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Supplemental Material A

Materials and Methods

Vector Representation of Names

We use a dataset from the Social Security Administration (SSA) reporting names

from Social Security card applications for births in the United States in each year from

1880 to 2020, excluding names occurring less than 5 times in a given year to maintain

individual privacy. The original dataset contained 100,364 unique names across all years.

In our analysis, we exclude names that appear in less than 25% of the years; that is, we

retain names that occur in at least 35 of the 141 years in the dataset. This leaves us with

17,180 unique names.

To embed the names in a vector space, we use a pre-trained model produced using

the fastText algorithm from Mikolov et al. (2018). The model uses 2 million word vectors

trained with subword information on Common Crawl data in the English language,

consisting of 600 billion tokens. Since fastText is based on co-occurrences of strings of

characters, the model can produce a vector for every name in the SSA dataset, including

those that do not explicitly appear in the Common Crawl data. The fastText model

represents each name as a 300-dimensional vector.

To calculate the mean name vector for each year, we average the name vectors

weighted by the number of babies receiving each name that year. We use the vector

representation for each name to calculate the Euclidean distance between that vector and

the mean vector for each year that the name appears in the dataset. We present results

using Euclidean distance for consistency with the general model proposed in this paper; we

get similar results using cosine distance in analyses presented in Figures SM1 and SM2. To

calculate popularity, we divide the number of babies given each name by the total number

of babies born in the year and included in the dataset. (That is, the denominator is missing

babies with names excluded from our dataset.) We convert proportions to percentages.
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The Social Networks

We borrow Jin, Girvan, and Newman’s Model II algorithm for growing undirected

social networks (Jin et al., 2001) and modify it to generate directed social networks with

N = 100 people, each of whom can observe up to a maximum of zmax neighbors. The

network is initialized with all 100 people and no connections. The following three steps are

then repeated 100 times:

1. Choose 3 pairs of individuals uniformly at random. For each pair i and j, if i

observes less than zmax people and does not already observe j, then i begins to

observe j; else, if j observes less than zmax people and does not already observe i,

then j begins to observe i.

2. Randomly select a fraction r of the triads i, j, and k such that i observes k and k

observes j or that i and j both observe k. If i observes less than zmax people and does

not already observe j, then i begins to observe j.

3. Randomly select and break 0.5% of connections (rounded up).

All 25 social networks, measures of their structural properties, and the Python source code

used to create them are made available on OSF and can be accessed at osf.io/s4t6r.

The Better-Reply Dynamics

Our computational model adopts a specification of the better-reply dynamics in

which at each time step, one randomly selected individual searches for (and upon discovery,

adopts) a better reply to the current population profile. Initial strategies are randomly

(uniformly) distributed. We check for convergence every 1000 time steps by checking

whether any individual can find a better reply. The Python source code and complete

output data are available on OSF and can be accessed at osf.io/s4t6r.

https://osf.io/s4t6r/
https://osf.io/s4t6r/
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Co-evolving Social Networks and Identities

We again assume there are N = 100 people. We consider the space of identities with

m = 1, d = 1, and {a..b} = {0..9}. We set the maximum number of neighbors that an

individual can handle (i.e., maximum out-degree) to be zmax = 5. In this model, in contrast

to the earlier model, each time step corresponds to a single individual considering a single

change (either to his identity or his network), rather than searching for (i.e., repeatedly

considering) such a change. We allow the dynamics to run for up to 2, 000, 000 time steps

before cutting them off and classifying them as non-convergent, and we check for

convergence every 1000 time steps.

Initially people have no network connections and strategies are randomly

distributed. At each time step, there is an equal 50% chance of considering a change in

identity or a change in the network. In the former case, a randomly selected individual

considers switching to a randomly selected new identity and does so only if the switch

increases his utility. In the latter case, the probability of considering a new connection

from person i to person j is proportional to 1 + 2000(τin + τout), where τin is the number of

triads in which i and j both observe some other individual k, and τout is the number of

triads in which i observes some other individual k, who then observes j. If person i already

has zmax connections to other people, then the potential connection to j is considered

jointly with breaking one of i’s existing connections. Person i goes through with the change

only if it would increase his utility or if he previously had no connections (i.e, undefined

utility). The Python source code and output data are made available on OSF and can be

accessed at osf.io/s4t6r.

https://osf.io/s4t6r/
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Supplemental Material B

Mathematical Appendix

Formal Definitions

We can express person i’s neighbors’ average identity as

x̄η(i) = 1
|η(i)|

∑
j∈η(i)

xj.

We can express the number of i’s neighbors who adopt the same expression of identity trait

µ as person i as

ñi,µ(X; η(i)) =
∑
j∈η(i)

δ(xi,µ, xj,µ),

where δ is the Kronecker delta function. Then

ñi(X; η(i)) = 1
m

∑
µ

ñi,µ(X; η(i))

is the average number of neighbors sharing one’s traits (across all the aspects of identity).

In a well-mixed population, we set η(i) = {j : j 6= i} to recover ni,µ(X) and ni(X) for all i.

Supplementary Results and Proofs

Lemma 1. In a well-mixed population with utility functions given in Equation (1), the

game has an exact potential function:

Φ(X) = −
N∑
i=1

N − 1
N
‖xi − x̄‖2 + 1

2λni(X).

