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1

To introduce the mathematical details of the estimating methods we consider in this paper,

it is useful to introduce some additional notation definitions. First, it is useful to consider

an alternative generalized parametrisation for the variance component parameters of the

LMM of Equations (??), namely ζ = θ/σ2
ε such that we can separate the effect of σ2

ε and ζ

in V ar(yi) = (σ2
εZiΣ(ζ)ZT

i + σ2
εI) = σ2

εΩ(ζ). Second, it is convenient to rewrite the model

to work with random effects centered around zero and with diagonal constant variance. It

amounts at considering the model

yi = Xiγ + ZiUb(ζ)b̃i + εi, (S1)

with b̃i ∼ N (0, σ2
εI) and Ub(ζ) such that bi = Ub(ζ)b̃i and Ub(ζ)Ub(ζ)T = Ω(ζ).

Gaussian ML Estimator

The ML estimator of γ under the Gaussian assumption maximizes the log-likelihood. For

given γ, σ2
ε and ζ, the best linear unbiased predictor (BLUP) of the random effects b̃i are

computed as b̃i = σ2
εUb(ζ)TZT Ω(γ)−1(y −Xγ). It can be shown that, given σ2

ε and ζ,

(γ̂, ˆ̃b) are the solution of the Henderson equations (?)

 XTX XTZUb(ζ)

Ub(ζ)TZTX Ub(ζ)TZTZUb(ζ) + σ2
εI


 γ

b̃

 =

 XT y

UT
b Z

T y

 . (S2)

1 From “Supplemental Material for Parametric and semi-parametric bootstrap-based confidence intervals
for robust linear mixed models [Equations and Figures]”, by Mason, F., Cantoni, E., & Ghisletta, P.
(2021). PsychOpen GOLD. https://doi.org/10.23668/psycharchives.5302. CC-BY 4.0.

https://doi.org/10.23668/psycharchives.5302
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General Classes of Robust Estimators

In this Section we introduce some general classes of robust estimators, upon which the

robust estimators for LMM are built. To do so, we consider a generic setting with

independent random variables u1, . . . ,un, with u = (uT
1 , . . . ,u

T
n )T , and where the interest

is in the estimation of a parameter β.

An M-estimator for β is defined as the solution of a set of estimating equations

n∑
i=1

Ψ(ui; β) = 0, (S3)

under mild regularity conditions on Ψ, see ?. If Ψ(t) is the derivative of a function ρ(t),

solving the above equations corresponds to minimizing ∑n
i=1 ρ(ui; β) with respect to β.

For a well-behaved function ρ1, an M-scale estimator s(u) is defined by the value of s

satisfying
1
n

n∑
i=1

ρ1

(
ui

s

)
= d, (S4)

where d = Eχ2
K

(ρ1(V )) with V ∼ χ2
K , a chi-square distribution with K degrees of freedom.

Given an M-scale estimator s, that is an estimator satisfying (S4), an S-estimator of β is

defined as the minimizer of det(V ar(u)) or equivalently as

argminβ s(u) = argminβ s(u1, . . . ,un). (S5)

On the other hand, given an M-scale estimator s as per (S4), a τ estimator is defined as

argminβ τ
2(u) = argminβ s

2(u) 1
n

n∑
i=1

ρ2

(
ui

s(u)

)
, (S6)

where ρ2 is a well-behaved function.

The ρ1 and ρ2 functions above are usually chosen from a set of available alternatives one

can find in the literature. All of these functions depends on one or more tuning constants

that need to be set. Guidelines, based on efficiency and or robustness arguments, are
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usually provided. It is common to denote ψk(u) = ∂ρk(u)
∂u

(k = 1, 2), the derivative of ρk.

Amongst the most popular ρ functions, we can cite the Huber and Tukey’s function.

We also introduce the definition of the Mahalanobis distance between two vectors u and c

(a measure of center for u) of dimension g:

m(u, c,Θ) = (u − c)T Θ−1(u − c). (S7)

where Θ (a measure of dispersion for u) is an g × g matrix.

The robustness of estimators can be characterized with respect to bounded influence and

high breakdown point. The first concept is quantified by the influence function (?), which

measures the maximal bias produced by an estimator under contamination. Bounded

influence estimators are those for which this bias is limited (bounded). The second concept

represents the proportion of contamination that an estimator can tolerate, that is without

producing arbitrarily large results. If this proportion is large, the estimator is called a

high-breakdown estimator.

