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Figure S1: Public ORCID profiles for the authors of the study, with annotations illustrating choices made during data
processing.
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Table S1: Breakdown of ORCID users in our dataset by field and gender (proportions in parentheses).

Everyone, regardless of whether they Those who switched out of
ever switched fields these fields at some point

Field Total Men Women Total Men Women
Anthropology 10335 4920 (0.48) 5415 (0.52) 1734 832 (0.48) 902 (0.52)
Archaeology 4432 2462 (0.56) 1970 (0.44) 755 389 (0.52) 366 (0.48)
Art History 3165 1223 (0.39) 1942 (0.61) 531 200 (0.38) 331 (0.62)
Astronomy* 62 47 (0.76) 15 (0.24) 13 9 (0.69) 4 (0.31)
Biochemistry* 22020 13402 (0.61) 8618 (0.39) 2892 1887 (0.65) 1005 (0.35)
Chemistry* 84639 57127 (0.67) 27512 (0.33) 10198 7219 (0.71) 2979 (0.29)
Classics 2371 1212 (0.51) 1159 (0.49) 538 265 (0.49) 273 (0.51)
Communications 20570 10162 (0.49) 10408 (0.51) 2918 1525 (0.52) 1393 (0.48)
Comparative Literature 996 457 (0.46) 539 (0.54) 252 114 (0.45) 138 (0.55)
Computer Science* 50142 39225 (0.78) 10917 (0.22) 6158 4939 (0.80) 1219 (0.20)
Earth Sciences* 14185 9557 (0.67) 4628 (0.33) 1504 1011 (0.67) 493 (0.33)
Economics 54297 34725 (0.64) 19572 (0.36) 4154 2665 (0.64) 1489 (0.36)
Education 78997 35391 (0.45) 43606 (0.55) 8570 4607 (0.54) 3963 (0.46)
Engineering* 227769 180918 (0.79) 46851 (0.21) 17694 14170 (0.80) 3524 (0.20)
English Literature 19345 8769 (0.45) 10576 (0.55) 3730 1682 (0.45) 2048 (0.55)
Evolutionary Biology* 3024 1707 (0.56) 1317 (0.44) 178 89 (0.50) 89 (0.50)
History 25840 15144 (0.59) 10696 (0.41) 4039 2322 (0.57) 1717 (0.43)
Linguistics 9857 4332 (0.44) 5525 (0.56) 1940 918 (0.47) 1022 (0.53)
Mathematics* 42416 31305 (0.74) 11111 (0.26) 8770 6513 (0.74) 2257 (0.26)
Middle Eastern Studies 568 373 (0.66) 195 (0.34) 135 85 (0.63) 50 (0.37)
Molecular Biology* 9464 5429 (0.57) 4035 (0.43) 1071 678 (0.63) 393 (0.37)
Music Theory & Composition 1317 740 (0.56) 577 (0.44) 196 110 (0.56) 86 (0.44)
Neuroscience* 12552 6947 (0.55) 5605 (0.45) 1154 629 (0.55) 525 (0.45)
Philosophy 18098 11866 (0.66) 6232 (0.34) 3630 2281 (0.63) 1349 (0.37)
Physics* 81319 64817 (0.80) 16502 (0.20) 12552 10209 (0.81) 2343 (0.19)
Political Science 18517 11555 (0.62) 6962 (0.38) 2457 1482 (0.60) 975 (0.40)
Psychology 57890 23920 (0.41) 33970 (0.59) 6460 2940 (0.46) 3520 (0.54)
Sociology 17374 8930 (0.51) 8444 (0.49) 2605 1353 (0.52) 1252 (0.48)
Spanish Literature 2365 1035 (0.44) 1330 (0.56) 544 237 (0.44) 307 (0.56)
Statistics* 11288 7433 (0.66) 3855 (0.34) 1679 1177 (0.70) 502 (0.30)

Note. The 12 fields marked with an asterisk were classified as STEM; the other 18 were non-STEM [1]. The two sets of
statistics above correspond to Step 2 and 3 in ORCID data processing sequence described in Section 1. However, the numbers
in the “Total” columns will add up to more than the numbers provided in Section 1 because users can be affiliated with more
than one field. The sets of numbers on the left (the ”Everyone” columns) include any ORCID users who listed at least one
affiliation in their profile. This is a larger sample than those in the analyses reported in the main text, which consisted of
(1) individuals with at least two affiliations who switched fields at least once (the recruitment analyses) or
(2) individuals with at least two affiliations regardless of whether or not they switched fields (the retention analyses).
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1 . ORCID Data Processing Information

We provide a narrative summary of our data process-
ing steps to accompany our publicly available scripts at
https://github.com/kennyjoseph/ORCID trajectories.

ORCID users have the option to selectively make their in-
formation public. This opt-in public information is released
annually in an aggregated ORCID public data file [2] and
also made available on demand to ORCID member institu-
tions. The most recent version of ORCID public data were
accessed on February 18, 2021.

Our goal is to identify the subset of researchers whom we
can confidently place in particular fields of study, over time
or career stage, and whose first and last names provide us
with a high-confidence association with a gender. However,
ORCID does not provide information about its users’ fields
of study or gender. As a consequence, not all ORCID profiles
could be analyzed, so this section describes our data clean-
ing and inclusion processes in detail. We begin with a dataset
of 9,600,248 public profiles of researchers on ORCID. Only
3,006,777 researchers have one or more listed affiliations, and
among them we observe a total of 8,146,175 affiliations.

Step 1. In the first step, we perform basic filtering to re-
move incomplete or out-of-scope affiliations. Specifically, we
filter out three types of affiliations. First, we remove any affil-
iations where the researcher’s name was not provided, as we
use names to estimate an associated gender. Second, we filter
out affiliations where the department name was not provided,
as we use this information to identify the academic field as-
sociated with the affiliation. Finally, we remove any affilia-
tions where neither a career stage (e.g., “postdoc”) nor a date
was provided, as we use this information to determine the or-
dering of affiliations. (The order of affiliations will later be
used to identify field entries and exits.) After these three fil-
ters have been applied, we retain 5,722,977 affiliations among
2,381,829 researchers.

