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Regression models

To assess performance statistically, we performed a se-
ries of hierarchical Bayesian regression models, which esti-
mated effects for each age group overall while accounting for
participant-level effects. To analyze choices, we predicted
“old” responses with logistic regressions, whereas we pre-
dicted RTs with linear regressions. For each analysis, we
estimated intercept and coefficient terms for each age group
separately, but did not include any interaction terms in order
to simplify the models. Each Bayesian analysis resulted in
a posterior distribution for each term in the regression, for
each age group. To assess whether independent variables had
an effect, we determined whether the 95% highest posterior
density (HPD) of the posterior distribution of each regres-
sion slope contained zero. As a more continuous measure
we also determined the percentage of samples in each poste-
rior that were above (or below) zero, which should approach
100% for strong effects. To assess age differences, we cal-
culated η̂, a measure of overlap between two distributions
(Pastore & Calcagnì, 2019), as described in the Results sec-
tion of the main text. We fit each regression using RunDEMC
(https://github.com/compmem/RunDEMC), a Python library
implementing Bayesian differential evolution Markov chain
Monte Carlo techniques [DEMC; Turner, Sederberg, Brown,
& Steyvers (2013)].

Every regression parameter θ (both intercepts and coeffi-
cients), for every participant i in age group j, was modeled
with a normal prior distribution:

θi, j ∼ N(θµ j , θσ j ),

where θµ j , and θσ j are group-level hyper-parameters control-
ling the mean and standard deviation, respectively, of the
participant-level prior distributions. These hyper-parameters
were modeled with the following hyper-priors:

θµ j ∼ N(0, 1)

θσ j ∼ InvGamma(1, 1).

We fit each regression model with 2500 iterations of the
MCMC algorithm, the first 500 of which consisted of a burnin
period. This process occurred in 100 chains, and we included
the final 500 iterations of every chain in the analysis.

The first statistical model we performed assessed discrim-
ination between old and new pairs. To do so, we compared
hits (i.e., correct “old” responses) for repeated intact pairs to

false alarms (i.e., incorrect “old” responses) to both New and
Recombined pairs, separately and averaged across strength
conditions, by applying a regression model with a logistic
linking function. Prior work has demonstrated that this re-
gression approach is equivalent to the classical d′ index of
signal detection theory based on the cumulative distribution
function of the Gaussian distribution, although the logistic
linking function may cause the values to be scaled differently
(DeCarlo, 1998).

The intercept of this analysis was lower in older
adults, 95%HPDolder[1.22, 1.53], compared to young adults,
95%HPDyoung[1.89, 2.13]. This difference was credible,
η̂ < .001, indicating fewer hits to intact pairs in older
adults. The posterior distributions were credibly above
zero for the drecombined values for both young adults,
95%HPDyoung[3.25, 3.72], 100% above zero, and older adults,
95%HPDolder[1.64, 2.13], 100% above zero, indicating dis-
crimination between intact and recombined pairs. How-
ever, older adults had lower drecombined values compared to
young adults, η̂ < .001, which supports prior work sug-
gesting that older adults are not as able as young adults
to remember associations between items (Naveh-Benjamin,
2000). This analysis also assessed young and older adults’
ability to discriminate between New and repeated Intact
pairs. dnew values were reliably above zero for young adults,
95%HPDyoung[5.79, 6.48], 100% above zero, as well as older
adults, 95%HPDolder[4.60, 5.52], 100% above zero. Older
adults had lower dnew values, η̂ = .011, indicating that older
adults were less able to discriminate between pairs with new
items and repeated intact pairs.

We also examined whether RTs (in seconds), which were
added to 1 and log-transformed, differed between New or
Recombined pairs in comparison to repeated Intact pairs
using a separate hierarchical Bayesian multiple regression
model. The intercept of this analysis was higher for older
adults, 95%HPDolder[0.79, 0.90], compared to young adults,
95%HPDyoung[0.64, 0.72], and this difference was credible,
η̂ = .001, indicating slower responses overall in older
adults. In addition, RTs were generally faster in New
compared to repeated Intact pairs for both young adults,
95%HPDyoung[−0.10,−0.03], >99.9% below zero, and older
adults, 95%HPDolder[−0.11, .01], 95.7% below zero, but we
found little evidence that this effect was different between age
groups, η̂ = .68. In addition, RTs were slower for recombined
pairs compared to repeated intact pairs, in both young adults,
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95%HPDyoung[0.05, 0.12], 100% above zero, and older adults,
95%HPDolder[0.01, 0.12], 98.9% above zero, with no differ-
ence between age groups (η̂ = .67).