For appropriate choices of the Ψ and ρ functions involved in their definitions, the above

discussed estimators are robust in the sense that they have a bounded influence function.

In addition, the S-estimators and the τ estimators guarantee high-breakdown, but at the

price of reduced efficiency.

Robust Estimators for Linear Regression

Consider a linear model

yi = xT
i γ + εi, (S8)

for independent observations yi and where xi are a set of covariates. The error term εi is

assumed to be normally distributed around 0 and with constant variance σ2. The general

definitions of the robust estimators in the previous section are applied to ui = (yi − xT
i γ)

to obtain M, S and τ estimators for the linear model.

In the specific context of the linear mixed model, the MM-estimator is a refinement of the
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above estimators to ensure both high efficiency and high-breakdown (?). It is the sequence

of an M-scale estimator followed by an M-estimator of location. Another group of robust

estimators for the linear model setting replaces the least squares criterion by a different

one, which is less sensitive to outliers. For instance, The L1 estimator minimizes the

absolute value of residuals rather than squared residuals. The least median of squares

(LMS) and the trimmed least squares (LTS) estimators minimize a scale measure of

residuals that is insensitive to large values: the median of the absolute residuals for the

former, the trimmed least squares for the latter, see ?. Chapters 4 and 5 of ? are devoted

to robust estimators and provide a detailed account of the approaches introduced above.

The concept of M, MM, S, and τ estimators can be extended beyond the linear model

setting, see next Section. The other estimators discussed above are specific to the linear

model and cannot be easily adapted to other settings.

? S-Estimator

? developed the S-estimator for the LMM setting in (S1) by applying its general definition

to Mahalanobis distances mi = m(yi, Xiγ,Ω(ζ)). More precisely, given an M-scale

estimator s satisfying
1
n

n∑
i=1

ρ1


√
m(yi, Xiγ,Ω(ζ))

s

 = d, (S9)

their proposal solves

(γ̂, ζ̂) = argminγ,ζ s
(√

m(y1, X1γ,Ω(ζ)), . . . ,
√
m(yn, Xnγ,Ω(ζ))

)
, (S10)

and then compute

σ̂2
ε =

s2
(√

m(y1, X1γ̂,Ω(ζ̂)), . . . ,
√
m(yn, Xnγ̂,Ω(ζ̂))

)
s2

0
, (S11)

with s0 satisfying E(ρ1(V/s0)) = d.

The ? ρ function is used by ?. It can be seen as a translated Tukey’s function.
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For diagnostic purposes, after fitting the model, one can look at the Mahalanobis distances

mi or at weights (between 0 and 1) for each subject i, defined as

w(mi) =
∂ρ1(mi)

∂mi

mi

= ψ1(mi)
mi

. (S12)

These weights appear in the estimating equations, and therefore in the final S-estimator.

Large Mahalanobis distances will indicate potential outliers and will translate into weights

being small, as described by Equation (S12).

? Composite τ-Estimators

The proposal of ? builds on the philosophy of composite estimators by defining a

τ -estimator for pairs of observations of the same subject. It also builds on ? in that it

defines the estimator through Mahalanobis distances.

Let us introduce the composite τ estimator in more details. We first define the

(j, l)-pairwise squared Mahalanobis distance for subject i as

mjl
i = mjl

i (γ, ζ) = m(yjl
i , (Xiγ)jl,Ωjl(ζ)), (S13)

where yjl
i = (yij, yil)T , (Xiγ)jl is the bivariate vector containing the j-th and l-th elements

of Xiγ, and

Ωjl(ζ) =

 ωjj(ζ) ωjlζ)

ωlj(ζ) ωll(ζ)

 , (S14)

with ωrs(ζ) being the (r, s) element of the matrix Ω(ζ).