Step 2. In the second step, we fill in variables of interest
using three algorithms: one to determine the role/job posi-
tion affiliated with each affiliation (e.g., PhD candidate, pro-
fessor; see Section 1-A), one to identify the academic field
associated with each affiliation (see Section 1-B), and one
to determine the gender that is culturally associated with
researchers’ names (see Section 1-D). Details on the algo-
rithms themselves can be found in the sections that follow,
but here we summarize their outputs. We remove affiliations
that (i) match a field that is not among the 30 surveyed fields
or (ii) match multiple fields, retaining 1,768,238 affiliations
(965,603 researchers). Among these, we are able to find a
high-confidence inferred gender via a cultural consensus al-
gorithm for 1,480,407 affiliations (809,988 researchers; see
Table S1 for a breakdown by field).

Step 3. In the third step, we take the 1,480,407 affilia-
tions among 809,988 researchers and identify pairs of af-
filiations that indicate that a researcher exited one of the

Table S2: Breakdown of career stages in the dataset.

Role Number of % of
Affiliations Data

Bachelor’s Degree 217667 12.3%
Master’s Degree 250772 14.2%
PhD 402501 22.8%
Postdoctoral Researcher 65324 3.7%
Professor/Department Head 375565 21.2%
Other/None 456409 25.8%

30 surveyed fields and entered another (a “field switch” or
“field transition”; see Section 1-E). To do so, we order each
researcher’s affiliations using the roles identified in Step 2
and/or the start date of the affiliation (for an illustration, see
Figure S1). Whenever the fields associated with consecutive
affiliations are different, we record a transition as having oc-
curred from one affiliation’s field to the next affiliation’s field.
If an individual changes fields multiple times, each transition
is recorded as a separate transition, but the transitive transi-
tion (from the first field to the third field) is not recorded.
In total, we are able to identify 112,132 transitions among
86,879 researchers (see Table S1), averaging 1.3 transitions
per person among the researchers with observable transitions.

1-A. Determining Career Stages

Each ORCID affiliation has an associated role field, which
we use to identify the career stage associated with that af-
filiation. Due to the fact that the ORCID userbase spans
many languages and academic traditions, we used a set of
regular expressions to coarse-grain each affiliation into one
of the following academic career stages: bachelor’s degree,
master’s degree, PhD, postdoctoral researcher, and profes-
sor/department head. In the event that the text in an affiliation
matches multiple stages, we select the highest ranking role.
In the event that there is no match, we give that affiliation a
blank role, since affiliations that have no role but nevertheless
have a date that can be placed in sequence with other affilia-
tions are still useful in our analysis.

The regular expressions were accumulated recursively:
After every iteration of matching, we manually identified
the most commonly missed expressions among unmatched
roles, and then added a corresponding regular expression.
We stopped once the inclusion of additional regular expres-
sions did not substantially improve our data coverage. The
complete set of regular expressions has been made publicly
available. A breakdown of the career stages identified in our
dataset via this algorithm can be found in Table S2.

1-B. Determining Academic Fields

Each ORCID affiliation has an associated department
name field (hereafter, department). Only those affiliations

 https://github.com/kennyjoseph/ORCID_trajectories
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Table S3: Fields and the corresponding terms used for
matching ORCID affiliation strings.

Fields Accepted expressions
Anthropology anthropology
Archaeology archaeology
Art History art history; history of art
Astronomy astronomy
Biochemistry biochemistry
Chemistry chemistry
Classics classics; classical literature; classical

humanities
Communications communications; communication sciences;

communication studies; communication
Comparative Literature comparative literature
Computer Science computer science; algorithms; computing;

informatics
Earth Sciences earth sciences; earth science; physical geog-

raphy; oceanography; atmospheric sciences;
volcano

Economics economics; economic; econometrics; finance;
economy

Education education; pedagogy
Engineering engineering; ingegneria; e.e.; e.c.e.; ingenierã

a; cybernetics; telecommunication; telecommu-
nications; telecommunication studies; electri-
cal engineering; chemical engineering; electri-
cal and computer engineering; biochemical en-
gineering; biological engineering; neuroengi-
neering; musical engineering; statistical engi-
neering; physical engineering

English Literature english literature; english
Evolutionary Biology evolutionary biology
History history
Linguistics linguistics; linguistic
Mathematics mathematics; math; geometry; algebra; number
Middle Eastern Studies middle eastern studies; middle east
Molecular Biology molecular biology
Music Theory & Comp. music theory; musical composition; musicol-

ogy; composition
Neuroscience neuroscience
Philosophy philosophy
Physics physics
Political Science political science; political sciences; politics;

science politique; politology
Psychology psychology; psychological; psicologia; psi-

cologı́a
Sociology sociology; sociological; sociologie
Spanish Literature spanish literature; spanish
Statistics statistics; statistical sciences

that can be confidently linked to one and only one of the 30
surveyed academic fields [1] can be used in our analysis, so
we now describe the procedure used to match user-provided
departments with surveyed academic fields. There are three
steps in our approach: translation, matching, and multi-field
affiliation removal.

Step 1: Translation. In the translation step, we use a
list of common academia-related English words to determine
whether or not an affiliation’s department is in English. We
then translated the 232,960 non-English unique department
names into English using Google Translate.

Step 2: Matching. In the matching step, we first construct,
for each of the 30 surveyed fields, a list of expressions and
subfields that are associated with that field. For example, so-
ciology or sociological could both map to the field of sociol-
ogy. Table S3 provides a complete list of fields and their cor-
responding expressions. Note that we retained certain popu-
lar non-English terms, as there were some instances in which
certain terms were not translated (they were considered to be
misspellings by the translation algorithm).

We also assembled a so-called denylist of scientific fields
that are prominent in the ORCID data but that are not in our
survey data. Constructing this list helped identify affiliations
in fields that were clearly defined but outside the scope of
our study; researchers who will use this dataset in the future
might find these fields useful.

To construct the terms in Table S3 and our denylist, we
used a recursive approach, using existing resources from
Wikipedia and the U.S. National Science Foundation to de-
termine initial lists of terms, and then repeatedly inspecting
department names that appeared multiple times in our dataset
to ensure coverage of our lists.

