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Here, we present the mathematical background necessary to understand the pro-
posed model.

Optimal control with terminal constraints

We consider a dynamical system

(t) = fz(t), u(t)] (SD)

where © € R" is the state of the system and w € R™ a control vector. An optimal
control problem for this system is to find the control vector u(t) for ¢ € [to;ts] to
minimize a performance index

ty
J:/ Lla(t), u(t)] dt (52)
to
with boundary conditions

x(tg) = xo Y [x(ty)] = 0. (S3)

This problem is the generic formulation corresponding to Equations 1,2,3 of the
article.



Mayer formulation

We first show that the optimal control problem defined by Eq. S1, Eq. S2 and Eq. S3
can be equivalently written

z(t) = f (), u(t)] (S4)
J = ¢[&(ts)] (S5)
E(t)) =& Y [&(tf)] =0 (S6)

which is called the Mayer formulation and which is simpler for numerical methods.
We consider the supplementary state variable z defined by

We can reformulate the optimal control problem in the following way: find the
control vector () to minimize

7= ole(ty)] = (1) &7
subject to

at) = Flato.uio) = ( FE0u0)) o
and

s =20= (g, ) I~ (G )0

Thus we can remove the integral term in the performance index. In the following
we consider the problem defined by Eq. S4, Eq. S5 and Eq. S6. For simplicity, we
remove the tilde sign.

Solution

We adjoin the constraints to the performance index with Lagrange multipliers v and
A)

J=é+ 5 h+ /tf N(#) {f [(t), w(t)] — #(0)} dt.

to
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The Hamiltonian function is
H[2(t), u(t), A(t)] = H(t) = X' (t) fl(t), u(t)]. (S10)
The generalized performance index can be written

T = lz(ty)] - X (t5)@(ts) + N (to)z(to) + / f () + X )} @

to

following integration of the AT'x by parts, where
d=¢+vy (S11)

A variation of J writes
t
0.0 = [(@. — Xdz],_, + [\Toz],_, + / ' [(H + AT) 5 + ’Hu(su} dt
to

for variations dx(¢) and du(t). The Lagrange mutlipliers are chosen so that the
coefficients of dz(t) and dx () vanish

N o=—m, =X, (S12)
with boundary conditions
X (tg) = dalty) + v ulty). (S13)

For a stationary solution, §.J = 0 for arbitrary du(t), which implies
Ho=XNf, =0  to<t<ty. (S14)

The problem defined by Eq. S1, Eq. S12, Eq. S13 and Eq. S14 is a two-point
boundary value problem which can be solved by classical integration methods (Bryson
1999).

Linear case

In the linear case, the problem is a first-order linear dynamical system which can be
solved explicitly. The solution consists in a 2n x 2n matrix D(¢) such that

< f\g)) ) — D()C (S15)



is the solution at time ¢, where C € R?" is a vector determined by the boundary
conditions (Eq. S3). To simplify we use ¢ [x(t7)] = x(t;) — x s, but more complex
boundary conditions can be handled as well (see below). To obtain C, we write

(% ) =pe=(pui) Be ) (&)
(%4, ) -puc= (o) g ) (&)
(ot piti ) (&)= (%)

= ( Du(to) Dia(to) )1 < o ) . (S16)

and
Thus

which gives
Dii(ty) Daa(ty) xy

Complete treatement of a linear case

Here we consider the problem of controlling an inertial point actuated by a linear
muscle with a quadratic cost function. In Mayer formulation, the problem can be
written

jjl :U2/2
.j?QI.CCg
ig :.T4/m

Zt4 = (—I4 +ZL’5)/T
5 = (—x5 +u)/T

The Hamiltonian (Eq. S10) writes

H = )\1U2/2 —I— )\21’3 + /\3x4/m+
M(—z4+x5) /T + As(—25 + 1) /T

from which the adjoint system (Eq. S12) can be obtained



oH

Moo= ~55 =0

Ay = —2—2:0

Ay = —S—Z:—Az

No= —g—zz—Ag/m+A4/T
Xs = —S—Z:—)\4/T+)\5/T

The transversal condition (Eq. S14) is
Hu = )\1U+ )\5/7’ = O,
where )\, is a constant set at 1. The corresponding boundary value problem is

