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Supplementary Information

Semantic Network Analysis (SemNA): A Tutorial on Preprocessing, Estimating, and

Analyzing Semantic Networks

SI 1. R Session Information

R version 4.1.0 (2021-05-18)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows 10 x64 (build 19043)

Matrix products: default

locale:

[1] LC_COLLATE=English_United States.1252

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] shinyBS_0.61 shinyMatrix_0.6.0 shinyalert_2.0.0

[4] shinyjs_2.0.0 shiny_1.6.0 SemNeT_1.4.3

[7] SemNetCleaner_1.3.3 SemNetDictionaries_0.1.9 kableExtra_1.3.4

[10] knitr_1.33 knitcitations_1.0.12 papaja_0.1.0.9997
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loaded via a namespace (and not attached):

[1] tidyselect_1.1.1 xfun_0.25 purrr_0.3.4 colorspace_2.0-2

[5] generics_0.1.0 vctrs_0.3.8 htmltools_0.5.1.1 viridisLite_0.4.0

[9] yaml_2.2.1 utf8_1.2.2 rlang_0.4.11 later_1.2.0

[13] pillar_1.6.2 glue_1.4.2 DBI_1.1.1 lifecycle_1.0.0

[17] plyr_1.8.6 stringr_1.4.0 munsell_0.5.0 gtable_0.3.0

[21] rvest_1.0.1 evaluate_0.14 fastmap_1.1.0 httpuv_1.6.1

[25] fansi_0.5.0 Rcpp_1.0.7 xtable_1.8-4 promises_1.2.0.1

[29] scales_1.1.1 webshot_0.5.2 jsonlite_1.7.2 mime_0.11

[33] systemfonts_1.0.2 ggplot2_3.3.5 png_0.1-7 digest_0.6.27

[37] stringi_1.7.3 bookdown_0.23 dplyr_1.0.7 grid_4.1.0

[41] tools_4.1.0 magrittr_2.0.1 tibble_3.1.3 RefManageR_1.3.0

[45] crayon_1.4.1 pkgconfig_2.0.3 ellipsis_0.3.2 xml2_1.3.2

[49] lubridate_1.7.10 assertthat_0.2.1 rmarkdown_2.10 svglite_2.0.0

[53] httr_1.4.2 rstudioapi_0.13 R6_2.5.0 compiler_4.1.0
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SI 2. SemNA Manuscript R Script

#########################################################

#### Semantic Networks Estimated from Verbal Fluency ####

#########################################################

# Install packages (and their dependencies)

install.packages(c("SemNetDictionaries", "SemNetCleaner", "SemNeT"),

dependencies = c("Imports", "Suggests"))

# Shiny packages

install.packages(c("shiny", "shinyjs", "shinyalert",

"shinyMatrix", "shinyBS"))

# Load packages

library(SemNetDictionaries)

library(SemNetCleaner)

library(SemNeT)

##############################################

#### 1. Preprocessing Verbal Fluency Data ####

##############################################

#####################################

## 1.1. SemNetDictionaries Package ##

#####################################
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#---------------------------------#

# 1.1.1. Pre-defined dictionaries #

#---------------------------------#

# Check for available dictionaries

dictionaries()

# Load 'animals' dictionary

load.dictionaries("animals")

# Load all words starting with 'f'

load.dictionaries("f")

# Load multiple dictionaries

load.dictionaries("fruits", "vegetables")

#----------------------------#

# 1.1.2. Custom dictionaries #

#----------------------------#

# Create a custom dictionary

append.dictionary("your", "words", "here", "in", "quotations",

"and", "separated", "by", "commas",

dictionary.name = "example",

save.location = "choose")

?append.dictionary
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# Append a pre-defined dictionary

append.dictionary(animals.dictionary,

"tasselled wobbegong",

dictionary.name = "new.animals",

save.location = "choose")

################################

## 1.2. SemNetCleaner Package ##

################################

# Data from 'SemNetCleaner'

data("open.animals")

## Fluency data

fluency <- open.animals[,-c(1:2)]

# Run `textcleaner`

clean <- textcleaner(data = fluency, miss = 99,

partBY = "row", dictionary = "animals")

# Load preprocessed data

clean <- open.preprocess
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# Get groups

group <- ifelse(open.animals$Group == 1, "Low", "High")

####################################################

#### Estimating and Analyzing Semantic Networks ####

####################################################

# Run SemNeT Shiny application

SemNeTShiny()
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SI 3. SemNA Template R Script