To validate the output of the matching step, we hand-
checked the fields assigned to departments from a stratified
random sample, consisting of 25% matched and in-sample af-
filiations, 25% unmatched affiliations, and 50% matched but
out of sample (denylist) affiliations. Each affiliation was as-
signed to two of the four authors of the study for annotation.
We used disagreements between annotators and the matching
step to improve the expressions and denylist. In total, 660 af-
filiations were checked by hand by at least two authors, and
all disagreements were discussed by all authors.

With the final set of terms associated with each field (see
Table S3) and the denylist, we use a simple rule-based algo-
rithm to match affiliations to fields. The algorithm works as
follows.

First, it splits each affiliation string on common separators
(e.g., commas, “and”) into candidate match objects. For in-
stance, consider the fake and implausible department (with
intentional misspelling) Advanced Chemical Engineering and
Histroy/History of Art. Based on the matching terms, this
string contains three candidate match objects: (i) “Advanced
Chemical Engineering”, (ii) “Histroy”, and (iii) “History of
Art”.

Then, for each candidate match object, we check whether
it is an exact match to any term associated with a surveyed
field or a field on the denylist. If so, we have identified the
field associated with the candidate match object, and move
to the next candidate match object. For example, “History of
Art” matches a term in Table S3 associated with the field Art
History.

If a candidate match object matches no known terms, we
check for fuzzy string matches with an edit distance of 3 or
less. If there are any such fuzzy matches, we select the one
with the smallest edit distance and break ties by choosing the
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longest of the matched strings. For example, the candidate
match object “Histroy” has an edit distance of 1 to the match
term “History,” which is linked to the academic field History.

Finally, we check for exact matches and/or fuzzy matches
in subsets of the candidate match strings. For example, there
is an exact match to “Chemical Engineering”, a term in Ta-
ble S3, within the candidate match object “Advanced Chem-
ical Engineering”. In such a case, we identify this field as
a match, remove the relevant substring, and then continue
recursively (i.e., try to match the remaining substring “Ad-
vanced”). Fuzzy matching was conducted in part using the
fuzzywuzzy open source library.1

This field matching method identifies zero, one, or more
academic fields associated with each affiliation. In total,
59.1% of the in-sample affiliations matched exactly to one or
more of the terms in Table S3, with another 33.7% within an
edit distance of 2 to one or more of those terms. Thus, 92.8%
of the affiliations we identified as representing one of the 30
fields in our survey data were linked to that field either be-
cause they were an exact match to a term in Table S3 or were
a slight misspelling of one of those terms.

Step 3: Multi-field affiliation removal. The matching pro-
cedure has the potential to associate multiple fields with a
single affiliation. In such cases, the affiliation was conserva-
tively removed from further consideration in order to avoid
ambiguities.

1-C. Determining Region

Each ORCID affiliation has an associated ISO 3166-1
alpha-2 country code, allowing us to test the extent to which
field transitions in different parts of the world show the same
patterns as those in the global dataset. Table S4 lists which
countries are assigned to which regions, and the number of
transitions to organizations in countries in that region.

1-D. Associating Names with Gender

ORCID neither collects nor infers gender information.
Thus, we inferred the extent to which each user’s first and last
names are culturally associated with different gender labels.
This inferential process was guided by the theoretical frame-
work of cultural consensus models [3], which do not purport
to identify the “true” gender label of an individual but instead
measure the consensus across multiple viewpoints. In other
words, this method does not ask “What is Jane Doe’s gen-
der?” but rather “What is the likelihood that someone with
the name ‘Jane Doe’ is thought to be a woman?” In this way,
the inference algorithm attempts to estimate how an individ-
ual is likely to be perceived based on their name.

Our consensus-based gender inference algorithm computes
the Bayesian posterior probability that a person’s name is cul-
turally understood to be the name of a woman or a man based
on data from 30 different sources. These sources range from

1 https://github.com/seatgeek/fuzzywuzzy

the U.S. Social Security Administration’s names database to
a list of the world’s Olympic athletes, and both method and
data are freely available [4].

Names that did not appear in any of the reference datasets
were submitted to Genni [5], a service that takes into account
the perceived ethnicity of first and last names to improve es-
timates of the cultural associations between first names and
gender.

Finally, names with posterior probabilities or Genni scores
of ≥ 0.9 and ≤ 0.1 were associated with the labels woman
and man, respectively. Conservatively, the 18.8% of names
with scores between 0.1 and 0.9 were not included in our
analyses.

1-E. Identifying Field Entries and Exits

The most critical element of the algorithm that identifies
field entries and exits is the one that orders the affiliations of
a given researcher. As noted above, we consider only those
affiliations with either a clear academic role or a start date.
When all of a researcher’s affiliations have a date, ordering
is trivial. In fact, because 95.8% of the affiliations had a start
date, they were easily ordered in the vast majority of cases. In
the remaining cases, when all of a researcher’s affiliations are
associated with one of the clear academic career stages con-
sidered in this paper (see Section 1-A), and a researcher has
no more than one affiliation per stage, we assumed an order of
bachelor’s degree→ master’s degree→ PhD→ postdoctoral
researcher→ professor/department head. In this case, again,
ordering is trivial.

The only difficult remaining cases are those researchers
whose affiliations are a mixture of dates without career stages
and career stages without dates. In this case, we used a sim-
ple algorithm that attempts to interleave affiliations. The al-
gorithm takes advantage of any cases where the researcher
lists both a date and a career stage, using such affiliations as
an anchor to sort the other affiliations by dates and career
stages, again under the same ordered career stage assump-
tion as above. Implementations of these algorithms have been
made publicly available.
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Table S4: Regions represented in the ORCID dataset, alongside the corresponding countries.

