Supplemental Material

Supplemental Material A: The Random Experiment in LST-R Theory

LST and LST-R theory differ in their formulation of the random experiment. For the sake of simplicity, we considered a design with two measurement occasions. The random experiment defined in LST-R theory implies a temporal ordering of the elements in Ω . The set of possible outcomes Ω is defined as,

$$\Omega = \Omega_{U_0} \times \Omega_{E_1} \times \Omega_{S_1} \times \Omega_{O_1} \times \Omega_{E_2} \times \Omega_{S_2} \times \Omega_{O_2}, \tag{1}$$

where Ω_{U_t} is the set of persons at the time of measurement t, and Ω_{E_t} is the set of experiences between measurements t = t - 1 and t. Ω_{S_t} is the set of situations at measurement t, and Ω_{O_t} is the set of observations at measurement t. The person variable at measurement t=1 is defined by the mapping $U_1: \Omega \to \Omega_{U_0} \times \Omega_{E_1}$, meaning that U_1 assigns the Cartesian product of Ω_{U_0} and Ω_{E_1} to each outcome Ω . In other words, a person at measurement time t=1 results from the same person at measurement time t=0 and the experiences the person has had in the meantime (Eid, Holtmann, Santangelo, & Ebner-Priemer, 2017; Steyer, Mayer, Geiser, & Cole, 2015).

For measurement occasion t=2, the mapping is $U_2: \Omega \to \Omega_{U_0} \times \Omega_{E_1} \times \Omega_{S_1} \times \Omega_{O_1} \times \Omega_{E_2}$, meaning that U_2 assigns the Cartesian product of Ω_{U_0} , Ω_{E_1} , Ω_{S_1} , Ω_{O_1} , and Ω_{E_2} to each outcome Ω . In other words, a person at measurement time t=2 results from the same person at measurement time t=0, the experiences the person has had between t=0 and t=1, as well as the experiences the person has had between t=1 and t=2, the situation the person was in at measurement time t=1, and lastly, the observations of the person at measurement time t=1. An element ω of Ω implies that a person-at-time-1 (u_1) is a part of the-person-at-time-2 (u_2) . Compared to u_1 , u_2 also encompasses the situation s_1 , the observations o_1 , and the experiences e_1 (Eid et al., 2017; Steyer et al., 2015). Lastly, the situation variable is defined for measurement t as the mapping $S_t: \Omega \to \Omega_{S_t}$, meaning that

 S_t assigns Ω_{S_t} to each outcome Ω . Based on these mappings, the variables of LST-R theory can be defined (Eid et al., 2017; Steyer et al., 2015).

Supplemental Material B: Variables and Model Parameters

Table 1
Overview of the variables and the model parameters

Parameters	Names
LST-R Theory	
$Y_{it} = \epsilon_{it}$	manifest observed variable of measurement i and time t residual variable (measurement error)
ξ_{it}	latent trait variable
$ au_{it}$	latent state variable
ζ_{it}	state residual variable
TSO Model	
Y_{it}	manifest observed variable of measurement i and time t
δ_{it}	residual variable (measurement error)
T	latent trait variable
S_t	latent state variable
O_t	occasion-specific variable
ϵ_t	occasion-specific residual variable
λ_{t1}^*	trait effects or trait loadings
eta_t	autoregressive effects
LST-AR Model	
Y_{it}	manifest observed variable of measurement i and time t
ϵ_{it}	residual variable (measurement error)
ξ	latent trait variable
$ au_t$	latent state variable
ζ_t	state residual variable
$\lambda_{t1}^{'}$	trait effects or trait loadings
eta_t	autoregressive effects

Supplemental Material C: Reliability, Consistency, and Specificity Based on Different Models

We illustrate the different ways to compute reliability $Rel(Y_{it})$, consistency $Con(Y_{it})$, pseudo-consistency $Con^*(Y_{it})$, specificity $Spe(Y_{it})$ and pseudo-specificity $Spe^*(Y_{it})$ coefficients using Y_{12} as an example. $Rel(Y_{it})$, $Con(Y_{it})$, and $Spe(Y_{it})$ are in line with LST-R theory, whereas the pseudo-coefficients $Con^*(Y_{it})$ and $Spe^*(Y_{it})$ are usually computed in the original TSO and LST-AR models.