Following the idea of working with Mahalanobis distances, and given an M-scale estimator

sjl(γ, ζ) = s
(√

m1(yjl
1 , (Xiγ)jl,Ωjl(ζ)), . . . ,

√
mn(yjl

n , (Xiγ)jl,Ωjl(ζ))
)

for each (j, l) pair

and a function ρ2, the final composite τ criterion is defined by summing over all the

possible pairs and subjects
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T (γ, ζ) =
J−1∑
j=1

J∑
l=j+1

τjl(γ, ζ) =
J−1∑
J=1

J∑
l=j+1

sjl(γ, ζ) 1
n

n∑
i=1

ρ2


√
mjl

i (γ, ζ)
sjl

 , (S15)

where J = Ji is the number of observations per subject (same for all i). The composite

τ -estimator of (γ, ζ) is then defined as the minimizer of T (γ, ζ) and σ2
ε is estimated by

solving

2
J(J − 1)n

n∑
i=1

J−1∑
j=1

J∑
l=j+1

ρ1

(yjl
i − (Xiγ̂)jl)T Ωjl(ζ̂)−1(yjl

i − (Xiγ̂)jl)
σ̂2

εs0

 = d, (S16)

with s0 satisfying E(ρ1(V/s0)) = d.

The fitting procedure includes the definition of weights that can be used for diagnostic

purposes. They can either be defined based on ρ1 or ρ2, for each subject i and each couple

of observation (j, l), as follow

W jl
k,i = Wk

(
mjl

i (γ, ζ)
s2

jl(γ, ζ)

)
, (S17)

where Wk(x) = ∂ρk(
√

x)
∂x

and k = 1, 2. Therefore there are as many weights as there are

couple of observations.

? suggest to choose ρ1 and ρ2 in the family of functions introduced by ?.

? DAStau Estimator

The proposal of ? modifies the ML estimation Equations (S2) for (γ, b̃) (given σε and ζ)

by introducing weight matrices We and Wb to downweight both types of outliers :

 XTWeX XTWeZUb

UT
b Z

TWeX UT
b Z

TWeZUb + σ2
εΛbWb


 γ

b̃

 =

 XTWey

UT
b Z

TWey

 , (S18)

where Λb = diag(λe/λb,j)J=1,...,q is a diagonal matrix containing different scaling factors (for

more details see e.g. ?). The diagonal matrix We = diag(we(ε11/σε), . . . , we(εnJ/σε)),
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where εi = εi(γ, b̃) = yi −Xiγ − ZiUb(ζ)b̃i, contains observation weights defined by

we(e) =


ψe(e)/e if e ̸= 0

ψ′
e(0) if e = 0,

(S19)

and the diagonal matrix Wb = diag(wb(m1), . . . , wb(mJ)) contains weights at the subject

level defined by

wb(m) =


ψb(

√
m)/

√
m if m ̸= 0

ψ′
b(0) if m = 0,

(S20)

where mi = b̃
T

i b̃i are the Mahalanobis distances for b̃i.

The inspection of the weights in We and Wb give useful information about the observation

and the subjects, respectively, that deviate from the bulk of the data.

Two additional sets of estimating equations are used to obtain estimates of σε and ζ. The

estimate of the scale parameter σε is obtained following ? as the solution of

n∑
i=1

Ji∑
j=1

τ 2
e,ij w

(σ)
e

(
ε̂ij

τe,ijσε

)( ε̂ij

τe,ijσε

)2

− κ(σ)
e

 = 0, (S21)

where ε̂i = εi(γ̂, ˆ̃b) and τij are such that

E

w(σ)
e

(
ε̂ij

τijσε

)(
ε̂ij

τijσε

)2

− κ(σ)
e w(σ)

e

(
ε̂ij

τijσε

) = 0, (S22)

with

κ(σ)
e =

E
[
w(σ)

e (ε) ε2
]

E
[
w

(σ)
e (ε)

] (S23)

and where w(σ)
e (x) = (ψ(σ)(x)/x)2 and w(σ)

e (0) = ψ(σ)′(0).

The estimation of the variance-covariance parameters ζ distinguishes between the case

where Ub(ζ) is diagonal versus the case where Ub(ζ) is block-diagonal. In the first case,

estimating ζ is essentially a scale estimation problem on b̃ and the estimating equations are
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the same as Equations (S21)-(S23) above, with ε̂ij replaced by ˆ̃bij. For the other case, the

estimating equations have to be adapted to take care of the block structure, impacting the

mathematical expressions, but keeping the underlying philosophy of the approach.

The computation of the consistency terms κ(σ)
e in Equation (S21) and its counterpart for

the estimation of ζ is difficult for complicated models. The authors provide two

alternatives: an accurate but slow numerical quadrature (DAStau), or a faster direct

approximation, which is less accurate (DASvar). The last option is the only available for

complex models with correlated random effects with more than one correlation term.