Region N. of Transitions Countries
Europe 41293 Albania, Andorra, Austria, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Channel Islands, Croatia, Czech

Republic, Denmark, Estonia, Faroe Islands, Finland, France, Germany, Gibraltar, Greece, Greenland, Guernsey, Holy
See (Vatican City State), Hungary, Iceland, Ireland, Isle of Man, Italy, Jersey, Kosovo, Latvia, Liechtenstein, Lithuania,
Luxembourg, Malta, Monaco, Montenegro, Netherlands, Norway, Poland, Portugal, Republic of Moldova, Romania,
Russian Federation, San Marino, Serbia, Slovakia, Slovenia, Spain, Svalbard and Jan Mayen, Sweden, Switzerland,
The Former Yugoslav Republic of Macedonia, Ukraine, United Kingdom of Great Britain and Northern Ireland

Northern America 29070 Canada, United States of America
Asia 18730 Afghanistan, Armenia, Azerbaijan, Bahrain, Bangladesh, Bhutan, Brunei Darussalam, Cambodia, China, China, Hong

Kong Special Administrative Region, China, Macao Special Administrative Region, Cyprus, Democratic People’s Re-
public of Korea, Georgia, India, Indonesia, Iran (Islamic Republic of), Iraq, Israel, Japan, Jordan, Kazakhstan, Kuwait,
Kyrgyzstan, Lao People’s Democratic Republic, Lebanon, Malaysia, Maldives, Mongolia, Myanmar, Nepal, Occupied
Palestinian Territory, Oman, Pakistan, Philippines, Qatar, Republic of Korea, Saudi Arabia, Singapore, Sri Lanka, Syr-
ian Arab Republic, Taiwan, Tajikistan, Thailand, Timor-Leste, Turkey, Turkmenistan, United Arab Emirates, Uzbek-
istan, Viet Nam, Yemen

Latin America and
the Caribbean

17636 Anguilla, Antigua and Barbuda, Argentina, Aruba, Bahamas, Barbados, Belize, Bolivia (Plurinational State of), Brazil,
Cayman Islands, Chile, Colombia, Costa Rica, Cuba, Curacao, Dominica, Dominican Republic, Ecuador, El Salvador,
French Guiana, Grenada, Guadeloupe, Guatemala, Guyana, Haiti, Honduras, Jamaica, Martinique, Mexico, Montserrat,
Netherlands Antilles, Nicaragua, Panama, Paraguay, Peru, Puerto Rico, Saint Kitts and Nevis, Saint Lucia, Saint Vin-
cent and the Grenadines, Suriname, Trinidad and Tobago, United States Virgin Islands, Uruguay, Venezuela (Bolivarian
Republic of), Virgin Islands (British)

Oceania 3127 American Samoa, Australia, Fiji, French Polynesia, Guam, Kiribati, Marshall Islands, Micronesia (Federated States of),
Nauru, New Caledonia, New Zealand, Papua New Guinea, Pitcairn Islands, Samoa, Solomon Islands, Tonga, Tuvalu,
Vanuatu, Wallis and Futuna

Africa 2892 Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Central African Republic, Chad,
Comoros, Congo, Côte d’Ivoire, Democratic Republic of the Congo, Djibouti, Egypt, Equatorial Guinea, Eritrea,
Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, Libyan Arab Jamahiriya, Mada-
gascar, Malawi, Mali, Mauritania, Mauritius, Mayotte, Morocco, Mozambique, Namibia, Niger, Nigeria, Réunion,
Rwanda, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, Somalia, South Africa, South Sudan, Sudan,
Swaziland, Togo, Tunisia, Uganda, United Republic of Tanzania, Western Sahara, Zambia, Zimbabwe

Note. Regions are listed in decreasing order of transition counts. Transitions to institutions in Oceania and Africa were not analyzed separately due to
insufficient statistical power, but are included for completeness.
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2 . Alternative Theoretical Perspectives on Gender Segregation in Academia

2-A. Workload

Background. Although academic careers generally de-
mand long hours, fields do differ in their workloads (par-
ticularly with respect to on-campus hours; [1]) and thus in
the extent to which succeeding in them is compatible with
work-life balance. Multiple theoretical traditions suggest this
variability should have a differential impact on women’s and
men’s career trajectories. For some scholars, this differential
impact is due to intrapersonal factors such as women’s and
men’s preferences and choices. More women than men re-
port that they value flexibility in work schedules and achiev-
ing some level of work-life balance [6–9], so fields that re-
quire long hours—particularly on-campus hours, away from
home and family—may lead women (but not men) to opt
out. This desire for flexibility is thought to be driven in part
by women’s decisions around childbearing and -rearing (e.g.,
[10]). Other scholars emphasize the structural factors (e.g.,
societal expectations) that make it such that women, regard-
less of their own preferences, have more domestic responsi-
bilities than men do (e.g., [11, 12])—a longstanding inequal-
ity recently laid bare by the COVID-19 pandemic (e.g., [13–
15]). While these two theoretical perspectives may disagree
about the reasons (intrapersonal vs. structural) why women
and men would differ in their pursuit of fields that demand
long and/or inflexible hours, they converge on the prediction
that these fields contribute to gender segregation in academia
by creating additional obstacles for women relative to men.

Although this prediction is intuitive, so far the evidence
that workload differences between fields contribute to pat-
terns of gender segregation in academia is inconclusive. For
instance, while the gender differences in work-life balance
preferences (e.g., [6, 8]) and self-reported hours worked per
week (e.g., [16]) are well documented, we know of no ev-
idence that relates these gender differences to lower partic-
ipation rates for women in academic fields with higher (vs.
lower) workloads. Moreover, while parenthood imposes a
heavier penalty on women’s academic careers than on men’s,
the magnitude of this penalty does not seem to differ sub-
stantially across fields (e.g., [17, 18]). The only study to date
that systematically investigated the relationship between aca-
demic fields’ workloads and their gender composition found
a modest relationship for on-campus workload specifically,
whereby fields with higher on-campus workloads graduated
fewer female PhDs, r =−0.32, p = .09 [1]. However, the mag-
nitude of this relationship was greatly diminished when other
field characteristics (e.g., FABs) were held constant, further
highlighting the uncertainty around the claim that workload
differences between fields can explain the patterns of gender
segregation in academia.