LST-R Models (TSO and LST-AR)

$$Rel(Y_{12}) = Var(\tau_2)/Var(Y_{12})$$

 $Con(Y_{12}) = Var(\xi_2)/Var(Y_{12})$

$$Spe(Y_{12}) = Var(\zeta_2)/Var(Y_{12})$$

TSO Model

$$Y_{12} = \nu_2 + S_2 + \delta_{12}$$

$$= \nu_2 + \lambda_{20}^* + \lambda_{21}^* T + O_2 + \delta_{12}$$

$$= \nu_2 + \lambda_{20}^* + \lambda_{21}^* T + \beta_1 O_1 + \epsilon_2 + \delta_{12}$$

$$Rel(Y_{12}) = Var(S_2)/Var(Y_{12})$$

$$Con^*(Y_{12}) = Var(\lambda_{21}^* T)/Var(Y_{12})$$

$$= [Var(S_2) - Var(O_2)]/Var(Y_{12})$$

$$Con(Y_{12}) = [Var(S_2) - Var(\epsilon_2)]/Var(Y_{12})$$

$$Spe^*(Y_{12}) = Var(O_2)/Var(Y_{12})$$

$$Spe(Y_{12}) = Var(\epsilon_2)/Var(Y_{12})$$

LST-AR Model

$$Y_{12} = \nu_2 + \tau_2 + \epsilon_{12},$$

$$= \nu_2 + \lambda'_{20} + \lambda'_{21} \xi + \beta_1 \tau_1 + \zeta_2 + \epsilon_{12}$$

$$= \nu_2 + \lambda'_{20} + \lambda'_{21} \xi + \beta_1 \xi + \beta_1 \zeta_1 + \zeta_2 + \epsilon_{12}$$

$$Rel(Y_{12}) = Var(\tau_2)/Var(Y_{12})$$

$$Con'(Y_{12}) = Var(\lambda'_{21} \xi + \beta_1 \xi)/Var(Y_{12})$$

$$Con(Y_{12}) = [Var(\tau_2) - Var(\zeta_2)]/Var(Y_{12})$$

$$Spe'(Y_{12}) = Var(\beta_1 \zeta_1 + \zeta_2)/Var(Y_{12})$$

$$Spe(Y_{12}) = Var(\zeta_2)/Var(Y_{12})$$

Conclusions

- $Rel(Y_{12})$ is the same in all models
- $Con^*(Y_{12})$ in the TSO model is equal to $Con'(Y_{12})$ in the LST-AR model. It is the proportion of variance explained by the trait ξ_1 (the common trait in these models).

This does not correspond to the LST-R definition of $Con(Y_{12})$ which is the proportion of variance explained by ξ_2 .

- As shown in the equations, $Con(Y_{12})$ could also be computed based on the original TSO and LST-AR models with time-varying trait loadings, but this is usually not done.
- $Spe^*(Y_{12})$ in the TSO model is equal to $Spe'(Y_{12})$ in the LST-AR model. This does not correspond to the LST-R definition of $Spe(Y_{12})$.
- As shown in the equations, $Spe(Y_{12})$ could also be computed based on the original TSO and LST-AR models with time-varying trait loadings, but this is usually not done.

Supplemental Material D: Correlation Matrices

Table 2Model-implied correlation matrix of the TSO model and the LST-AR model, with freely estimated trait loadings, as depicted in Figure 1a and Figure 1b, respectively

Latent Variables			Latent V	Variables		
	$ au_1$	$ au_2$	$ au_3$	$ au_4$	$ au_5$	ξ
$ au_1$	1.00					
$ au_2$.72	1.00				
$ au_3$.68	.79	1.00			
$ au_4$.61	.76	.80	1.00		
$ au_5$.59	.74	.78	.82	1.00	
ξ	.73	.91	.97	.83	.81	1.00

Note. The R code to calculate the prediction matrix is provided in OSF (Model 3 and Model 4).