#########################################################

#### Semantic Networks Estimated from Verbal Fluency ####

#########################################################

# Install packages (and their dependencies)

install.packages(c("SemNetDictionaries", "SemNetCleaner", "SemNeT"),

dependencies = c("Imports", "Suggests"))

# Shiny packages

install.packages(c("shiny", "shinyjs", "shinyalert",

"shinyMatrix", "shinyBS"))

# Load packages

library(SemNetDictionaries)

library(SemNetCleaner)

library(SemNeT)

#-----------------#

# Loading in data #

#-----------------#

# Your own data

my.data <- read.data()

# `read.data` will automatically load in data
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# from common file extensions such as

# Excel, R, Matlab, and SPSS

#

# An interactive menu will allow you to navigate

# to the file you'd like to load and will

# load the data in the correct format for

# the pipeline

#-----------------#

# Data management #

#-----------------#

# If your data has variables that are not

# subject IDs and verbal fluency responses,

# then you should remove these variables before

# running the preprocessing step

#

# To figure out which variables you need to remove

# you can use the `colnames` function to identify

# these columns

colnames(my.data)

# Identify the numbers of the columns that need to

# be removed

#

# For example:

prep.data <- my.data[,-c(1:4, 67, 89)]
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# The function `c` is concatenate, which

# creates a vector with the numbers typed

# into between the parentheses.

#

# The `[1,1]` represents elements with

# the rows on the left of the comma and

# columns on the right of the comma. In the example,

# `[1,1]`, this would be element in row 1 and column 1.

# If there is no number input for either row or column

# (e.g., `[,1]`), then the entire row or column is selected

# (e.g., all of column `1` is selected).

#

# The `:` means all numbers in-between. So, in the

# above example, we've selected columns 1 *through*

# 4, 67, and 89.

#

# The `-` removes rows or columns from the matrix.

#

# The resulting matrix should consist ONLY of

# your subject IDS and raw verbal fluency responses.

#

# If you have a grouping variable in this data,

# it is OKAY to remove it. We will come back to this later.

##############################################

#### 1. Preprocessing Verbal Fluency Data ####
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##############################################

################################

## 1.2. SemNetCleaner Package ##

################################

#--------------------#

# 1.2.1. Spell check #

#--------------------#

# Documentation for `textcleaner` function

?textcleaner

# Run 'textcleaner'

clean <- textcleaner(data = prep.data, miss = 99,

partBY = "row", dictionary = "animals")

#-----------------#

# `data` argument #

#-----------------#

##

## This is where you can input `prep.data`

#-----------------#

# `miss` argument #

#-----------------#

##
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## This argument is for missing data.

## If you have missing data and use a different

## value that NA, NaN, or empty cells, then

## an additional value can be assigned.

##

## Note that NA, NaN, and empty cells are

## automatically identified as missing data

#-------------------#

# `partBY` argument #

#-------------------#

##

## If your data has participants' responses going

## across the rows (from left to right),

## then this argument should be "row"

##

## If your data has participants' responses going

## down the columns (from top to bottom),

## then this argument should be "col"

#-----------------------#

# `dictionary` argument #

#-----------------------#

##

## This argument specifies the dictionaries

## to be used for the automated cleaning

## and manual spelling suggestion for
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## the data.

##

## To see which dictionaries are available,

## type and enter: dictionaries()

##

## For letter fluency tasks,

## single letters can be used

## For example: dictionary = c("f")

##

## If no dictionary represents the appropriate

## category for spell-check, then

## the general dictionary will be used.

# Get directory to save in

dir <- choose.dir()

# Save .csv of manual changes

write.csv(clean$spellcheck$manual,

paste(dir, "manual_changes.csv", sep = "/"),

row.names = TRUE)

# Verbal fluency response totals

totals <- clean$behavioral$Appropriate

####################################################

#### Estimating and Analyzing Semantic Networks ####
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####################################################

# Run SemNeT Shiny application

SemNeTShiny()
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SI 4. Manual Chages Made in textcleaner

Option Selected Target Response Changed To

1 3 catdog cat, dog

2 5 moze NA

3 8 did bear

4 5 creatures NA

5 3 catefrog cat, frog

6 5 criters NA

7 5 mario NA

8 Q chiuaua chihuahua

9 W garafi giraffe

10 5 snack NA

11 5 jesus NA

12 Q squrill squirrel

13 5 your mom NA

14 Q geaniu pig guinea pig

15 Q crocidle crocodile

16 Q dinasor dinosaur

17 Q buffel buffalo

18 Q doplin dolphin

19 5 more cats NA

20 5 lotus NA

21 Q ostrig ostrich

22 Q pingwin penguin

23 Q amardillo armadillo

24 Q merekat sp meerkat

25 Q heghog hedgehog
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26 5 lagoon NA

27 Q getcho sp gecko

28 5 oh my NA

29 5 bablefish NA

30 W analope antelope

31 5 sporian NA

32 I women human

33 Q lizers lizard

34 W koal koala

35 W atalope antelope

36 W teranchilla tarantula

37 5 manster NA

38 Q sprikbok springbok
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SI 5. Changes made during textcleaner verification