Measurement. To assess the workload of a field, Leslie,
Cimpian, and colleagues [1] asked respondents to indicate the
number of hours they worked each week “in your office, lab,
classroom, or otherwise on campus” and “off campus (e.g.,

home, coffee shop, other remote site).” Responses to these
face-valid items were elicited on an 8-point scale (with 1 to
7 corresponding to 10-hour increments from 10 hours/week
to 70 hours/week, and 8 corresponding to >70 hours/week).
On- and off-campus workloads were negatively correlated, r
=−.55, p< .001. Responses to the on- and off-campus work-
load items were averaged (separately) across respondents in a
field, resulting in a set of 30 on-campus and 30 off-campus
workload scores (one per field). Because Leslie, Cimpian,
and colleagues [1] found field-averaged on-campus workload
to be particularly predictive of women’s underrepresentation
across fields, our robustness checks focused on this variable
as well. The reliability of the field-averaged on-campus work-
load variable was high, ICC(2) = .95.

The on-campus workload measure’s relation to gender
gaps (as reported by [1]) speaks to its validity. Responses
on this measure also lined up with well-known differences
between fields. For example, the three fields with the heavi-
est on-campus workloads were all lab-based natural sciences
(biochemistry, molecular biology, and chemistry), whereas
the three fields with the lightest on-campus workloads were
all in the humanities (philosophy, English literature, and Mid-
dle Eastern studies).

2-B. Systemizing vs. Empathizing (and Things vs. People)

Background. Fields differ in the extent to which they re-
quire “systemizing” (that is, the ability and motivation to an-
alyze a topic or phenomenon as a rule-based system of inputs
and outputs) or “empathizing” (that is, the ability and motiva-
tion to reason in nuanced ways about people and their mental
states; e.g., [19, 20]). This variability may have a differen-
tial impact on male and female academics’ career trajectories
because, according to a prominent theoretical perspective,
“males spontaneously systemise to a greater degree than do
females” on average and, conversely, “females spontaneously
empathise to a greater degree than do males” ([21], p. 248;
see also [20, 22]). This argument is related to, and builds on,
previous evidence that men report preferring occupations that
focus on inanimate objects, which are more amenable to sys-
temizing, whereas women report preferring occupations that
deal with people (and living things more generally), who are
more amenable to empathizing [23, 24] (for a recent meta-
analytic review, see [25]).

In a first test of this argument, Billington and colleagues
[19] administered measures of systemizing (e.g., “When I
learn a language, I become intrigued by its grammatical
rules”) and empathizing (e.g., “I can tune into how someone
else feels rapidly and intuitively”) to 415 college students and
found that (1) STEM (vs. humanities) majors scored higher
in systemizing and lower in empathizing; that (2) men (vs.
women) scored higher in systemizing and lower in empathiz-
ing; and, critically, that (3) the gender differences in participa-
tion in STEM vs. humanities were to some degree explained
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by the gender differences in systemizing vs. empathizing.2

These findings were recently replicated in a sample of over
600,000 individuals by Greenberg and colleagues [20]. In ad-
dition, inventories of vocational interests suggest large gender
differences (d = 0.93) on the things–people dimension, with
men reporting a preference to work with things and women
reporting a preference to work with people [25] (but see [26]).

While these findings are suggestive, they fall short of
demonstrating that field differences in systemizing vs. em-
pathizing contribute to gender segregation in academia. For
instance, fields that differ in their systemizing vs. empathizing
requirements might differ in other respects as well (e.g., their
FABs), so any systemizing–empathizing (or things–people)
differences identified so far between fields could be con-
founded by other field characteristics. Consistent with this
possibility, Leslie, Cimpian, and colleagues [1] found a cor-
relation between a field’s emphasis on systemizing vs. em-
pathizing and its gender balance (i.e., fields with a stronger
emphasis on systemizing relative to empathizing had fewer
female PhDs), but this correlation disappeared when adjust-
ing for other field characteristics. Thus, on the balance, the
evidence to date for the systemizing–empathizing account of
gender segregation in academia is inconclusive.

Measurement. To measure the extent to which a field is
perceived to rely on systemizing vs. empathizing [21, 22],
Leslie, Cimpian, and colleagues [1] asked respondents to rate
the extent to which several processes are “involved in doing
scholarly work” in their discipline. Two of the items that fol-
lowed this prompt were intended to capture systemizing (e.g.,
“identifying the abstract principles, structures, or rules that
underlie the relevant subject matter”; r = .47, p < .001) and
two were intended to capture empathizing (e.g., “having a re-
fined understanding of human thoughts and feelings”; r = .70,
p < .001). To maximize validity, the phrasing of these items
followed closely the definitions of systemizing and empathiz-
ing provided in prior work. For example, Baron-Cohen [21]
defined systemizing as “the drive to analyse the variables in
a system, to derive the underlying rules that govern the be-
haviour of a system” (p. 248); the wording of the item above
mirrors this definition.

Responses to the two empathizing items were averaged
and then subtracted from the average of the two systemiz-
ing items. The resulting difference score tracks the extent to
which a respondent perceives their field to rely on system-
izing more than empathizing. These difference scores were
averaged across the respondents in a field, resulting in a set
of 30 systemizing–empathizing scores (one per field). This
field-averaged measure showed very strong reliability, ICC(2)
= .97.

2 Although these results are described in later publications as showing
that systemizing–empathizing scores “mediate sex differences in STEM”
([20], p. 12155), no mediation test was actually reported in Billington et
al. [19], nor did Billington and colleagues report whether (and to what ex-
tent) the relation between gender and STEM participation was weakened
when adjusting for systemizing–empathizing scores.

To assess the validity of this measure, we sought to repli-
cate systemizing/empathizing differences previously identi-
fied among academic disciplines. In a study of 415 college
students, Billington and colleagues [19] found that students
who majored in physical sciences showed cognitive profiles
that favored systemizing over empathizing, whereas the op-
posite was true of students who majored in the humanities.
Although Leslie, Cimpian, and colleagues [1] measured a
field’s perceived emphasis on systemizing vs. empathizing
rather than individuals’ cognitive profiles, it should never-
theless be the case that the physical sciences in their sam-
ple will show higher systemizing–empathizing scores than
the humanities. We were able to match 17 fields from Leslie,
Cimpian, and colleagues’ survey to fields represented among
the college majors investigated by Billington and colleagues.3

As in prior work, systemizing–empathizing scores were sig-
nificantly higher among the physical sciences (e.g., physics;
n = 8) than among the humanities (e.g., history; n = 9), t(15)
= 3.90, p = .001.