Table 3Model-implied correlation matrix of the TSO model and the LST-AR Model, with freely estimated trait loadings, as depicted in Figure 1c and Figure 1d, respectively

Latent Variables	Latent Variables														
	$\overline{ au_1}$	$ au_2$	$ au_3$	$ au_4$	$ au_5$	ξ_1	ξ_2	ξ_3	ξ_4	ξ_5	ζ_1	ζ_2	ζ_3	ζ_4	ζ_5
$ au_1$	1.00														
$ au_2$.72	1.00													
$ au_3$.68	.79	1.00												
$ au_4$.61	.76	.80	1.00											
$ au_5$.59	.74	.78	.82	1.00										
ξ_1	.73	.91	.97	.83	.81	1.00									
ξ1 ξ2 ξ3 ξ4	.79	.91	.97	.83	.80	1.00	1.00								
ξ_3	.68	.79	1.00	.80	.78	.97	.97	1.00							
ξ_4	.73	.92	.97	.83	.81	1.00	1.00	.97	1.00						
ξ_5	.70	.87	.92	.96	.85	.95	.95	.92	.95	1.00					
ζ_1	.68	.08	04	.00	.00	.00	.09	04	.00	.00	1.00				
ζ_2	.00	.41	22	.02	.01	.00	.00	22	.02	.01	.00	1.00			
ζ_3	.00	.00	.03	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.00		
ζ_4	.00	.00	.00	.56	.27	.00	.00	.00	.00	.32	.00	.00	.00	1.00	
ζ_5	.00	.00	.00	.00	.52	.00	.00	.00	.00	.00	.00	.00	.00	.00	1.0

Note. The R code to calculate the prediction matrix is provided in OSF (Model 5 and Model 6).

Supplemental Material E: Results of the Bivariate Models

Table 4
Model fit and χ^2 difference test for bivariate LST-AR models and bivariate TSO models

Models			χ^2 Di	fferenc	e Test				
	χ^2	df	p	RMSEA [90% CI]	CFI	TLI	χ_d^2	df_d	p_d
	1747.49	241 241 233 233	.00 .00 .00	.04 [.04, .05] .04 [.04, .04] .04 [.04, .04] .04 [.04, .04]	.97 .97 .97	.96 .96 .96	- 73.85 23.02	- - 8 8	- <.001 <.01

Note. Model 1 = bivariate TSO model as introduced by Cole, Martin, and Steiger (2005), with constrained trait loadings over time (represented in Figure 1a). Model 2 = bivariate LST-AR model as introduced by Steyer and Schmitt (1994), with constrained trait loadings over time (represented in Figure 1b). Model 3 = in terms of LST-R theory reformulated bivariate TSO model as introduced by (Eid et al., 2017, represented in Figure 1c). Model 4 = in terms of LST-R theory reformulated bivariate LST-AR model as introduced in this article (represented in Figure 1d). df = degrees of freedom. RMSEA = root mean square error of approximation. CI = confidence interval. CFI = comparative fit index. TLI = Tucker-Lewis index. χ^2_d = difference in χ^2 values with respect to the less restrictive model. $df_d = df$ for the χ^2 difference test. $p_d = p$ -value of the χ^2 difference test. The R code to calculate the models is provided in OSF.

Table 5Parameter estimates, variance, and correlation coefficients for bivariate LST-AR models and bivariate TSO models