The smoothed Huber’s ψ function is the proposal suggested within this framework.

Technicalities of the Robust LGM

Here, we present the M-estimator proposed by ?. Let the sample y1, ...,yn with dimension

J from a multivariate distribution with mean µ and covariance matrix Σ. The first step is

to estimate robustly these two quantities. The M-estimator of µ is defined as:

µ̂ =
∑n

i=1 wi1yi∑n
i=1 wi1

, (S24)

and Σ as:

Σ̂ = 1
n

n∑
i=1

wi2(yi − µ̂)(yi − µ̂)′ (S25)

where wi1 = w1(di) and wi2 = w2(di) are Huber weights defined by:

w1(di) =


1 if di ≤ 1

κ/di if di > κ
and w2(di) = w1

2/τ, (S26)

where di is the Mahalanobis distance defined as:

d2
i = (yi − µ̂)′Σ̂(yi − µ̂). (S27)
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Let define q = (χ2
J)−1(1 − φ), the (1-φ)-quantile of the χ2

J distribution, then κ = √
q and

τ =
(
J · P(χ2

J+2 ≤ q) + q · φ
)
/J, (S28)

where P(χ2
J+2 ≤ q) is the probability that a χ2

J+2 distributed random variable is smaller or

equal to q.

The estimates µ̂ and Σ̂ are computed iteratively, because wi1 and wi2 depend on µ and Σ.

In a second step the LGM is estimated by ML applied on these robust estimates µ̂ and Σ̂.

The Tolerance Data Application

The parameter values used in the simulation study are inspired by the Tolerance dataset,

often used for didactic purposes (?), and originally discussed in ?. During five years, once

per year (from time = 0 to time = 4), a sample of N = 16 children (identified by the

variable id, with initial age of 11 years) scored their engagement in nine deviant behaviors,

each rated on a four-point scale (from 1 to 4). The original authors analyzed the mean

behavior score across the nine scales as continuous, and called it tolerance. For didactic

purposes, ? created a dichotomous variable group, based on the median-split of the

exposure variable, which is the mean of the proportions of the respondents’ self-reported

close friends involved in the nine deviant behaviors. The low and high exposure children

had a group value of 0 and 1, respectively. The data set has no missing values and is

balanced, with each subject i contributing exactly five scores (Ji = J = 5).

To depict the group difference we may resort to grouped boxplots, typically presented in

the RMANOVA framework. Figure S1 shows how the two groups differ at each time point.

Subjects in the group = 0 and group = 1 (8 observations in each group) are presented in

light grey/empty circles and solid black/filled circles, respectively. We can clearly see that,

across time, the latter group has greater tolerance scores than the former. Another

advantage of this representation is the focus on possible outliers, such as a tolerance

value of nearly 2.0 in group = 0 at time = 0, or 3.5 in group = 1 at time = 3.
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1

Figure S1
The Tolerance data represented by grouped boxplots. The tolerance to deviant behavior
(tolerance) as a function of waves of assessment (time) and group: 0 in grey/empty
circles and 1 in black/filled dots.

Another representation of subject-specific repeated assessments is presented in Figure S2.

Here, we see each subject’s measurements (empty circles for group = 0, filled dots for

group = 1) and predicted individual linear trajectories across their points (dotted lines).

This illustration is typical of the LMM and LGM framework, where a parameter represents
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the average baseline starting level, and another the implied linear change, or mean slope.

We can see that for subjects in group = 0 (two top rows) their trajectories tend either to

stay stable (flat), or decrease slightly (negative slope), whereas those in group = 1 appear

to have increasing trajectories. Clearly, the two groups seem to differ with respect to their

slopes, but not on their starting levels, as would be expected in a randomized two-group

comparison study. To emphasize this, we plotted with solid lines the group-implied

trajectories, gray for group = 0 and black for group = 1. We also plotted each individual’s

expected linear trajectory with dotted lines (more below).
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Figure S2
The individual tolerance to deviant behavior (tolerance) as a function of waves of assessment (time) and
level of exposure to deviant behavior the first year of study (group = 0 in grey and group = 1 in black).
Subjects are illustrated in separate panels. The regression lines are based on the Maximum Likelihood (ML)
estimates of the model in Equation (??). The solid lines are the predicted average trajectories for
individuals of group = 0 (in grey) and of group = 1 (in black). The dotted lines represent the individual
predicted trajectories.