Also relevant to this measure’s validity, Leslie, Cimpian,
et al. [1] found that a field’s systemizing–empathizing score
was negatively correlated with the percentage of female PhDs
in that field, r = −0.53, p = .003, meaning that fields with
a stronger emphasis on systemizing relative to empathizing
had larger gaps favoring men. This pattern is consistent with
Baron-Cohen’s arguments (e.g., [21, 22]) that the distinction
between systemizing and empathizing can help explain gen-
der differences in career outcomes.

The systemizing vs. empathizing distinction builds on
older arguments about gender differences in preferences for
occupations that focus on things vs. people (e.g., [23, 24]).
Thus, the systemizing–empathizing measure constructed by
Leslie, Cimpian, and colleagues [1] may also serve as a mea-
sure of the extent to which scholarly work in a field focuses
on things vs. people. To assess empirically whether it is le-
gitimate to equate the systemizing–empathizing and things–
people dimensions, we recruited a new sample of 21 aca-
demics (graduate students, postdoctoral researchers, and fac-
ulty; 10 women, 10 men, 1 non-binary) and asked them to rate
the 30 fields surveyed by Leslie, Cimpian, and colleagues on
the things vs. people dimension. Approximately half of the
participants were asked, “To what extent does each discipline

3 Billington and colleagues [19] included the following fields among the
physical sciences: mathematics, physics, physical natural sciences, chem-
istry, computer science, geology, communications, engineering, manufac-
turing engineering, chemical engineering, mineral science, material sci-
ence, astrophysics, astronomy, and geophysics. Their humanities fields
were classics, languages, drama, education, law, architecture, Anglo-
Saxon, Norse and Celtic Studies, philosophy, oriental studies, English,
linguistics, theology, history, history and philosophy of science, and his-
tory of art and music. Eight fields from Leslie, Cimpian, and colleagues’
[1] survey were matched with the list of physical sciences above: astron-
omy, chemistry, communication studies, computer science, Earth sciences,
engineering, mathematics, and physics. Nine fields from Leslie, Cimpian,
and colleagues’ survey were matched with the list of humanities above: art
history, classics, education, English literature, history, linguistics, Middle
Eastern studies, philosophy, and Spanish.
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below involve thinking about non-human things vs. people?”
(1 = only non-human things to 7 = only people). For the other
participants, the order of mention of things vs. people was
reversed in the question, and the endpoints of the response
scale were flipped as well. Each participant rated all 30 fields.
We averaged ratings across participants to generate a single
things–people score per field, with higher scores indicating a
greater focus on things relative to people.

The correlation between the ratings of the 30 fields on the
things–people dimension (as assessed with the present sam-
ple) and the systemizing–empathizing dimension (as assessed
in Leslie, Cimpian, et al. [1]) was r = .83, p < .001. The
strength of this correlation, along with the conceptual simi-
larity of the two measures, suggests they likely tap the same
underlying construct (e.g., [27, 28]). Thus, we proceeded on
the assumption that the systemizing–empathizing measure is
also informative about the people–things dimension that prior
work has found to be highly predictive of gender differences
in career paths (e.g., [23–25]).

2-C. Selectivity

Background. Fields differ in their selectivity (e.g., [29]).
This variability may have a differential impact on male
and female academics’ career trajectories because, accord-
ing to current theories of sexual selection, human males have
evolved to be more variable than human females along a
range of physical and psychological dimensions (e.g., [30]).
That is, even if women and men may not differ on aver-
age with respect to a certain trait or ability (e.g., intelli-
gence, mathematical ability), differences in variability may
still exist, with men being overrepresented at both the high
and low ends of the relevant distributions (e.g., [31–35]; but
see [36, 37]). Thus, the more selective a field is, the more
likely it is to recruit individuals from the extreme high end
of the relevant ability distributions, and as a result the big-
ger the gender gaps favoring men should be—because, on
this argument, men are increasingly overrepresented relative
to women as one approaches the tails. A version of this ar-
gument has been invoked specifically as an explanation for
gender gaps among STEM faculty (e.g., [10, 30, 38]). For in-
stance, Stewart-Williams and Halsey [30] articulated this ex-
planation as follows: “To the extent that greater male variabil-
ity results in more males than females occupying the upper
echelons of ability, whether for specific aptitudes or general
cognitive ability, this may help to explain why more males
than females occupy the upper echelons of certain fields in
STEM” (p. 13).

Such in-principle arguments are common in the litera-

ture (see also the much-discussed speech by Summers [38]).
However, empirical evidence that greater male variability, if
present, actually translates into higher participation rates for
men in fields or positions that are particularly selective is
scarce. In fact, the few existing studies relevant to this issue
reveal a weak relationship in the unpredicted direction, with
men being under- rather than overrepresented in fields that
are more selective [1, 39, 40]. Thus, even though the claim
that selectivity exacerbates gender segregation (specifically,
male overrepresentation) is rooted in theory and prominent in
academic discourse on this topic, the evidence so far does not
support it.

Measurement. To assess the selectivity of a field, Leslie,
Cimpian, and colleagues [1] asked the following face-valid
question of their faculty respondents: “Roughly what percent-
age of applicants are accepted into your department’s PhD
program in a typical year?” Responses were elicited on a scale
from 1 to 10, with each number corresponding to a 10% incre-
ment. Two additional options allowed respondents to indicate
that they did not know the answer to this question and that
their department did not have a PhD program, respectively.
Responses to this item were reverse-scored (so that higher
numbers indicate greater selectivity) and then averaged across
the respondents in a field, resulting in a set of 30 selectiv-
ity scores (one per field). These field-averaged scores scores
exhibited strong reliability, ICC(2) = .82, meaning that the
scores distinguished reliably between fields.

Faculty reported PhD admission rates ranging from less
than 10% (e.g., in philosophy) to about 30% (e.g., in chem-
istry). This range, as well as the relative ordering of the
disciplines in terms of admission rates, is consistent with
publicly available admission statistics from top, research-
intensive U.S. universities—the category of universities that
Leslie, Cimpian, and colleagues [1] sampled with their sur-
vey.4 This comparison provides evidence for the validity of
Leslie, Cimpian, and colleagues’ [1] measure of selectivity.