Models	λ_{11}^f	λ_{21}^f	λ_{31}^f	λ^f_{41}	λ^f_{51}	$\lambda_{T_1}^f$	$\lambda_{T_2}^f$	$\lambda_{T_3}^f$	$\lambda_{T_4}^f$	$\lambda_{T_5}^f$
Model 1	1	1	1	1	1					
Model 2	1	1	1	1	1			-		
Model 3	•					1	1.14**	1.22**	1.2**	1.22*
Model 4	•	٠	•	•	•	1	.91**	1.00**	.88**	.91**
Models	λ^c_{11}	λ_{21}^c	λ^c_{31}	λ^c_{41}	λ^c_{51}	$\lambda_{T_1}^c$	$\lambda_{T_2}^c$	$\lambda_{T_3}^c$	$\lambda^c_{T_4}$	$\lambda^c_{T_5}$
Model 1	1	1	1	1	1					•
Model 2	1	1	1	1	1					
Model 3						1	1.09**	1.11**	1.1**	1.17*
Model 4	•	•		•	•	1	.87**	.88**	.69**	.77**
Models	$\operatorname{Var}(T)^f$	β_1^f	eta_2^f	eta_3^f	β_4^f	$\lambda_{S_1}^f$	$\lambda_{S_2}^f$	$\lambda_{S_3}^f$	$\lambda_{S_4}^f$	λ_1^f
Model 1	.36**	.20**	.30**	.43**	.40**					2.01**
Model 2	.27**	.20**	.21**	.20**	.21**			•		2.01*
Model 3	.29**					.22**	.19**	.26**	.21**	2.01*
Model 4	.29**		•			.22**	.19**	.26**	.21**	2.01*
Models	$\operatorname{Var}(T)^c$	β_1^c	eta^c_2	eta_3^c	eta_4^c	$\lambda_{S_1}^c$	$\lambda_{S_2}^c$	$\lambda_{S_3}^c$	$\lambda^c_{S_4}$	λ_1^c
Model 1	.34**	.17*	.30**	.51**	.49**					1.61*
Model 2	.28**	.14**	.14**	.14**	.20**			•		1.61*
Model 3	.29**					.21**	.21**	.28**	.36**	1.61*
Model 4	.29**	•				.21**	.21**	.38**	.36**	1.61*
Models	$Cor(T^f, T^c)$									
Model 1	.95**									
Model 2	.91**									
Model 3	.92**									
Model 4	.92**									

Note. * $p \le .05$. ** $p \le .01$. Model 1 = bivariate TSO model as introduced by Cole et al. (2005), with constrained trait loadings over time (represented in Figure 1a). Model 2 = bivariate LST-AR model as introduced by Steyer and Schmitt (1994), with constrained trait loadings over time (represented in Figure 1b). Model 3 = in terms of LST-R theory reformulated bivariate TSO model as introduced by (Eid et al., 2017, represented in Figure 1c). Model 4 = in terms of LST-R theory reformulated bivariate LST-AR model as introduced in this article (represented in Figure 1d). i = measurement indicator. t = time of measurement. λ_{t1} = unstandardized trait loading of Model 1 and Model 2. λ_{T_t} = unstandardized autoregressive effect of Model 3 and Model 4. β_t = unstandardized autoregressive effect of Model 1 and Model 2. λ_{S_t} = unstandardized autoregressive effect of Model 3 and Model 4. λ_1 = intercept of the latent trait (for t = 1 in Model 3 and Model 4). Var(T) = variance of the latent trait (for t = 1 in Model 3 and Model 4). T = trait. f = cancer-related fatigue. c = cognitive functioning. The R code to calculate the models is provided in OSF.

References

- Cole, D. A., Martin, N. C., & Steiger, J. H. (2005). Empirical and conceptual problems with longitudinal trait-state models: introducing a trait-state-occasion model. Psychological Methods, 10, 3-20. doi: https://doi.org/10.1037/1082-989X.10.1.3
- Eid, M., Holtmann, J., Santangelo, P., & Ebner-Priemer, U. (2017). On the definition of latent-state-trait models with autoregressive effects. *European Journal of Psychological Assessment*, 33, 285-295. doi: https://doi.org/10.1027/1015-5759/a000435
- Steyer, R., Mayer, A., Geiser, C., & Cole, D. A. (2015). A theory of states and traits revised. Annual Review of Clinical Psychology, 11, 71-98. doi: https://doi.org/10.1146/annurev-clinpsy-032813-153719
- Steyer, R., & Schmitt, T. (1994). The theory of confounding and its application in causal modeling with latent variables. In A. von Eye & C. C. Clogg (Eds.), *Latent variables analysis: Applications for developmental research* (p. 36-67). CA: Sage.