
Stimuli, model code, model predictions, data, and analyses scripts are available at: 

https://osf.io/bezua/ 

 

Model validation studies 

 

Regression tables for Model 1: Percentage of dwell time on the Target  

 

lmer(PERCENTAGE_LOOKS ~ Condition + (1 + Condition | Subject) + (1 + Condition | Item)) 

  

Table 1: Fixed effects  

  Estimate Standard Error t value 

Intercept 37.619 2.015 18.673 

Color condition 3.911 1.142 3.423 

   

Table 2: Random effects  

Groups Name Variance St Deviation Correlation 

Subject Intercept 69.704 8.349   

Color condition 2.848 1.688 1.00 

Item Intercept 43.500 6.595   

Color condition 12.652 3.557 0.08 

Residual 165.681 12.872   

   

  

Regression tables for Model 2: Percentage of dwell time on the Contrast object 

  

lmer(PERCENTAGE_LOOKS ~ Condition + (1 + Condition | Subject) + (1 + Condition | Item)) 

 

Table 1: Fixed effects  

  Estimate Standard Error t value 

https://osf.io/bezua/


Intercept 24.392 1.625 15.013 

Color condition -7.039 1.213 -5.801 

   

Table 2: Random effects 

Groups Name Variance St Deviation Correlation 

Subject Intercept 24.357 4.935   

Color condition 2.667 1.633 -1.00 

Item Intercept 47.230 6.872   

Color condition 24.901 4.990 -0.03 

Residual 116.074 10.774   

   

  

Regression tables for Model 3: Response times 

  

lmer(RT ~ Condition + (1 + Condition | Subject) + (1 + Condition | Item)) 

 

Table 1: Fixed effects  

  Estimate Standard Error t value 

Intercept 2187.22 44.74 48.892 

Color condition -402.37 41.61 -9.669 

   

Table 2: Random effects  

Groups Name Variance St Deviation Correlation 

Subject Intercept 39641 199.1   



Color condition 21569 146.9 -0.24 

Item Intercept 18113 134.6   

Color condition 23006 151.7 -0.81 

Residual 59848 244.6   

  

 

Model implementation details 

 

Alignment of model parameters 

 

Analysis code is available on our OSF site. As reported in the main text, we began by setting 

our ICE model parameters prior to data collection and we then found the Brevity model 

parameters that made its range of predictions closest to the ICE model. That is, we sought to 

find a Brevity model whose distribution of confidence matched that of the ICE model (although 

the confidence would occur in different trials). 

 

To achieve this, we performed the following operation: for each set of parameters that we 

considered (word cost values from 0.01 to 1 in jumps 1, and tau values from 0.01 to 3 in jumps 

of 0.01, for a total of 30,000 parameter combinations), we generated the Brevity model 

predictions for our Experiment and sorted the predictions in ascending order (i.e., combining all 

predictions from all trials). We next also sorted the predictions from the ICE model (with pre-set 

parameters), and we computed the Euclidean distance between each pair of points. Thus, the 

lower the Euclidean distance, the more the distribution of judgments was aligned. 

 

Model fitting 

 

As reported in the main text, our main evaluations used pre-set parameters. For completeness 

we also fit each model’s parameters to maximize model fit. Doing so further revealed that the 

alternative Brevity model was significantly worse than the ICE model, both when using the pre-

set parameters and the best fit. 

 

Note that for both models, the reward associated with communicating successfully was set as a 

constant value (set to R(t)=30 for the ICE model and R(t)=1 for the Brevity model). The purpose 

of this reward was only to ensure that the models were always sufficiently motivated to 

communicate unambiguously. We thus used a higher value for the ICE model because the 

range of costs was higher relative to the range of costs from the Brevity model. In principle, we 

could also fit these values during the parameter search. Note, however, that the models make 

the final decision based on the utility—the difference between the costs and the rewards. Thus, 



the critical dimension that affects model fit is the difference between these two variables. 

Consequently, leaving the reward fixed and varying the costs produces the same effect as 

varying both variables and we therefore left the rewards fixed during the parameter search 

process. 

 

For our ICE model, we searched the combinatorial space for FPW values between 1 and 9, and 

tau values between 0.01 and 3. We initially began searching for the best tau parameter using 

0.01 steps (i.e., 0.01, 0.02, 0.03, …). However, due to computational feasibility, we stopped this 

search at 0.12, and restarted it with jumps 0.1 (beginning a 0.2, for a total of 40 tau values). For 

each tau proposed tau parameter, we tested every integer FPW between 1 and 9 (9 parameters 

total). Combined, this led to 360 (9*40) parameter combinations tested, with the best fit at 

parameters FPW=1 and tau=2.9. 

 

For the alternative Brevity model, we searched the combinatorial space for word costs between 

0.01 to 1 in jumps of 0.01 (100 parameters total), and tau values between 0.01 and 3 in jumps 

of 0.01 (300 parameters). Combined, this led to 30,000 (100*300) parameter combinations 

tested, with the best fit at word cost = 0.01 and tau = 0.31. 

 

Note that while the parameter search for the Brevity model was more exhaustive relative to the 

ICE model, this asymmetry can only bias the results against our account, as we tested over 80 

times more parameter combinations for the Brevity model, giving it a higher opportunity to find a 

combination that could outperform our ICE model. 

 

  



Experiment Supplemental Results 

 

Scatterplot using best model fits 

 

 

Fig. S1. Model predictions (x axis) plotted against participant judgments (y axis) using the 
parameters that maximized each model’s correlation. 

 

For trial-by-trial predictions please see our OSF repository. 

  



Speed of reference production 

 

Because our model uses Monte Carlo estimates to calculate the listener’s visual search, it is 

possible to quantify how many samples are needed before our model is converges to its final 

answer. We can therefore use the number of samples as a proxy for the time it takes for our 

model to decide what to say in different trials. 

 

To test if our model is slower as a function of objects in a scene, we generated artificial visual 

displays with 2, 4, 8, and 16 objects. In each of these displays the object had a unique color, 

material, and category, such that any expression would resolve the referent. We next calculated 

the utility of each possible utterance using 1000 Monte Carlo simulations and treated the final 

utility estimates as ground truth. 

 

 Using these final utility estimates, it is possible to set an error threshold, and compute at which 

point in the sampling process all of the utility estimates fall below the threshold: 

 

 
Fig. S2. Our model shows it is more difficult to decide which 
utterance to use, as a function of the number of objects in a 
scene. The x axis shows number of objects in the scene and 
the y axis shows how many Monte Carlo samples are needed 
for the utility estimates of each utterance to be at most 0.5 off 
from the final utilities (the pattern of results is qualitatively 
identical under different error thresholds). 

 

This pattern is qualitatively similar to the one found by Gatt et al. (2017), where speakers are 

slower to generate a referential expression as a function of scene complexity. 


