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Supplemental material9

In this document we include multiple simulations that complement those shown in the10

paper. We also explain in detail how responses, reinforcement and experimental sessions were11

simulated and present the parameters used in the simulations for the dual-system model.12

General methods13

All the following simulations were programmed in either Julia (julialang.org) or Python14

(www.python.org). Plots were produced by the seaborn package for Python. The relevant15

codes can be found online at github.com/omadav/dual_system_theory.16

First, we explored the robustness of the correlation coefficient as a measure of the linear17

association between responses and outcomes in a free-operant setting across a considerable18

range of parametric variations. To this end, iresponse rate and sample length were used as19

independent variables. More formally, the simulations had the form r = f(b, L,M), where b20

is the response rate level, L the length, or size of each sample and M the length of the21

experiment. r is, of course, the correlation coefficient that we were interested in investigating.22

When the probability of observing a response in any given time is constant, response23

rate is an efficient measure of behaviour (Ferster & Skinner, 1957; Killeen, 1994). In this24

case, the distribution of IRTs will be best described by an exponential decay function. This25

is usually the pattern of responding observed under random schedules, which is the general26

purpose of our paper. Therefore, unless otherwise noted, in the following simulations27

responding was assumed to be completely random: although variation of responding is28

present at all times, we assume that the probability of a response to appear at each29

time-unit is fixed, so that at any given moment the occurrence of a response is completely30

unpredictable.31
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Parametric investigation of a rate correlation theory32

To study the the robustness of the correlation coefficient as a measure of the linear33

association between response and outcome rates, we modelled and simulated single34

experimental sessions. Each simulation represented one experimental subject under one35

particular schedule type and parameter (ratio requirement in the case of RR; interval36

requirement in the case of interval schedules). For each schedule and parameter, the process37

was replicated multiple times. Each session length was set to M = mL sec, where m is the38

number of time-samples and L the length of each time-sample (in secs). For these39

simulations, the minimal unit of time was assumed to be 1
3 of a sec. This condition effectively40

constrained subjects’ responding to a maximum of 150 responses per min.41

To register responses and outcomes in memory, a time-line composed of two binary42

vectors of the same length was created. Each vector represented the occurrence (represented43

by the number 1) and non-occurrence (represented by the number 0) on the responses and44

outcomes vectors. Such assumption made it possible to divide the time-line in m samples45

and to consider the number of responses and outcomes in each. Finally, both responses and46

outcomes in each sample were aggregated and a standard correlation coefficient between47

these two-dimensional data points calculated.48

A number of parameters were analysed for their effects upon the obtained correlations49

for the three different schedules of reinforcement of interest: RR, RI and RPI schedules.50

First, for each schedule and a given response or interval requirement, the effect of variations51

in time-sample length on the correlations was investigated, using a fixed level of responding.52

Second, for each schedule and a given response or interval requirement, the effect of the level53

of responding on the correlations obtained when the time-sample was kept constant was54

studied. The merits a rate-correlation theory will be evident if the correlation coefficient55

obtained is not seriously affected across a range of variations in these parameters. If that is56

so, then a correlational-based model of responding makes unambiguous predictions with57
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regards to free-operant performance.58

Responding. For each simulation, responding was simulated as follows: on each59

time-step, there was a fixed probability q of a response to appear. The probability q60

depended, naturally, on the number of responses per min (B) that we were interested in61

simulating:62

P (resp = 1|B = b) = q = 1
3b (1)

where b is the response rate simulated. For a baseline of, say, 60 responses per min, the63

probability of a response to appear on each time-step was fixed at q = b
3×60 = b

180 . The64

probability of responding on each second was therefore p = 3q.65

Reinforcement.66

RR schedules. A variable-ratio (VR) schedule provides reinforcement after a given67

number of responses, on average, have been recorded. The random-ratio schedule is an68

idealised version of this schedule. For each time unit, the RR schedule reinforces a response69

with a fixed probability. In a RRk schedule, for example, the probability of each response70

being rewarded is P (rnf |resp) = 1
k
every time a response is performed, where rnf71

represents the event of a reinforcer being delivered. Both of these are binary variables taking72

values of 1 in their presence and 0 in their absence. To generate the RR schedule we note73

first that if the probability of a response being reinforced is p, then each time-unit can be74

regarded as a Bernoulli trial with p as the probability of success, or the proability of a75

response being rewarded. Hence, each time a response occured, the reward value was drawn76

from a binomial distribution with parameters 1 and p = 1
k
.77

RI schedules. On variable-interval (VI) schedules, a reinforcer is set up after an78

average time interval has elapsed. The first response observed after this interval is reinforced.79