Application of the LMM.

In Equations (??) and (??) we introduced the full set of parameters to be estimated with

LMM in the chosen design, that is (γ, σ2
ε ,θ) = (γ0, γ1, γ2, γ3, σ

2
ε , σ

2
0, σ

2
1, σ10). The eight
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parameter estimates obtained by each LMM-estimator are presented in Table S1. Note

that DAStau did not converge. Its author reported computing difficulties with either

complex Σ(θ) variance matrices or small elements therein, as in this data set, for which the

estimate of σ2
1 is much smaller than that of σ2

0 (?). Therefore, for DAStau, Table S1

contains estimates for the model with no random slope effects (σ2
1) nor covariance (σ10).

The estimates for the fixed effects γ were quite similar across all estimation methods.

Application of the LGMr

We estimated the parameters of the model illustrated in Figure ?? using the ?’s robust

M-estimator. The obtained estimates are presented in Table S1. The estimates for the

fixed effects and variance components were virtually equal to the ML estimates. The

function sem also estimates SE for all parameters, including the variance components. For

the fixed effects, the SE are extremely similar to those obtained in the LMM approach

(ML, but also S and cTAU). Compared to cTAU, the SE of σ2
0 was similar, but those of σ2

1

and σ10 were bigger.
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Table S1
Parameter and standard error estimates of model from Equations (??) and (??) for the
Tolerance data.

ML S cTAU DAStau* LGMr

γ0 1.39 (0.11) 1.47 (0.1) 1.33 (0.08) 1.36 (0.12) 1.39 (0.10)

γ1 -0.07 (0.15) -0.11 (0.15) -0.09 (0.15) -0.38 (0.27) -0.07 (0.15)

γ2 0.04 (0.05) 0.04 (0.04) 0.04 (0.04) 0.04 (0.03) 0.04 (0.05)

γ3 0.18 (0.08) 0.12 (0.06) 0.16 (0.07) 0.16 (0.05) 0.18 (0.07)

σ2
ε 0.07 (NA) 0.096 (NA) 0.068 (NA) 0.09 (NA) 0.08 (0.02)

σ2
0 0.05 (NA) 0.07 (0.111) 0.02 (0.041) 0.06 (NA) 0.04 (0.03)

σ2
1 0.02 (NA) 0.005 (0.005) 0.002 (0.004) - 0.01 (0.01)

σ10 -0.01 (NA) 0.003 (0.008) 0.009 (0.007) - -.004 (0.012)

Note. ML = maximum likelihood; S = Copt and Victoria-Feser’s S-Estimator; cTAU = Agostinelli and

Yohai’s composite τ estimator; DAStau = Koller’s DAStau estimator; LGMr = Yuan and Zhong’s M-

Estimator. Entries represent the parameter estimates, with standard errors in parentheses. “NA” indicates

that results are not available. “-” indicates that the parameter could not be estimated in the model including

it. *The estimates are obtained from the model without random slope effects.

Additional Simulation Results

In this section we present supplemental results, with a larger effect size for the main

parameter of interest (γ3 = 0.250, see Figures S3), including the Kenward-Roger (KR)

correction associated to ML (see also Figure S4). In sum, we can see that the pattern of

results from the simulation study replicates with a bigger effect size for γ3 and that in this

setting, the Satterthwaite and the Kenward-Roger approximations obtain virtually

identical results.
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Figure S3
Rejection rates associated to γ3 in Cb1i

with α = 0.05 as a function of tests/CIs, estimators, γ3 and N (in
columns). Note: ML = maximum likelihood; S = Copt and Victoria-Feser’s S-Estimator; cTAU =
Agostinelli and Yohai’s composite τ ; DAStau = Koller’s DAStau; LGMr=Yuan and Zhong’s M-estimator.
Estimators are displayed on the abscissa and tests/CIs are represented by colors.
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Figure S4
Rejection rates associated to γ3 with α = 0.05 as a function of tests (the t test with Satterthwaite correction
in red and with the Kenward and Roger correction in blue), C (in rows), γ3 and N (in columns). Note: ML
= maximum likelihood.
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