$house

from to

Previous "house" "mouse"

Corrected "house" "NA"

$beasts

from to

Previous "beasts" "yeast"

Corrected "beasts" "NA"

$money

from to

Previous "money" "monkey"

Corrected "money" "NA"

$god

from to

Previous "god" "cod"

Corrected "god" "NA"

$chia

from to

Previous "chia" "cheetah"

Corrected "chia" "NA"

$`sugar bear`
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from to

Previous "sugar bear" "sugar glider"

Corrected "sugar bear" "NA"

$at

from to

Previous "at" "gnat"

Corrected "at" "NA"

$cantelope

from to

Previous "cantelope" "antelope"

Corrected "cantelope" "NA"

$lamp

from to

Previous "lamp" "lamb"

Corrected "lamp" "NA"



SEMNA TUTORIAL 83

SI 6. R Console Code for Different Network Estimation Methods

#########################################################

#### Semantic Networks Estimated from Verbal Fluency ####

#########################################################

# Install packages (and their dependencies)

install.packages(c("SemNetDictionaries", "SemNetCleaner", "SemNeT"),

dependencies = c("Imports", "Suggests"))

# Load packages

library(SemNetDictionaries)

library(SemNetCleaner)

library(SemNeT)

##############################################

#### 1. Preprocessing Verbal Fluency Data ####

##############################################

#####################################

## 1.1. SemNetDictionaries Package ##

#####################################

#---------------------------------#

# 1.1.1. Pre-defined dictionaries #

#---------------------------------#
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# Check for available dictionaries

dictionaries()

# Load 'animals' dictionary

load.dictionaries("animals")

# Load all words starting with 'f'

load.dictionaries("f")

# Load multiple dictionaries

load.dictionaries("fruits", "vegetables")

#----------------------------#

# 1.1.2. Custom dictionaries #

#----------------------------#

# Create a custom dictionary

append.dictionary("your", "words", "here", "in", "quotations",

"and", "separated", "by", "commas",

dictionary.name = "example",

save.location = "choose")

?append.dictionary
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# Append a pre-defined dictionary

append.dictionary(animals.dictionary,

"tasselled wobbegong",

dictionary.name = "new.animals",

save.location = "choose")

################################

## 1.2. SemNetCleaner Package ##

################################

# Data from 'SemNetCleaner'

data("open.animals")

## Fluency data

fluency <- open.animals[,-c(1:2)]

# Run `textcleaner`

clean <- textcleaner(data = fluency, miss = 99,

partBY = "row", dictionary = "animals")

# Load preprocessed data

clean <- open.preprocess

# Get groups

group <- ifelse(open.animals$Group == 1, "Low", "High")

#########################################
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#### 2. Estimating Semantic Networks ####

#########################################

##################

## 2.1. Process ##

##################

#-------------------------------------------#

# 2.1.1. Preparation for network estimation #

#-------------------------------------------#

# Attach 'Group' variable to the binary response matrix

behav <- cbind(open.animals$Group, clean$responses$binary)

# For Community and Pathfinder networks:

## behav <- cbind(open.animals$Group, clean$responses$clean)

# Create low and high openness to experience response matrices

low <- behav[which(behav[,1]==1),-1]

high <- behav[which(behav[,1]==2),-1]

# Save binary response matrices

write.csv(low, "low_BRM.csv", row.names = TRUE)

write.csv(high, "high_BRM.csv", row.names = TRUE)

#---------------------------#

# 2.1.2. Network estimation #
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#---------------------------#

## Community Network

net.low <- CN(low)

net.high <- CN(high)

# For other networks:

##

## Naive Random Walk

### net.low <- NRW(low)

### net.high <- NRW(high)

##

## Pathfinder Network

### net.low <- PF(low)

### net.high <- PF(high)

##

## TMFG

### Finalize matrices so that each response

### has been given by at least two participants

### final.low <- finalize(low, minCase = 2)

### final.high <- finalize(high, minCase = 2)

###

### Equate the responses across the networks

### eq <- equate(final.low, final.high)

### equate.low <- eq$final.low

### equate.high <- eq$final.high

### Compute cosine similarity for the 'low' and
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### 'high' equated binary response matrices