We also analyzed factors impacting false alarms to Re-
combined pairs and hits to Intact pairs separately. To assess
false alarms to Recombined pairs, we conducted a hierarchical
Bayesian logistic regression predicting false alarms depending
on the categorical “strength” condition (i.e., whether the items
had been seen in their original pairings once, twice, or three
times prior to being recombined). The intercept of this analy-
sis was higher for older adults (95%HPDolder[−0.65,−.20])
compared to young adults (95%HPDyoung[−1.31,−0.95]),
η̂ = .001, indicating that older adults were generally
more likely to false alarm to recombined pairs. Greater
strength was predictive of lower false alarms in young adults,
95%HPDyoung[−0.59,−0.28], 100% below zero, but less so in
older adults, 95%HPDolder[−0.30, 0.06], 91.0% below zero.
The difference between age groups was not very robust,
η̂ = .068, although the trend is consistent with prior work
(Gallo, Sullivan, Daffner, Schacter, & Budson, 2004; Light,
Patterson, Chung, & Healy, 2004) suggesting that young
adults, but not older adults, may be able to form stronger
associative memory for pairs that are repeated, and as a result
be better able to reject subsequently recombined pairs.

We also examined whether the strength condition affected
RTs to Recombined pairs. The intercept of this regres-
sion was higher for older adults (95%HPDolder[0.86, 0.98])
compared to young adults (95%HPDyoung[0.74, 0.83]), η̂ =

.007, indicating overall slower RTs to Recombined pairs
in older adults. We did not find very strong evidence
that higher strengths predicted faster RTs in young adults,
95%HPDyoung[−0.06, 0.01], 89.2% below zero, or in older
adults, 95%HPDolder[−0.07, 0.05], 65.7% below zero, and
the difference between distributions was not robust, η̂ = .719.

We also analyzed hits to Intact pairs. Specifically, we
assessed repetition effects, as well as potential interference
effects on memory for Intact pairs following the presentation
of Recombined pairs. To do so, we coded whether a pair
had previously been presented once (i.e., Intact 1 pairs) or
twice (i.e., Intact 2 pairs). We expected that hit rates would
be higher in both age groups for pairs that had already been
presented twice (Light, Patterson, Chung, & Healy, 2004)). In
addition, we coded whether intact pairs had been recombined
on the immediately preceding presentation of the items (i.e.,
Weak Intact 1 and Medium Intact 2 pairs). We hypothesized
that these pairs may be more difficult to remember due to
interference from the recombined pairs.

We applied another hierarchical Bayesian regression to
investigate these issues. The intercept of this analysis was
lower in older adults (95%HPDolder[0.93, 1.35]) compared
to young adults (95%HPDyoung[1.74, 2.10]), η̂ < .001, in-
dicating overall reduced accuracy for Intact pairs. In ad-
dition, we found strong evidence of higher hit rates fol-

lowing two previous presentations in both young adults,
95%HPDyoung[1.05, 1.43], 100% above zero, and older adults,
95%HPDolder[0.83, 1.30], 100% above zero, with no evidence
of age differences, η̂ = .424. We also found evidence of lower
hit rates following Recombined pairs in both age groups:
young adults 95%HPDyoung[−0.93,−0.56], 100% below zero,
and older adults 95%HPDolder[−0.63,−0.19], >99.9% below
zero. Although this likely interference effect tended to be
somewhat stronger in young adults, there was not strong
evidence of a difference between distributions, η̂ = .099.

We also examined whether repetition and interference
affected RTs to intact pairs. The intercept of this
analysis, 95%HPDyoung[0.65, 0.73] for young adults and
95%HPDolder[0.81, 0.92] for older adults, indicated slower
RTs to Intact pairs in older adults, η̂ < .001. In addition,
we found evidence of faster RTs with an additional repeti-
tion in young adults, 95%HPDyoung[−0.11,−0.04], >99.9%
below zero, and older adults, 95%HPDolder[−0.12,−0.01],
98.4% below zero, with no difference between age groups,
η̂ = .749. We also found evidence of slower RTs following
Recombined pairs in young adults, 95%HPDyoung[0.05, 0.12],
100% above zero. We found less evidence of this effect in
older adults, 95%HPDolder[−0.02, 0.09], 88.7% above zero,
although we did not find strong evidence of a difference be-
tween age groups, η̂ = .262.