Proof. Consider a change in the profile of identities X → X ′ resulting from person i alone

changing his identity xi → x′i, i.e., such that x′j = xj for all j 6= i. We need only show that

the change in the potential function equals the change in i’s utility:
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Φ(X ′)− Φ(X) = ui(X ′)− ui(X).

We express the change in the potential function as a sum of the changes in each

term:

Φ(X ′)− Φ(X) =
N∑
j=1

N − 1
N

(
‖xj − x̄‖2 − ‖x′j − x̄′‖2

)
+

N∑
j=1

1
2λ (nj(X)− nj(X ′)) .

We consider each of the two summations separately.

We expand the first sum:

N∑
j=1

N − 1
N

(
‖xj − x̄‖2 − ‖x′j − x̄′‖2

)
=

N − 1
N

(
‖xi − x̄‖2 − ‖x′i − x̄′‖2

)
+

∑
j 6=i

N − 1
N

(
‖xj − x̄‖2 − ‖x′j − x̄′‖2

)
. (3)

We find it useful to express the average identity as x̄ = N−1
N
x̄−i + 1

N
xi. Plugging in to the

first term in Equation (3), we have:

‖xi − x̄‖2 − ‖x′i − x̄′‖2 =
(
N − 1
N

)2 (
‖xi − x̄−i‖2 − ‖x′i − x̄−i‖2

)
.

Plugging in to the second term in Equation (3), expanding and canceling off common

terms, we have for any j 6= i:

‖xj − x̄‖2 − ‖x′j − x̄′‖2 =
1
N2

(
‖xi − x̄−i‖2 − ‖x′i − x̄−i‖2

)
+ 2
N

(xj − x̄−i) · (xi − x′i).

Observe that the last term here drops out when we sum over all j 6= i because∑
j 6=i(xj − x̄−i) = 0. The first term does not depend on j, so summing over all j 6= i just
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multiplies this term by a factor of (N − 1). Putting it all together, we find that

Equation (3) simplifies to:

N∑
j=1

N − 1
N

(
‖xj − x̄‖2 − ‖x′j − x̄′‖2

)

=
(

(N − 1)3

N3 + (N − 1)2

N3

)(
‖xi − x̄−i‖2 − ‖x′i − x̄−i‖2

)
=
(
N − 1
N

)2 (
‖xi − x̄−i‖2 − ‖x′i − x̄−i‖2

)
= ‖xi − x̄‖2 − ‖x′i − x̄′‖2. (4)

Now, returning to the second part of the change in the potential function, we can

use the formal definition of nj(X) to write:

N∑
j=1

1
2λ (nj(X)− nj(X ′)) = 1

2λ
1
m

∑
µ

N∑
j=1

∑
k 6=j

(
δ(xj,µ, xk,µ)− δ(x′j,µ, x′k,µ)

)
.

The terms cancel whenever j 6= i and k 6= i, so we are left with:

N∑
j=1

1
2λ (nj(X)− nj(X ′)) =

1
2λ

1
m

∑
µ

∑
j 6=i

(
δ(xj,µ, xi,µ)− δ(x′j,µ, x′i,µ)

)
+
∑
k 6=i

(
δ(xi,µ, xk,µ)− δ(x′i,µ, x′k,µ)

)
= λ

1
m

∑
µ

∑
j 6=i

(
δ(xj,µ, xi,µ)− δ(x′j,µ, x′i,µ)

)

= λ
1
m

∑
µ

(ni,µ(X)− ni,µ(X ′)) = λ (ni(X)− ni(X ′)) . (5)

Putting Equations (4) and (5) together, we have now shown that

Φ(X ′)− Φ(X) = ui(X ′)− ui(X).

Proof of Theorem 1

Theorem 1 follows from Lemma 1 by Monderer and Shapley’s 1996b argument.
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Supplemental Material C

Supplemental Figures

Figure SM1
Cosine distance between each name’s vector representation and the mean name vector,
along with the popularity of these names (i.e., the percentage of babies receiving each name)
in the years 1900, 1950, and 2000. Background shading indicates the number of names in
each bin.

Figure SM2
Cosine distance between the vector representation of “Wynona” and the mean name vector,
as well as the popularity of the name “Wynona” for each year the name was given.
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Figure SM3
Percentage of individuals satisfied over 1,000,000 time steps for each trial with m = 1,
d = 2, and varying λ, for networks with r = 1 and varying zmax.

Figure SM4
Percentage of individuals satisfied over 1,000,000 time steps for each trial with m = 2,
d = 1, and varying λ, for networks with r = 1 and varying zmax.
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Figure SM5
Box plots showing distances from individuals’ identities to the average identity of all
individuals in the population and to the average identity of their neighbors in the network,
measured at the 10, 000th time step, for m = 1, d = 2, and varying λ, aggregating trials
across the different networks. The differences between the average distance to the
population mean identity and the average distance to the mean of one’s neighbors’ identities
are all significant with p < .001 in paired t-tests.

Figure SM6
Box plots showing distances from individuals’ identities to the average identity of all
individuals in the population and to the average identity of their neighbors in the network,
measured at the 10, 000th time step, for m = 2, d = 1, and varying λ, aggregating trials
across the different networks. The differences between the average distance to the
population mean identity and the average distance to the mean of one’s neighbors’ identities
are all significant with p < .001 in paired t-tests.
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