RI schedules are an idealisation of VI schedules in that, for each moment, there is a fixed80

probability of a reinforcer being set up. Consequently, the generation of intervals in this81

schedule followed the same logic as that of responses in RR schedules; this time, however,82

the Bernoulli trial was in effect for each second that elapsed. On each second (3 time-units)83
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the computer sampled either a 1 or 0 from a binomial distribution with size 1 and84

probability of success equal to the reciprocal of the preset interval. If this reward flag was85

equal to 1, then the next response was rewarded; once the reward was collected by the86

following response, the process started again. That is,87

P (rnf |t) = 1
T

(2)

where t represents each second elapsed and T the scheduled interval.88

RPI schedules. For the RPI schedule, the probability of reward for the next89

response was calculated every time the simulated subject performed a response according to90

P (rnf ∗|resp) = x

Tm
(3)

where rnf ∗ corresponds to the event of reward for the next response, m is the memory size91

for the last m IRTs (or m+ 1 responses) and x the time it took the subjects to perform the92

last m IRTs. Given Dawson & Dickinson’s (1990) observation that m does not have any93

systematic effects on performance, a value of m = 20 was used for the RPI simulations.94

Parametric manipulations. For the RR schedule six ratio requirements were95

simulated: 5, 10, 20, 30, and 50. For RI and RPI simulations, the interval requirement was96

varied across 5, 15, 30 and 90 sec.97

For all the simulations the sample length was varied across 10, 30, 60, 90 and 12098

sec. Additionally, for every schedule and sample, 4 levels of responding (responses per min)99

were used. Level 1: 30 responses per min; Level 2: 60 responses per min; Level 3: 90100

responses per min; Level 4: 150 responses per min. All the simulations were run with 300101

samples and repeated 500 times. The values presented in the next section are averages of 500102

data points for each of the conditions.103
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Results104

RR schedules. Figure 1 shows the results obtained for RR schedules. Inspection of105

the figure reveals that ratio schedules with lower ratio requirements generated consistently106

higher correlations than those with higher ratio requirements. The second observation that is107

relevant to the theory is that the time-sample length does not have any systematic effect on108

the correlations experienced in that there is no interaction between ratio requirement and109

sample length. This is an important theoretical point, as it allows a rate-correlation view of110

responding to make consistent predictions on performance under RR schedules: no matter111

what sample length any two subjects may be using, the subject trained with the lower ratio112

requirement should respond higher than that trained under the higher ratio requirement.113

    Sample length

Figure 1 . Correlation coefficient for RR schedules with different samples sizes (in sec). The
legend signifies the ratio requirement.

RI schedules. Figure 2 shows the results obtained for RI schedules. Inspection of114

the figure indicates two main features of correlations under RI schedules that are similar to115

those observed in the case of RR schedules. First, with the exception of RI 5-sec and very116
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low response rates, the effect of sample length on the correlation is very low for any given117

interval requirement. In addition, there is no interaction between sample length and interval118

requirement for any two different schedules. More importantly, however, is the observation119

that for the majority of response rates the correlations for RI schedules are close to zero.120

The observation is consistent with the slope of the feedback function for interval schedules,121

in that it flattens out after a certain level of responding; increasing response rates have no122

concomitant effects on outcome rate if the response rate is higher than the inverse of the123

interval requirement.124

Sample length

Figure 2 . Correlation coefficient for RI schedules with different sample lengths (in sec). The
legend signifies the ratio-equivalent value (in number of responses per reward).