However, admission rates are only one measure of a field’s
selectivity. As an alternative operationalization of this con-
struct, we used the average GRE scores of graduate appli-
cants to each field, which reflect the “quality” of each field’s
pool of applicants [41, 42]. GRE scores were available for
all fields except two: linguistics and music theory and com-
position. Leslie, Cimpian, and colleagues’ [1] measure of se-
lectivity was not significantly correlated with the GRE-based
measure, r = .13, p = .50, suggesting that these measures
are complementary rather than redundant. Analyses using this
GRE-based measure of selectivity as a robustness check repli-
cated the results reported here and in the main text.

4 For purposes of this validation exercise, we retrieved graduate admissions
statistics from three large, research-intensive universities that make these
statistics available to the public: University of California, Los Angeles
(UCLA); University of Texas at Austin (UT); and University of Michigan,
Ann Arbor (UM). These statistics indicated that the survey data are valid:
For example, the philosophy faculty surveyed by Leslie, Cimpian, and col-

leagues [1] reported admission rates lower than 10%, and—in fact—the
average admission rate for philosophy PhD programs across UCLA, UT,
and UM in Fall 2020 (the latest year available) was 9.1%. At the other
end of the spectrum, the chemistry faculty surveyed by Leslie, Cimpian,
and colleagues [1] reported admission rates close to 30%, and—consistent
with this number—the average admission rate for chemistry PhD programs
across UCLA, UT, and UM in Fall 2020 was 29.7%.

https://grad.ucla.edu/graduate-program-statistics/
https://gradschool.utexas.edu/admissions/where-to-begin/admissions-and-enrollment-statistics
https://tableau.dsc.umich.edu/t/UM-Public/views/RackhamDoctoralProgramStatistics/ProgramStatistics?:isGuestRedirectFromVizportal=y&:embed=y
https://tableau.dsc.umich.edu/t/UM-Public/views/RackhamDoctoralProgramStatistics/ProgramStatistics?:isGuestRedirectFromVizportal=y&:embed=y
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Table S5: Coefficients (and cluster–robust standard errors) from a conditional logistic regression modeling the probability that
an ORCID user enters a field (Model 1) and a logistic regression modeling the probability that an ORCID user exits a field
(Model 2) based on FAB, gender, STEM, and the three alternative explanations

Entering a Field Exiting a Field
Model 1 Model 2

FAB 0.118∗∗∗ (0.012) −0.500∗∗∗ (0.016)
Workload −0.839∗∗∗ (0.016) −0.563∗∗∗ (0.018)
Systemizing–Empathizing −0.349∗∗∗ (0.014) 0.826∗∗∗ (0.024)
Selectivity −0.903∗∗∗ (0.010) 0.222∗∗∗ (0.014)
STEM 1.608∗∗∗ (0.023) −0.263∗∗∗ (0.018)
Is Woman 0.005 (0.023)

Is Woman × FAB −0.961∗∗∗ (0.019) 0.584∗∗∗ (0.025)
Is Woman ×Workload 0.209∗∗∗ (0.029) 0.083∗∗ (0.029)
Is Woman × Systemizing–Empathizing 0.354∗∗∗ (0.023) −0.475∗∗∗ (0.038)
Is Woman × Selectivity 0.258∗∗∗ (0.016) −0.078∗∗ (0.023)
Is Woman × STEM −1.202∗∗∗ (0.035) 0.179∗∗∗ (0.034)

Constant −1.468∗∗∗ (0.013)

Note. The coefficients are in log-odds. All continuous predictors were scaled such that M = 0
and SD = 0.5. The categorical predictor Is Woman was coded such that 0 = man and 1 = woman.
Given that the models also include interactions between Is Woman and field characteristics, the
coefficients for these characteristics in the table above represent their relationships with the
dependent variables (e.g., entering a field) among men specifically. STEM was a categorical
predictor that was coded such that 0 = non-STEM and 1 = STEM. Conditional logit models
(such as Model 1) do not estimate an intercept or coefficients for variables that do not vary
between “events” (in this case, academics’ gender [Is Woman]). To assess multicollinearity,
which is a potential concern in models with multiple related predictors, we calculated variance
inflation factors (VIFs). A general rule of thumb is that VIFs ≤ 10 are acceptable [43], although
the impact of multicollinearity on estimation accuracy and Type II errors is considerably reduced
in large datasets such as ours [44]. Across models, all but three terms had VIFs < 10, and the other
three had VIFs that were just above 10. (The largest was 12.08.) Given the size of the ORCID
dataset, these values do not provide reason for concern. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001
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3 . Robustness to Sampling Bias in the ORCID Data

ORCID usage varies by field, and not all users opt to make
their information public. This raises the question of whether
the public ORCID dataset can indeed be used to produce un-
biased estimates of the relation between FABs and women’s
and men’s career trajectories.

In this section, we describe a set of numerical experiments
with synthetic data. In each of these experiments, we first bias
the synthetic data in ways that ORCID data might also be bi-
ased as a sample of world academics. We then test whether
these manipulations detract from our ability to produce unbi-
ased estimates of the “true” relationships between FABs and
gender among academics entering and exiting fields. In other
words, our goal is to map out the circumstances under which
our analyses are robust to potential biases in the ORCID sam-
ple, with particular attention to sampling biases by field and
gender. All synthetic data and the code used to analyze them
are available in the GitHub repository for this paper.

Our numerical experiments correspond to answering
whether we can successfully estimate the “true” relationships
(i.e., the relationships that are present in the population) with
a biased sample under the following conditions:

(1) What if, instead of observing field transitions among
the entire population of world academics, we observe
only a sample of transitions as large as our ORCID
dataset, distributed uniformly across all possible pairs
of fields?

(2) What if, due to differences in ORCID usage by field,
actual transition counts vary considerably, ranging
from 0% to 200% of the uniform values used in the
previous experiment?

(3) What if, in addition to heterogeneous transition counts
as in the previous experiment, there is also variable bias
in how popular ORCID adoption is by gender?

