Rank-Order Stability of Domain-Specific Self-Esteem:

A Meta-Analysis

Laura C. Dapp and Ulrich Orth

SUPPLEMENTAL MATERIALS

		Harter	Marsh		
Domain	$k_{ m samples}$	Mean reliability	ksamples	Mean reliability	
Academic	23	.78	12	.83	
Appearance	17	.82	5	.87	
Athletic	14	.80	3	.80	
Morality	13	.77	2	.79	
Romantic	6	.73	4	.66	
Social	39	.76	7	.77	
Mathematics		_	23	.89	
Verbal			20	.86	

Supplemental Table S1 *Mean Reliability of Rank-Order Stability of Domain-Specific Self-Esteem*

Note. Mean reliability was computed by averaging reliability coefficients reported in primary studies separately for domains and separately for Harter's and Marsh's measures. Dash indicates that the domain is not covered by measures by Harter. $k_{\text{samples}} = \text{number of samples}$.

Supplemental Table S2

Estimates of Rank-Order Stability of Domain-Specific Self-Esteem When Excluding Outliers (Sensitivity Analyses)

	Weighted mean						Variances	
Domain	k_{samples}	$k_{ m ES}$	N	effect size	95% CI	\mathcal{Q}	$\sigma_1{}^2$	σ_2^2
Academic	53	142	50,758	.693*	[.646, .734]	6376.59*	.074	.031
Appearance	—	_	—	_	_	_	—	_
Athletic	_	_	—	—	_	—	—	_
Morality	25	79	12,474	.670*	[.604, .727]	1982.79*	.058	.034
Romantic	_	—	_	_	_	_	_	_
Social	66	205	57,514	.682*	[.643, .718]	8945.62*	.050	.061
Mathematics	27	74	53,282	.680*	[.632, .722]	5227.34*	.037	.023
Verbal	21	64	48,268	.661*	[.608, .708]	4605.48*	.012	.077

Note. The analyses were based on multilevel random-effects models. $k_{\text{samples}} =$ number of samples; $k_{\text{ES}} =$ number of effect sizes; N = number of participants (overall sample size); weighted mean effect size = disattenuated test-retest correlation coefficient, indicating the rank-order stability of domain-specific self-esteem; CI = confidence interval; Q = statistic used to test residual heterogeneity; $\sigma_1^2 =$ variance component corresponding to the level of the grouping variable (i.e., between samples); $\sigma_2^2 =$ variance component corresponding to the level nested within the grouping variable (i.e., within samples). Dash indicates that there were no outliers for the domain. * p < .05.

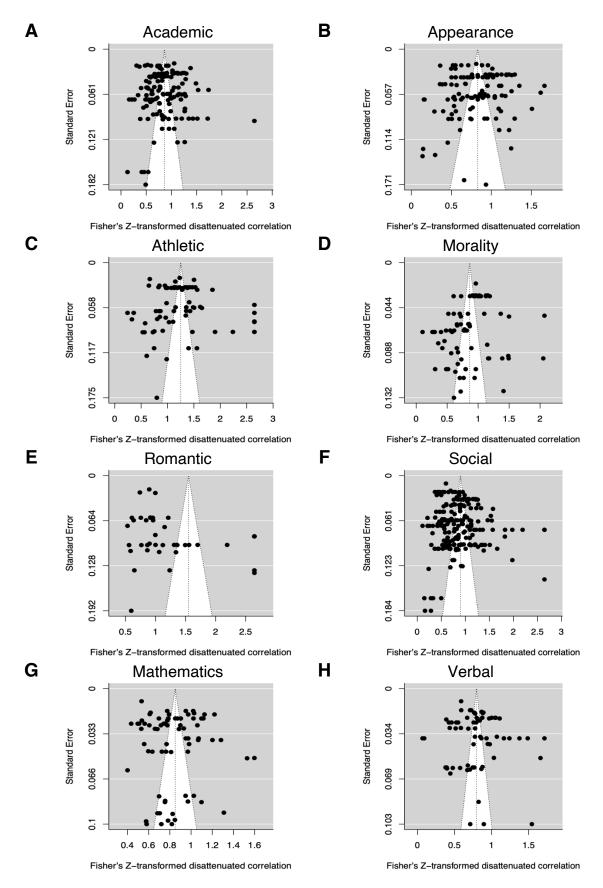
Supplemental Table S3

Sample-Level Tests of Publication Bias in Rank-Order Stability of Domain-Specific Self-Esteem

Domain	Egger's regression test			
	k	Z	р	
Academic	53	0.613	.540	
Appearance	39	-1.660	.097	
Athletic	30	-0.638	.524	
Morality	25	-0.007	.995	
Romantic	19	0.974	.330	
Social	67	1.269	.204	
Mathematics	28	0.917	.359	
Verbal	21	0.679	.497	

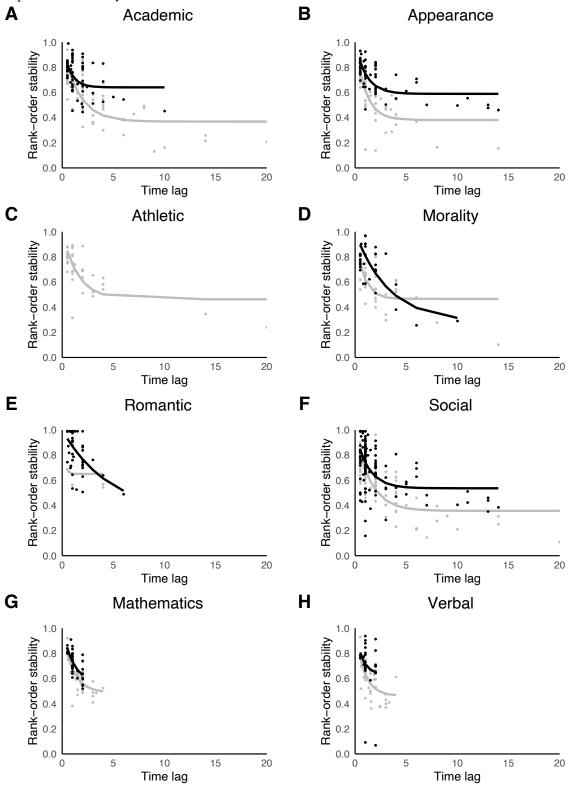
Note. k = number of effect sizes.

Intercorrelations Among Moderators					
Variable	1	2	3	4	
1. Age					
2. Time lag	167				
3. Female (%)	.186	065			
4. Measure ^a	.094	107	107		


Supplemental Table S4

Note. All correlations were computed on the level of effect sizes, except for the correlation between female and measure, which was computed on the sample level (i.e., these variables did not vary across effect sizes from the same sample). Age = age at beginning of the interval on which effect size was based. Time lag = interval between assessments on which effect size was based. Values in bold are significant at p < .05.

^a 0 = Harter; 1 = Marsh.


Supplemental Figure S1

Funnel Graphs Displaying the Relation Between Standard Error and Effect Size of Rank-Order Stability

Supplemental Figure S2

Scatterplots Displaying the Relation Between Rank-Order Stability of Domain-Specific Self-Esteem and Time Lag for Younger and Older Samples, Including the Estimated Function of Exponential Decay

Note. For each domain, the function is shown for the range of time lags for which data were available. Gray = younger samples; black = older samples. For the older samples in the athletic domain, the model did not converge.