dominance model 

.97 

Face × Model  
Gender-Incongruent Faces 

Male faces manipulated with  
female trustworthiness model 

.96 

Male faces manipulated with  
female dominance model 

.98 

Female faces manipulated with  
male trustworthiness model 

.97 

Female faces manipulated with  
male dominance model 

.96 
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Table S5. Interrater Reliabilities of Ratings of Real-Life Faces Manipulated by 

Trustworthiness and Dominance Models in Study 3b. 

 

  

 Trait model and  
original face gender 

Cronbach’s α based 
on face ratings 

Face × Model  
Gender-Congruent Faces 

Male faces manipulated with 
male trustworthiness model 

.88 

Male faces manipulated with  
male dominance model 

.93 

Female faces manipulated with  
female trustworthiness model 

.81 

Female faces manipulated with  
female dominance model 

.92 

Face × Model  
Gender-Incongruent Faces 

Male faces manipulated with  
female trustworthiness model 

.83 

Male faces manipulated with  
female dominance model 

.91 

Female faces manipulated with  
male trustworthiness model 

.85 

Female faces manipulated with  
male dominance model 

.92 
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