In addition, similar to the RR case, the higher the interval requirement, the lower the125

experienced correlation. With increases in response rate, the difference in the obtained126

correlation converges to zero for all interval requirements.127

At issue is the question of why a positive correlation for RI 5-sec and low response128
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rates was obtained in these simulations. The explanation also follows Baum’s feedback129

functions argument. Indeed, if the response rate is lower than the inverse of the interval130

requirement, then it is possible that increases in response rate will increase outcome rates.131

That is, to the extent that b < 1
T
, then increases in b will be accompanied by increases in r.132

The feedback function for very low response rates then must have a positive slope. When the133

interval requirement is too low—or, in other words, the outcome rate is too high—it is even134

possible for the correlations to approach 1, making the RI effectively a FR1, or continuous135

reinforcement schedule.136

An example may help illustrate the idea. Take the case of an RI 30-sec, so that the137

outcome rate is 2 outcomes per min. Suppose the subject is responding at a rate of 60138

response per min, i.e., 1 response per sec. At this response rate, any increase in responding139

will not result in increases in outcome rates, since on average the subjects is effectively140

performing two responses per each reward. Suppose now that the rate of responding141

decreases to 30 responses per min, i.e., 0.5 responses per sec. At this new response rate, the142

subject is collecting all the outcomes with one response on average. However, if the subject143

slows responding to a level lower than this rate, then he/she will be losing otherwise144

obtainable outcomes. Increasing response rates now will increase the outcome rate; at the145

point where b = 1
T
, increases in response rate do not increase outcome rate. At lower rates,146

however, especially if the preset interval is short, increases in response rate will always be147

accompanied by an increase in the outcome rate and the correlation will approach 1. This148

particular feature of feedback functions for RI schedules has been extensively debated in the149

instrumental conditioning literature (see Baum (1992)).150

RPI schedules. Figure 3 shows the results obtained for RPI schedules. The results151

are very similar to those for RI schedules. As expected, the experienced correlations are152

always lower for those RPI schedules with high interval requirements compared to those with153

low ratio requirements; the difference between these schedules tend to fade out as response154

rates increase. Additionally, for low response rates there is an effect of the sample length on155
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the correlations: for the same interval requirement, increasing lengths lower the correlations.156

Sample length

Figure 3 . Correlation coefficient for RPI schedules with different sample lengths. The legend
signifies the scheduled interval.

As in the RR and RI cases, the figure shows that there is no interaction between157

sample length and interval requirement on RPI schedules. Also evident from the RPI is the158

fact that RPI schedules with low interval requirements can generate positive correlations. In159

fact, contrasting this figure with that for RR schedules suggests that indeed these are160

comparable for some sample length values, especially the lowest ones.161

RI+ schedules. The role of rate correlation as a determinant of instrumental162

performance has also found support in some studies with human participants using random163

interval plus-linear-feedback (RI+) schedules. In the RI+ schedule, the interval required for164

the next reward I changes online according to165

I = i

n
b (4)
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where i is the time since last reinforcement, n is the number of responses performed during i166

and b is the equivalent ratio value. Thus, the probability of reward in each second will be167

changing according to the value of I, such that for a local response rate of bi = n
i
, the168

subject receives the reward on average after b responses.169

Figure 4 shows simulations of this type of schedule with the same parameters as those170

used for the RR simulations presented above. As can be seen in this figure, the RI+ schedule171

supports positive experienced correlations for a range of ratio-equivalent parameters. In172

addition, the RI+ schedule shares with RR schedules the property of lower correlations as173

response rates get considerably high. However, in contrast to RR schedules, the correlations174

increase when responding increases from a low level and start decreasing at sufficiently high175

rates.176

Sample length

Figure 4 . Correlation coefficient for RI+ schedules with different sample lengths (in sec).
The legend signifies the scheduled interval (in sec).
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Parameters used in the simulations177

As described in our paper, the dual-system model includes three main equations for178

different psychological processes, the habit system, the goal-directed system and the response179

activation function s which transforms the total response strength h+ g into response180

probability per second. Each of these equations contains a number of parameters that need181

to be set. Given the wide range of experimental procedures and results across different182

species that nevertheless show the same directionality of effects, we show the generalizability183

of our model by choosing a suitable set of parameter values that captures the patterns of184

results across all of these experiments. We present the parameters for each of the sections in185

the table below.186

parameter system value

α+ habit 2× 10−2

α− habit 1× 10−5

θ goal-directed .1

C response function 0.6

τ response function 10
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