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Here, we present the mathematical background necessary to understand the pro-
posed model.

Optimal control with terminal constraints
We consider a dynamical system

ẋ(t) = f [x(t),u(t)] (S1)

where x ∈ Rn is the state of the system and u ∈ Rm a control vector. An optimal
control problem for this system is to find the control vector u(t) for t ∈ [t0; tf ] to
minimize a performance index

J =

∫ tf

t0

L [x(t),u(t)] dt (S2)

with boundary conditions

x(t0) = x0 ψ [x(tf )] = 0. (S3)

This problem is the generic formulation corresponding to Equations 1,2,3 of the
article.
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Mayer formulation

We first show that the optimal control problem defined by Eq. S1, Eq. S2 and Eq. S3
can be equivalently written

˙̃x(t) = f̃ [x̃(t),u(t)] (S4)

J̃ = φ [x̃(tf )] (S5)

x̃(t0) = x̃0 ψ̃ [x̃(tf )] = 0 (S6)

which is called the Mayer formulation and which is simpler for numerical methods.
We consider the supplementary state variable z defined by

ż(t) = L [x(t),u(t)]

and z(t0) = 0. Thus J = z(tf ). We define the new state variable

x̃(t) =

(
z(t)
x(t)

)
.

We can reformulate the optimal control problem in the following way: find the
control vector u(t) to minimize

J̃ = φ [x̃(tf )] = z(tf ) (S7)

subject to

˙̃x(t) = f̃ [x̃(t),u(t)] =

(
L [x(t),u(t)]
f [x(t),u(t)]

)
(S8)

and

x̃(t0) = x̃0 =

(
0
x0

)
ψ̃ [x̃(tf )] =

(
0
ψ [x(tf )]

)
= 0. (S9)

Thus we can remove the integral term in the performance index. In the following
we consider the problem defined by Eq. S4, Eq. S5 and Eq. S6. For simplicity, we
remove the tilde sign.

Solution

We adjoin the constraints to the performance index with Lagrange multipliers ν and
λ(t)

J̄ = φ+ νTψ +

∫ tf

t0

λT (t) {f [x(t),u(t)]− ẋ(t)} dt.
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The Hamiltonian function is

H [x(t),u(t),λ(t)] = H(t) = λT (t)f [x(t),u(t)]. (S10)

The generalized performance index can be written

J̄ = Φ[x(tf )]− λT (tf )x(tf ) + λT (t0)x(t0) +

∫ tf

t0

{
H(t) + λ̇

T
(t)x(t)

}
dt

following integration of the λT ẋ by parts, where

Φ = φ+ νTψ (S11)

A variation of J̄ writes

δJ̄ =
[
(Φx − λT )δx

]
t=tf

+
[
λT δx

]
t=t0

+

∫ tf

t0

[(
Hx + λ̇

T
)
δx+Huδu

]
dt

for variations δx(t) and δu(t). The Lagrange mutlipliers are chosen so that the
coefficients of δx(t) and δx(tf ) vanish

λ̇
T

= −Hx = −λTfx, (S12)

with boundary conditions

λT (tf ) = φx(tf ) + νTψx(tf ). (S13)

For a stationary solution, δJ̄ = 0 for arbitrary δu(t), which implies

Hu = λTfu = 0 t0 ≤ t ≤ tf . (S14)

The problem defined by Eq. S1, Eq. S12, Eq. S13 and Eq. S14 is a two-point
boundary value problem which can be solved by classical integration methods (Bryson
1999).

Linear case

In the linear case, the problem is a first-order linear dynamical system which can be
solved explicitly. The solution consists in a 2n× 2n matrix D(t) such that(

x(t)
λ(t)

)
= D(t)C (S15)
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is the solution at time t, where C ∈ R2n is a vector determined by the boundary
conditions (Eq. S3). To simplify we use ψ [x(tf )] = x(tf )−xf , but more complex
boundary conditions can be handled as well (see below). To obtain C, we write(

x0

λ(t0)

)
= D(t0)C =

(
D11(t0) D12(t0)
D21(t0) D22(t0)

)(
C1
C2

)
and (

xf

λ(tf )

)
= D(tf )C =

(
D11(tf ) D12(tf )
D21(tf ) D22(tf )

)(
C1
C2

)
.

Thus (
D11(t0) D12(t0)
D11(tf ) D12(tf )

)(
C1
C2

)
=

(
x0

xf

)
,

which gives

C =

(
D11(t0) D12(t0)
D11(tf ) D12(tf )

)−1(
x0

xf

)
. (S16)

Complete treatement of a linear case
Here we consider the problem of controlling an inertial point actuated by a linear
muscle with a quadratic cost function. In Mayer formulation, the problem can be
written 