### cosine.low <- similarity(equate.low, method = "cosine")

### cosine.high <- similarity(equate.high, method = "cosine")

###

### Estimate 'low' and 'high' openness to experience networks

### net.low <- TMFG(cosine.low)

### net.high <- TMFG(cosine.high)

# Save the networks

write.csv(net.low, "low_network.csv", row.names = FALSE)

write.csv(net.high, "high_network.csv", row.names = FALSE)

########################################

#### 3. Analyzing Semantic Networks ####

########################################

#############################################

## 3.1. Visualization of Semantic Networks ##

#############################################

# Visually compare networks

compare_nets(net.low, net.high,

title = list("Low Openness", "High Openness"),

config = "spring", weighted = FALSE)

##################################

## 3.2. Global Network Measures ##
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##################################

# Compute network measures

semnetmeas(net.low, meas = c("ASPL", "CC", "Q"), weighted = FALSE)

semnetmeas(net.high, meas = c("ASPL", "CC", "Q"), weighted = FALSE)

############################

## 3.3. Statistical Tests ##

############################

#--------------------------------------#

# 3.3.1. Tests against random networks #

#--------------------------------------#

# Compute tests against random networks

rand.test <- randnet.test(net.low, net.high, iter = 1000, cores = 4)

#----------------------------------------#

# 3.3.2. Bootstrapped case-wise networks #

#----------------------------------------#

# Compute bootstrap network analysis

boot <- bootSemNeT(low, high, method = "CN",

type = "case", iter = 1000,

cores = 4)

# See documentation: ?bootSemNeT
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# For other methods:

## Naive Random Walk

### boot <- bootSemNeT(low, high, method = "NRW",

### type = "case", iter = 1000,

### cores = 4)

##

## Pathfinder Network

### boot <- bootSemNeT(low, high, method = "PF",

### type = "case", iter = 1000,

### cores = 4)

##

## TMFG

### boot <- bootSemNeT(low, high, method = "TMFG",

### type = "case", iter = 1000,

### sim = "cosine", cores = 4)

# Perform t-tests on bootstrap results

tests <- test.bootSemNeT(boot)

# Plot bootstrap results

plots <- plot(boot, groups = c("Low","High"),

measures = c("ASPL", "CC", "Q"))

# To arrange plots so they are stacked

install.packages("gridExtra")

library(gridExtra)
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grid.arrange(plots$aspl, plots$cc, plots$q)

#----------------------------------------#

# 3.3.2. Bootstrapped node-wise networks #

#----------------------------------------#

# Compute partial bootstrap network analysis

## 50% of nodes remaining in network

boot.fifty <- bootSemNeT(low, high, method = "TMFG", type = "node",

percent = .50, iter = 1000,

sim = "cosine", cores = 4)

## 60% of nodes remaining in network

boot.sixty <- bootSemNeT(low, high, method = "TMFG", type = "node",

percent = .60, iter = 1000,

sim = "cosine", cores = 4)

## 70% of nodes remaining in network

boot.seventy <- bootSemNeT(low, high, method = "TMFG", type = "node",

percent = .70, iter = 1000,

sim = "cosine", cores = 4)

## 80% of nodes remaining in network

boot.eighty <- bootSemNeT(low, high, method = "TMFG", type = "node",

percent = .80, iter = 1000,

sim = "cosine", cores = 4)

## 90% of nodes remaining in network

boot.ninety <- bootSemNeT(low, high, method = "TMFG", type = "node",

percent = .90, iter = 1000,

sim = "cosine", cores = 4)
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# Perform t-tests on bootstrap results

tests <- test.bootSemNeT(boot.fifty, boot.sixty, boot.seventy,

boot.eighty, boot.ninety)

# Plot bootstrap results

plots <- plot(boot.fifty, boot.sixty, boot.seventy,

boot.eighty, boot.ninety, groups = c("Low","High"),

measures = c("ASPL", "CC", "Q"))

# To arrange plots so they are stacked

install.packages("gridExtra")

library(gridExtra)

grid.arrange(plots$aspl, plots$cc, plots$q)
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SI 7. Comparison of All Network Estimation Methods

Across the network estimation methods, ASPL was lower for the high openness to

experience group relative to the low openness to experience group except for the NRW

method (Table 7). Similarly, CC was lower for the high openness to experience group relative

to the low openness to experience group except for the CbN method. Finally, Q was lower

for the high openness to experience group for the PN and CbN methods, higher for the NRW

method, and equivalent for the CN method relative to the low openness to experience group.