(4) What if, in addition to heterogeneous transition counts
and variable adoption of ORCID by gender as in the
previous experiment, the transitions that are observed
are weighted toward non-STEM such that STEM sam-
pling rates are generally lower while non-STEM sam-
pling rates are generally higher? (This experiment re-
flects a scenario comparable to the observations of
Dasler and colleagues in their 2017 study of ORCID
usage [45].)

Prior to providing more detail about the various methods
for data biasing, we introduce a simple method for creat-
ing synthetic data. Our ultimate goal in creating synthetic
data is to generate data of the same form that we analyze in
our regression analyses of field transitions5—that is, counts

5 As noted in the main text, we used the modeling strategy that simultane-

of women and men observed in transition from field i to
field j (Wij and Mij , respectively). To that end, let there
be 30 academic fields i = 1, 2, . . . , 30, each with a FAB
value xi and a fraction of women wi. Values of w and x are
drawn at random. In particular, xi ∼ UNIFORM[2, 5] and
wi ∼ UNIFORM[0.15, 0.85], IID. These ranges were meant
to reflect ranges observed in empirical data.

Our data generation method proceeds by first stochastically
choosing the total number of migrants from i to j of any gen-
der, and then stochastically choosing whether each migrant is
a man or a woman depending on a (possibly biased) function
of parameters. First, let the total number of people moving
from i to j be given by Nij , an integer drawn from a geomet-
ric distribution with mean N̄ . Let each of theseNij people be
a woman independently of all others with probability pij and
a man otherwise, according to the model

pij =
1

1 + exp[−β(xj − xi)− log wi

1−wi
− bij ]

, (1)

where bij is a gender bias term indicating uneven sampling
of women and men transitioning between field i and field j.

Note that when β = 0 and bij = 0, then pij = wi. In other
words, when there is no effect of the FAB variable x and no
gender bias in ORCID participation, the gender ratio among
migrants from i to j is exactly the gender balance in the field
of emigration wi. Having computed values for pij , we then
assign a simulated gender to each migrant, resulting in values
for Wij and Mij .

We now show that, under increasingly extreme biasing of
the counts M and W (see Numerical Experiments 1 through
4 below), it is nevertheless possible to recover β, which mea-
sures the effect of the FAB variable x on M and W . In other
words, we show that the model remains numerically consis-
tent under a range of possible biases in the ORCID data.

Let Numerical Experiment 1 be a simple test of consis-
tency with a dataset of size equal to the actual number of tran-
sitions observed in our ORCID dataset. In plain language, the
data for Numerical Experiment 1 shows no bias at all: We
have exactly the same number of transitions as the data under
study, drawn randomly from the population of interest (i.e.,
world academics). For true values of β, we ask whether we
are able to accurately estimate β using the regression anal-
ysis described in the “Taking into Account the FABs of the
Source and Destination Fields Simultaneously” section of the
main text.

ously takes into account the FABs of the fields that academics exit and
enter, which provides the most precise way of assessing how FABs relate
to gender differences in career trajectories. This strategy is also simpler,
requiring a single model rather than separate models for field entries and
exits.



12

Let Numerical Experiment 2 be similar to Numerical Ex-
periment 1, in that we target the same number of syntheti-
cally generated transitions, but instead of retaining the orig-
inal target counts Nij , we multiply them by a value chosen
uniformly at random between 0 and 2. In plain language,
Numerical Experiment 2 imagines that ORCID users are a
variable and noisy sample where transitions between any two
fields are observed at a rate chosen randomly between 0× and
2× the average rate.

Let Numerical Experiment 3 be identical to Numerical
Experiment 2 in terms of dataset size and heterogeneity in
between-field transition counts, but with a nonzero gender
bias b. In particular, we draw bij from a standard normal
distribution N(0, 1) IID for each flow i → j. For Numer-
ical Experiment 3, we independently repeat the process ten
times. In plain language, Numerical Experiment 3 imagines
that ORCID users are a variable and noisy sample where tran-
sitions are observed at a rate chosen randomly between 0×
and 2× the average, just like Numerical Experiment 3, but
with an additional constraint. This experiment assumes that
there is gender bias in sampling, such that one gender is more
likely to have public-facing ORCID profiles than the other,
with said biases drawn differently for each i→ j flow.

Finally, let Numerical Experiment 4 be identical to Nu-
merical Experiment 3, but with an additional layer of bias:
The data are sampled to reflect somewhat lower ORCID us-
age among those who are currently in, or have ever been in,
STEM fields [45]. Whereas in Numerical Experiment 3 tran-
sitions were observed at a rate between 0× and 2× the av-
erage that was independent of the fields i and j involved in
the i → j flow, here we let these rates depend on whether i
or j is a STEM field. Specifically, if i or j is a STEM field,
rates were chosen uniformly between 0× and 0.5×, while if
neither i nor j is a STEM field, rates were chosen uniformly
between 1.5× and 2×.

Across all four experiments, and for a variety of choices
of true β and repeatedly redrawing bij for ten technical repli-
cates of Numerical Experiments 3 and 4, we find that the es-
timated β values are a close match to the true β values (see
Figure S2). In other words, variable gender and field sam-
pling biases do not interfere with the regression’s ability to
accurately estimate the β coefficients of the FAB variable.

Still, there remains the possibility that there are varieties of
sampling bias that could affect our results, particularly when
this bias is correlated with FABs. For instance, if it is the case
that making a transition between fields has a differential rela-
tionship with men’s and women’s choices to make a public-
facing ORCID, which is further correlated with or magnified
by a field’s FAB, the regression models used in this study
would not be able to identify and account for this form of
bias. However, this bias scenario is unlikely. Under this sce-
nario, for instance, it would have to be the case that more
women than men who transition from physics (brilliance-
oriented FAB) to psychology (effort-oriented FAB) just so
happen to have a public-facing ORCID profile, while more

men than women who transition from psychology to physics
just so happen to have a public-facing ORCID profile. Al-
though we cannot rule out this type of “just so” sampling
bias, the probability of such systematic coincidences across
all 870 possible i→ j pairs of field transitions in this dataset
is small.
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Figure S2: Results of simulations for Numerical Experiments 1–4 (left to right, top to bottom). In all cases, the estimated
parameters are close to the true parameters.
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