ẋ1 = u2/2
ẋ2 = x3
ẋ3 = x4/m
ẋ4 = (−x4 + x5)/τ
ẋ5 = (−x5 + u)/τ

The Hamiltonian (Eq. S10) writes

H = λ1u
2/2 + λ2x3 + λ3x4/m+

λ4(−x4 + x5)/τ + λ5(−x5 + u)/τ

from which the adjoint system (Eq. S12) can be obtained

4



λ̇1 = −∂H
∂x1

= 0

λ̇2 = −∂H
∂x2

= 0

λ̇3 = −∂H
∂x3

= −λ2

λ̇4 = −∂H
∂x4

= −λ3/m+ λ4/τ

λ̇5 = −∂H
∂x5

= −λ4/τ + λ5/τ

The transversal condition (Eq. S14) is

Hu = λ1u+ λ5/τ = 0,

where λ1 is a constant set at 1. The corresponding boundary value problem is

ẋ2 = x3
ẋ3 = x4/m
ẋ4 = (−x4 + x5)/τ
ẋ5 = (−x5 − λ5/τ)/τ

λ̇2 = 0

λ̇3 = −λ2
λ̇4 = −λ3/m+ λ4/τ

λ̇5 = −λ4/τ + λ5/τ

(S17)

The constraints are defined by function Φ (Eq. S11) which can take different forms:

• Full constraints: position, velocity, activation, excitation

Φ = x1(tf ) + ν2

[
x2(tf )− xf2

]
+ ν3

[
x3(tf )− xf3

]
+

ν4

[
x4(tf )− xf4

]
+ ν5

[
x5(tf )− xf5

]
• Partial constraints: position, velocity, activation

Φ = x1(tf ) + ν2

[
x2(tf )− xf2

]
+ ν3

[
x3(tf )− xf3

]
+

ν4

[
x4(tf )− xf4

]
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• Partial constraints: position, velocity

Φ = x1(tf ) + ν2

[
x2(tf )− xf2

]
+ ν3

[
x3(tf )− xf3

]

• Partial constraints: position

Φ = x1(tf ) + ν2

[
x2(tf )− xf2

]
The initial boundary conditions are

x2(t0) = x02 x3(t0) = x03 x4(t0) = x04 x5(t0) = x05 (S18)

The final boundary conditions are obtained using Eq. S13:

• Full constraints: position, velocity, activation, excitation

x2(tf ) = xf2 x3(tf ) = xf3 x4(tf ) = xf4 x5(tf ) = xf5 (S19)

λ1(tf ) = 1 λ2(tf ) = ν2 λ3(tf ) = ν3 λ4(tf ) = ν4 λ5(tf ) = ν5 (S20)

• Partial constraints: position, velocity, activation

x2(tf ) = xf2 x3(tf ) = xf3 x4(tf ) = xf4 (S21)

λ1(tf ) = 1 λ2(tf ) = ν2 λ3(tf ) = ν3 λ4(tf ) = ν4 λ5(tf ) = 0 (S22)

• Partial constraints: position, velocity

x2(tf ) = xf2 x3(tf ) = xf3 (S23)

λ1(tf ) = 1 λ2(tf ) = ν2 λ3(tf ) = ν3 λ4(tf ) = 0 λ5(tf ) = 0 (S24)

• Partial constraints: position

x2(tf ) = xf2 (S25)

λ1(tf ) = 1 λ2(tf ) = ν2 λ3(tf ) = 0 λ4(tf ) = 0 λ5(tf ) = 0 (S26)
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From Eq. S27, the solution consists in a 2n× 2n matrix D(t) (n = 4) such that(
x(t)
λ(t)

)
= D(t)C (S27)

is the solution at time t, where C ∈ R2n is a vector determined by the initial and
final boundary conditions. Here D is the solution to the boundary value problem
(Eq. S17), which can be obtained explicitly using tools of symbolic calculus.

To obtain C, we write (
x0

λ(t0)

)
= D(t0)C = D0C

and (
xf

λ(tf )

)
= D(tf )C = DfC

and we extract what is known from these relationships in the different cases (full
constraints: Eq. S19 and Eq. S20; partial constraints on position, velocity, activa-
tion: Eq. S21 and Eq. S22; partial constraints on position, velocity: Eq. S23 and
Eq. S24; partial constraints on position: Eq. S25 and Eq. S26).

We obtain a relationship
Mq = p (S28)

where M contains elements of D0 and Df , q the vector C and some elements of ν,
and p the vector x0 and some elements of xf . Taking q = M−1p gives the vector
C.

For the case of full constraints (position, velocity, activation, excitation), there
are 8 unknowns (8 in C). We get 4 equations for x0 (Eq. S18), and 4 equations for
xf (Eq. S19), and Eq. S28 becomes



D0
11 D0

12 D0
13 D0

14 D0
15 D0

16 D0
17 D0

18

D0
21 D0

22 D0
23 D0

24 D0
25 D0

26 D0
27 D0

28

D0
31 D0

32 D0
33 D0

34 D0
35 D0

36 D0
37 D0

38

D0
41 D0

42 D0
43 D0

44 D0
45 D0

46 D0
47 D0

48

Df
11 Df

12 Df
13 Df

14 Df
15 Df

16 Df
17 Df

18

Df
21 Df

22 Df
23 Df

24 Df
25 Df

26 Df
27 Df

28

Df
31 Df

32 Df
33 Df

34 Df
35 Df

36 Df
37 Df

38

Df
41 Df

42 Df
43 Df

44 Df
45 Df

46 Df
47 Df

48





C1
C2
C3
C4
C5
C6
C7
C8


=



x02
x03
x04
x05
xf2
xf3
xf4
xf5


For the case of partial constraints on position, velocity, and activation, there are