Computational model description

We begin by describing the decision-making component
of the model. To simulate choices and RTs, we pass memory
strengths estimated on every trial to a Wiener first passage of
time model (Navarro & Fuss, 2009; Stone, 1960), a type of
sequential sampling model (Ratcliff & McKoon, 2008). In
this model, evidence noisily accumulates across time until
it crosses one of two response thresholds: one for an “old”
response, estimated by the free parameter a, or one for a “new”
response, which was set at zero. The starting point of this evi-
dence accumulation, which could be biased toward the “new”
or “old” responses, was also estimated by a free parameter,
w. A w value of 0.5 corresponds to an unbiased starting point
directly between the two response options, whereas a value
less than 0.5 biases the decision toward “new,” and a value
greater than 0.5 biases the decision toward “old.” Evidence
accumulates noisily, driven by a “drift rate,” representing the
quality of evidence for one or the other decision, which is
determined by the difference between the memory strength
supporting an “old” response and the strength supporting a
“new” response. Given the drift rate, as well as the decision
threshold a and bias w, we simulated the response and de-
cision time of each trial. Note that this decision time was
added to a non-decision time, t0, which estimates the duration
of motor and perceptual processes unrelated to the decision
itself.

We will now describe the memory portion of the model,
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which determines the memory strengths that drive the
decision-making process for every trial. Each object presented
in the CAR task is represented in the model as a vector of
features, which is orthogonal to the representation of every
other object. Specifically, each object is represented distinctly
as a vector f with maximal activation of one unique feature
(i.e. a value of 1.0), and zero activation of all other features.
Temporal context is instantiated as a separate vector t, the
features of which become activated as items are presented, as
described below (see Fig. S1). The context vector t repre-
sents the same features as the items, such that the context is
primarily composed of item features, and changes as different
items are presented. The exception to this is that to initialize
context, we activate an additional pre-experimental context
feature prior to presenting any experimental items to context.
This feature represents pre-experiment experiences, such as
arriving at the laboratory and the participant’s mood before
beginning the task. Objects are associated with the state of
temporal context at the time when they are presented by means
of prediction-error learning; these associations are stored in
matrix M.

Familiarity is estimated in the model by first determining
the activation of the two items within the current state of tem-
poral context, t i−1, which was last updated for the previous
trial:

sro = ( fA + fB) · t i−1.

The · symbol represents a dot product between the two item
representations ( fA + fB) and current context (t i−1); this opera-
tion simply reads out the activation of the two item features as
a single value, sro. This readout of activation is then converted
to a strength of familiarity via the following exponential func-
tion:

s f = λ(1 − e
−sro
τ ).

This exponential function creates a non-linear mapping from
the readout signal onto a scale from 0 to a maximum value of
free parameter λ (see Fig. S2). As the readout strength grows
larger, the resulting value approaches λ, and the steepness of
this function is governed by the free parameter τ, such that as
τ approaches zero, the function becomes step-like, such that
any activation of the item features will result in near-maximal
familiarity strength, whereas with higher values of tau the
function is more shallow. As the activation of items in context
decays as new items are presented (as in Fig. S1), τ helps
modulate how quickly familiarity fades across time. By con-
trast, λ helps control the maximum or asymptotic magnitude
of familiarity strength. Note that items in New pairs have no
activation in context, and therefore s f = 0, regardless of the
values of λ and τ.

In addition to this familiarity signal, the model also instan-
tiates associative memory by reinstating the temporal contexts
in which each item was presented, and calculating the match
(or overlap) between the reinstated contexts, as well as the
mismatch (or difference) between them. New items have not

been associated with any contexts and result in no match or
mismatch. Items presented previously only in the same pair
will reinstate identical contexts, producing a strong match
signal and no mismatch signal. Items presented in pairs seen
in similar but not identical contexts (i.e., close together in
the list of pairs but not in the same pair) would be expected
to produce a somewhat strong match signal and a somewhat
weak mismatch signal, whereas items presented in pairs from
far apart in the list would be expected to produce a weak
match signal and strong mismatch signal.