( 1"2 = T3

jfg = x4/m

i’4 = (—174 +ZL‘5)/T
L5 = (=5 — A5 /T)/T
)\220

As =~

).\4 = —/\3/m—|—)\4/7'
\ ).\5 = —)\4/7'+>\5/T

(S17)

The constraints are defined by function ® (Eq. S11) which can take different forms:
e Full constraints: position, velocity, activation, excitation
d = zy(tf) + 1 |:l’2(tf) — :1:5] + v [:cg(tf) — :L’g] +
Uy [x4(tf) — If:] + vs [x5(tf) — xﬂ
e Partial constraints: position, velocity, activation
O = z(tf) + 1 |:x2(tf) - ajg] + v [:L*g(tf) - x?{] +

Uy [:L’4(tf) — x{]



e Partial constraints: position, velocity

O = x(tf) + 1o [m(tf) - wﬂ + v [xs(tf) - Ig]

e Partial constraints: position
O = a(ty) + e [I2(tf) - $§]

The initial boundary conditions are
To(te) = oy w3(te) =25 w4(ty) =29 as(to) = 22
The final boundary conditions are obtained using Eq. S13:
e Full constraints: position, velocity, activation, excitation

wo(ty) =) wa(ty) =af  walty) =a] as(ty) =l

Mltr) =1 Xa(ty) =12 As(ty) =vs Ma(ly) =va As(ty) =vs

e Partial constraints: position, velocity, activation

wo(ty) =) asty) =)  walty) =]

M(tr) =1 Xo(ty) =vo As(tp) =ws Ma(ty) =va As(ty) =0

e Partial constraints: position, velocity

vo(ty) = af  walty) =}

)\1<Iff) =1 )\g(tf) R %) Ag(tf) = U3 )\4(tf) =0 )\5(tf) =0

e Partial constraints: position

zo(ty) = 7}

Mlty) =1 Xao(ty) =2 As(ty) =0 Aalty) =0 As(ty) =0
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From Eq. S27, the solution consists in a 2n x 2n matrix D(¢) (n = 4) such that

< i((f)) ) —D()C (S27)

is the solution at time ¢, where C € R?" is a vector determined by the initial and
final boundary conditions. Here D is the solution to the boundary value problem
(Eq. S17), which can be obtained explicitly using tools of symbolic calculus.

To obtain C, we write

( i?to) ) = D(t))C = D°C

and

( Nty) ) = D(t)C = D'C

and we extract what is known from these relationships in the different cases (full
constraints: Eq. S19 and Eq. S20; partial constraints on position, velocity, activa-
tion: Eq. S21 and Eq. S22; partial constraints on position, velocity: Eq. S23 and
Eq. S24; partial constraints on position: Eq. S25 and Eq. S26).
We obtain a relationship
Mg =p (528)

where M contains elements of D° and D7, q the vector C and some elements of v,
and p the vector o and some elements of x ;. Taking ¢ = M~!'p gives the vector
C.

For the case of full constraints (position, velocity, activation, excitation), there
are 8 unknowns (8 in C). We get 4 equations for xy (Eq. S18), and 4 equations for
x ¢ (Eq. S19), and Eq. S28 becomes

D}, D, DY, D}, Dj; Dj; D, Di Cy 5
Dy, DY, Dj; Dj, Di; Dj; Dy, Dig Cy 3
Dy, D3, D3 DY, Dj; Dj; Di, Dig Cs x}
Dy, Dj, Dj; Dj, Dj; Dj; Dj, Dig Cy 3
D{1 D{2 D{:’) D{4 D{5 D{G D{7 D{8 Cs - mg
Dgl Dgz Dgz D£4 D£5 DgG D£7 D£8 Co Z g
Dgl D§2 D£3 D§4 D§5 D§6 D§7 Dgs Cr 375:
Di, Dy, Dy; Dy D£5 Dy Dy; Dy Cs zvg