11 unknowns (8 in C, ν2, ν3, ν4). We get 4 equations for x0 (Eq. S18), 3 equations
for xf (Eq. S21), 4 equations for λ(tf ) (Eq. S22), and Eq. S28 becomes
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D0
11 D0

12 D0
13 D0

14 D0
15 D0

16 D0
17 D0

18 0 0 0
D0

21 D0
22 D0

23 D0
24 D0

25 D0
26 D0

27 D0
28 0 0 0

D0
31 D0

32 D0
33 D0

34 D0
35 D0

36 D0
37 D0

38 0 0 0
D0

41 D0
42 D0

43 D0
44 D0

45 D0
46 D0

47 D0
48 0 0 0

Df
11 Df

12 Df
13 Df

14 Df
15 Df

16 Df
17 Df

18 0 0 0

Df
21 Df

22 Df
23 Df

24 Df
25 Df

26 Df
27 Df

18 0 0 0

Df
31 Df

32 Df
33 Df

34 Df
35 Df

36 Df
37 Df

38 0 0 0

Df
51 Df

52 Df
53 Df

54 Df
55 Df

56 Df
57 Df

58 −1 0 0

Df
61 Df

62 Df
63 Df

64 Df
65 Df

66 Df
67 Df

68 0 −1 0

Df
71 Df

72 Df
73 Df

74 Df
75 Df

76 Df
77 Df

78 0 0 −1

Df
81 Df

82 Df
83 Df

84 Df
85 Df

86 Df
87 Df

88 0 0 0





C1
C2
C3
C4
C5
C6
C7
C8
ν2
ν3
ν4


=



x02
x03
x04
x05
xf2
xf3
xf4
0
0
0
0


For the case of partial constraints on position and velocity, there are 10 un-

knowns (8 in C, ν2, ν3). We get 4 equations for x0 (Eq. S18), 2 equations for xf

(Eq. S23), 4 equations for λ(tf ) (Eq. S24), and Eq. S28 becomes



D0
11 D0

12 D0
13 D0

14 D0
15 D0

16 D0
17 D0

18 0 0
D0

21 D0
22 D0

23 D0
24 D0

25 D0
26 D0

27 D0
28 0 0

D0
31 D0

32 D0
33 D0

34 D0
35 D0

36 D0
37 D0

38 0 0
D0

41 D0
42 D0

43 D0
44 D0

45 D0
46 D0

47 D0
48 0 0

Df
11 Df

12 Df
13 Df

14 Df
15 Df

16 Df
17 Df

18 0 0

Df
21 Df

22 Df
23 Df

24 Df
25 Df

26 Df
27 Df

18 0 0

Df
51 Df

52 Df
53 Df

54 Df
55 Df

56 Df
57 Df

58 −1 0

Df
61 Df

62 Df
63 Df

64 Df
65 Df

66 Df
67 Df

68 0 −1

Df
71 Df

72 Df
73 Df

74 Df
75 Df

76 Df
77 Df

78 0 0

Df
81 Df

82 Df
83 Df

84 Df
85 Df

86 Df
87 Df

88 0 0





C1
C2
C3
C4
C5
C6
C7
C8
ν2
ν3


=



x02
x03
x04
x05
xf2
xf3
0
0
0
0


For the case of partial constraints on position, there are 9 unknowns (8 in C, ν2).

We get 4 equations for x0 (Eq. S18), 1 equation for xf (Eq. S25), 4 equations for
λ(tf ) (Eq. S26), and Eq. S28 becomes
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D0
11 D0

12 D0
13 D0

14 D0
15 D0

16 D0
17 D0

18 0
D0

21 D0
22 D0

23 D0
24 D0

25 D0
26 D0

27 D0
28 0

D0
31 D0

32 D0
33 D0

34 D0
35 D0

36 D0
37 D0

38 0
D0

41 D0
42 D0

43 D0
44 D0

45 D0
46 D0

47 D0
48 0

Df
11 Df

12 Df
13 Df

14 Df
15 Df

16 Df
17 Df

18 0

Df
51 Df

52 Df
53 Df

54 Df
55 Df

56 Df
57 Df

58 −1

Df
61 Df

62 Df
63 Df

64 Df
65 Df

66 Df
67 Df

68 0

Df
71 Df

72 Df
73 Df

74 Df
75 Df

76 Df
77 Df

78 0

Df
81 Df

82 Df
83 Df

84 Df
85 Df

86 Df
87 Df

88 0





C1
C2
C3
C4
C5
C6
C7
C8
ν2


=



x02
x03
x04
x05
xf2
0
0
0
0
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