To reinstate the contexts associated with each item in a
pair, we simply take a dot product between each of the items,
fA and fB, and the associative matrix M:

t
′

A = fA · M

t
′

B = fB · M.

This results in two vectors representing the contexts previ-
ously associated with each item. To calculate the match be-
tween

t
′

A

and t
′

B, we take the dot product between these vectors:

sm = t
′

A · t
′

B,

which results in a single number corresponding to the overlap
between the context vectors (sm).

Similarly, we calculate the mismatch between the two rein-
stated context vectors by taking the difference between them,
and then taking the dot product of this mismatch signal with
itself (which is equivalent to taking the sum of squared dis-
tance):

smm = γ
√

(t′A − t′B) · (t′A − t′B).

The square root of the mismatch strength (smm) is taken to
counteract the fact that the dot product takes every retrieved
context difference into account twice, and the free parameter γ
allows for individual differences in sensitivity to the mismatch
of retrieved contexts.

Once these memory strengths are calculated, they are com-
bined into a single value: s = s f + sm − smm − ν, where
ν estimates the novelty-driven baseline strength for “new”
responses. This s value determines the balance of evidence
for “new” and “old” responses and is used as the drift rate
that drives evidence accumulation in the decision-making por-
tion of the model to simulate choices and RTs, as described
above. Once the memory strengths have been calculated, new
learning is allowed to occur. Learning is based on prediction
error, where positive prediction error reflects the presence
of the unexpected, whereas negative prediction error reflects
absence of the expected. For each trial, the model predicts
what items are expected to be presented based on the current
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Figure S1. Activation of context features in context t on trial i as pairs of items are presented in the CAR task. The feature
activations corresponding to the presented items are highlighted with dashed rectangles. Contextual features correspond to
different items, except for the pre-experimental context unit, labeled as “Pre-exp.”

Figure S2. The transformation from the summed activation of items in context (sro) to familiarity strength (s f ). The transforma-
tion is controlled by parameters controlling the maximum s f value (λ), and the steepness of the function (τ).

state of context, which has not been updated with the currently
presented items:

f
′

= M · t i−1

This results in an array of item activation values, which we
constrained to be between 0 and 1, since the activation of
item representations are either 0 or 1. We then compare the
presented items with the predicted item activations by taking
the differences between them:

f
′

e = f − f
′

where f = fA + fB. This results in a vector, in which positive
values correspond to positive prediction errors and negative
values correspond to negative prediction errors. We then
separately bind positive prediction errors ( f ′e+) and negative
prediction errors ( f ′e− ) to the current state of temporal context
with outer products that are added to the matrix M:

Mi = Mi−1 + α( f
′

e+
⊗

t i−1 + κ f
′

e−
⊗

t i−1).

In this equation, α controls the magnitude of associative learn-
ing, and is estimated for each participant as a free parameter.
Note that due to this equation, items that are new or have not
been presented for some time will be surprising, and as a re-
sult they will be strongly bound to the current state of context.
At the same time, items that the model incorrectly expected
to be presented based on current context, are unbound from
context by weakening those associations. This unbinding
or unlearning is scaled by an additional parameter, κ. If the
parameter κ is equal to 1, positive and negative prediction
error learning are symmetric; if κ is zero, no unlearning takes
place, and if κ is greater than 1, more unlearning takes place
than learning. This prediction error mechanism is in contrast
to most implementations of TCM, in which once-presented
items are simply bound to the current state of context via a
Hebbian association (e.g., Mi = Mi−1 +α(( fA + fB)

⊗
t i−1)).

In the final stage of processing for each trial, temporal
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context is updated according to the following equation:

t i = |(1 − rρ)t i−1 + rρt IN |.

The left side of this equation results in decay of the features in
the current context, and the right side updates context with the
new input, t IN, as described below. Values of ρ close to zero
would result in very little change of context across trials, such
that new input would have relatively little effect on context,
whereas when ρ is closer to 1, new items replace items already
in context at a faster rate. The |.| symbols indicate that the
updated context vector is normalized to unit length. The pur-
pose of this normalization is so that the magnitude of overall
activation within context does not vary greatly between trials
as more features become activated.