For the case of partial constraints on position, velocity, and activation, there are
11 unknowns (8 in C, v, 3, v4). We get 4 equations for xy (Eq. S18), 3 equations
for ¢y (Eq. S21), 4 equations for A(¢f) (Eq. S22), and Eq. S28 becomes
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D, DY, DY, DY, DY Dj DY, D)y 0 0 O Cy 9
Dy, Dj, Dy, D), DY Dy Dy, Dy, 0 0 0 Co 9
Dy, D3, Dg; DY, DY Djg D3 Dig 0 0 0 Cs f
D), D}, Dj; Dj, Dj; Dj; Dy, Dig 0 0 0 Cy g
D{1 D{2 D{?, D{4 D{5 D{G D{7 D{s O 0 0 Cs x§
Dgl Dgz Dgs D£4 D£5 D§6 D£7 D{B 0 0 0 Cs = x§
D, Di, Di Dj, Di; Di; Di; D 0 0 0 || ¢ z]
Dgl D£2 Dgg D§4 Dgz) Dg@‘ D5{7 Dgs -1 0 0 Cs 0
Dg Dg, Dg Dy Dg5 Dg Dgr Dgs 0 —1 0 V2 0
D}, Dj, Dj; Djy Djs Djg Df; Dig 0 0 —1]| ¥s 0
Dg; Dxg, Dgs D£4 D£5 D§6 D§7 Dgs 0O 0 0 Ya 0

For the case of partial constraints on position and velocity, there are 10 un-
knowns (8 in C, v, v3). We get 4 equations for x, (Eq. S18), 2 equations for x;
(Eq. S23), 4 equations for A(¢7) (Eq. S24), and Eq. S28 becomes

D}, D}, Dj; D}, Dj; Dj Dj, DYy 0 0O Cy 9
Dy, Dj, Dj; D), DY Dj; Dy, D 0 0 Cs Qi
Dy, D3, D3; DY, DY Dy Dy, Dig 0 0 Cs 4
D), Dj, Dj; Dj, Dj; Dj; Dj, Djy 0 0 Cy xd
D{1 D{Q D{3 D{4 D{5 D{G D{7 D{s 0 0 Cs | xg
D£1 D£2 Dy D§4 D£5 Dy Dy; Dy 0 0 Cs | xéc
Dgl Dgz DEJ::S DEJ:4 Dgs Dgﬁ‘) D§7 DEJ:S -1 0 Cr 0
Dg Dg, Dg; Dgy D£5 Dg Dg Dgs 0 —1 Cs 0
D;I DJ;2 D%c:% D;4 D% D;G D;7 D];s 0 0 V2 0
0 0

0 Vs

For the case of partial constraints on position, there are 9 unknowns (8 in C, 1v»).
We get 4 equations for x, (Eq. S18), 1 equation for x; (Eq. S25), 4 equations for
A(tr) (Eq. S26), and Eq. S28 becomes




ggl BEQ 323 324 ggs ggﬁ 327 ggs 8 Cq
21 22 Doz Dy Doy Dyg Doy Dog Cs
Dy, D3, D3, DY, Dy Di; Di, Dig 0 Cs
Dj, Dj, Dj; Dj, Dj; Dj; Dj, D 0 Cy
D{, D}, D{; D{, Dj; Dj; D{; Dy 0 || ¢ |=

D£1 DgQ Dg3 D£4 D§5 D£6 D£7 Dgs 0 C7
D}1 D? D}3 D}4 D}5 D}ﬁ D}7 D}S 0 Cs
D81 D82 D83 D84 D85 D86 D87 D88 O Va
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