The value r is a sigmoidal novelty signal, described be-
low, that ranges between 0 and 1. As items are presented
multiple times in this experiment, we assume that repeated
items are not encoded into context as strongly as new items,
and that context does not change as rapidly when an item is
repeated compared to when it is new. This mechanism has
been previously applied to TCM in situations with repeated
item features (Siefke, Smith, & Sederberg, 2019). Following
Siefke et al. (2019), we first calculate a term r from an ex-
ponential function that estimates novelty due to the stimulus
readout from context for each trial:

r = e−sro .

For new items, sro = 0, and r = 1, such that the amount of
context decay, and the amount of new input into context, is
maximized, whereas repeated items will likely be activated
to some extent in context, resulting in a smaller r value, and
therefore less context decay and less input into context.

The input to context in our TCM variant is simply the two
presented items, normalized to unit length:

t IN = | fA + fB|.

In previous versions of TCM, t IN has included past context
states reinstated from the items (i.e., t′A and t′B), scaled by
a parameter, but for simplicity we limit the new input to the
presented items themselves.

Computational model-fitting procedures

We fit the model with DEMC, employing 100 independent
chains, each of which included 2500 samples. The first 500
of these samples were used as a burn-in period, and the last
500 iterations of all chains were included in analyses of the
posterior distributions. We fit the hierarchical model with
Gibbs sampling to update the hyper-priors and differential
evolution Markov chain Monte Carlo to perform inference on
the subject level (Turner & Van Zandt, 2014).

An important aspect of Bayesian model-fitting approaches
is the choice of prior distributions, which add some degree of

constraint to the values the parameter can take on. We applied
a hierarchical model-fitting procedure, in which each param-
eter, except for t0, was fit hierarchically. This allowed us to
estimate parameter values for each age group while properly
accounting for variability between participants. Specifically,
the prior distributions for each participant i were controlled
by hyper-parameters specific to each age group j.

logit(ρi, j) ∼ N(ρµ j , ρσ j )

log(λi, j) ∼ N(λµ j , λσ j )

log(αi, j) ∼ N(αµ j , ασ j )

log(κi, j) ∼ N(κµ j , κσ j )

log(γi, j) ∼ N(γµ j , γσ j )

log(τi, j) ∼ N(τµ j , τσ j )

log(νi, j) ∼ N(νµ j , νσ j )

log(ai, j) ∼ N(aµ j , aσ j )

logit(wi, j) ∼ N(wµ j ,wσ j )

logit(
t0i, j

minRTi
) ∼ N(µ = 0, σ = 1.4)

The mean and standard deviation parameters constraining
these parameters were in turn constrained by the following
hyper-priors:

ρµ j ∼ N(0, 1)

ρσ j ∼ InvGamma(1, 1)

λµ j ∼ N(1, 1)

λσ j ∼ InvGamma(1, 1)

αµ j ∼ N(1, 1)

ασ j ∼ InvGamma(1, 1)

κµ j ∼ N(1, 1)

κσ j ∼ InvGamma(1, 1))

γµ j ∼ N(1, 1)

γσ j ∼ InvGamma(1, 1)

τµ j ∼ N(1, 1)

τσ j ∼ InvGamma(1, 1)

νµ j ∼ N(1, 1)

νσ j ∼ InvGamma(1, 1)

aµ j ∼ N(1, 1)

aσ j ∼ InvGamma(1, 1)

wµ j ∼ N(0, 1)

wσ j ∼ InvGamma(1, 1)
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Joint posterior distributions of hyper-parameters

Given that the model contains a relatively high number
of free parameters (10), parameter identifiability may be a
concern if there could be multiple sets of parameter values
that generate the same behavior (Farrell & Lewandowsky,
2018). However, the number of degrees of freedom were
much higher than the number of parameters due to fitting trial-
level choices and RTs. In addition, we found that the posterior
distributions of parameter values were highly constrained
relative to the priors, without strong correlations between
parameters that could indicate a problem with identifiability

(the relationships between each combination of age group-
level hyperparameters are shown in Figure S3). Therefore,
we have every reason to believe that our model parameters
are identifiable.

Fit of alternative models

The data simulated from the alternative models with κ set
to zero or 1 are presented along with the observed data in
Figure S4.
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Figure S3. The joint posterior distributions of mean hyper-parameter distributions. Each plot shows the density of pairwise
combinations of hyper-parameter values for young adults (dark green) and older adults (light green).
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Figure S4. Predictions of the alternative models. Mean observed CAR task performance values are plotted by bars, and mean
alternative model-predicted values are presented as triangles and dots. Error bars represent standard errors.
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