Table 7
Global Networks Measures for Each Network Estimation Method

Network Estimation Method

Measure Group CN NRW PN CbN

ASPL High 5.17 2.74 5.09 2.78
Low 5.35 2.66 5.32 3.28
High 0.20 0.31 0.53 0.76CC
Low 0.26 0.32 0.54 0.74

Q High 0.74 0.22 0.22 0.60
Low 0.74 0.20 0.25 0.65

In our example, there were two groups, so the result was based on random networks

computed for each group’s network structure. As shown in Table 8, all global network

measures were significantly different from random for both openness to experience groups

across all network estimation methods. This result suggests that both networks have

significantly different structures than a random network with the same number of nodes,

edges, and degree sequence.
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Table 8
Random Network Analysis for Each Network Estimation Method

Group

High Low

Method Measure M SD M SD

CN
ASPL 4.22 0.07 4.10 0.09
CC 0.02 0.01 0.03 0.01
Q 0.57 0.01 0.57 0.01

ASPL 2.52 0.01 2.44 0.02
CC 0.34 0.01 0.38 0.02NRW

Q 0.18 0.00 0.17 0.00

PN
ASPL 2.04 0.00 2.-5 0.00
CC 0.68 0.01 0.65 0.01
Q 0.06 0.00 0.07 0.00

ASPL 2.62 0.02 2.75 0.02
CC 0.18 0.01 0.13 0.01CbN

Q 0.35 0.01 0.36 0.01
Note. All means (M ) and standard deviations (SD) are for the distributions of the random
networks. All p-values were < .001

We performed the case-wise bootstrap for all network estimation measures and report

the results below.
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Table 9
ANCOVA for the Case-wise Bootstrap Analysis of Each Network Estimation Method

Adjusted M

Method Measure High Low F1,1997 η2
p

CN
ASPL 3.28 3.31 61.32 0.03
CC 0.27 0.28 24.99 0.01
Q 0.49 0.51 597.61 0.23

ASPL 2.78 2.70 1082.65 0.35
CC 0.28 0.29 431.35 0.18NRW

Q 0.23 0.22 1726.97 0.46

PN
ASPL 4.93 5.17 230.39 0.10
CC 0.52 0.50 738.42 0.27
Q 0.17 0.19 595.54 0.23

ASPL 3.12 3.24 245.54 0.11
CC 0.74 0.73 254.12 0.11CbN

Q 0.64 0.65 326.41 0.14
Note. All p-values were < .001. η2

p effect sizes following Cohen (1988): small = 0.01,
moderate = 0.06, and large = 0.14

In Table 9, we applied the ANCOVA approach for all network estimation methods,

which found the high openness to experience group had lower ASPL relative to the low

openness to experience group (small to moderately large effect sizes) except for the NRW

method (large effect size). Two methods, CN and NRW, found the high openness to

experience group had lower CC relative to the low openness to experience group (small and

large effect sizes, respectively). Conversely, the PN and CbN methods found the opposite

(larger CC for the high openness to experience group relative to the low openness to

experience group; large and moderately large effect sizes, respectively). Finally, all network

estimation methods found the high openness to experience group had lower Q relative to the

low openness to experience group (all large effect sizes) except for the NRW method (large

effect size).
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SI 8. Review and Discussion of Zemla and Austerweil (2018)

To our knowledge, there is only one study to systematically compare these and other

network estimation methods for group- and individual-level semantic networks estimated

from category verbal fluency data (Zemla & Austerweil, 2018). In Zemla and Austerweil’s

(2018) study, they obtained animal category exemplars from the University of South Florida

free association norms and generated category verbal fluency networks using censored

random walks (Nelson, McEvoy, & Schreiber, 2004). In addition, they obtained human-rated

semantic similarity for animals pairs and evaluated the average similarity of these ratings for

edges that were present and absent in the networks estimated with these methods.

Based on their results, they recommended the CN method for groups where the

network may not be fully connected and the goal is to minimize non-edge (absent edge)

similarities; the PN method was recommended for groups where the network is fully

connected and the goal is to maximize edge similarities whereas the NRW method was

recommended when the goal is to minimize non-edge similarities. Finally, two methods that

are not available in SemNeT but are available in SNAFU (Zemla, Cao, Mueller, &

Austerweil, 2020), U-INVITE and Hierarchical U-INVITE, were recommended for groups

when the network is fully connected and the goal is to minimize non-edge similarities and

when the network may not be fully connected and the goal is to maximize edge similarity,

respectively. CbN method were not recommended for any of these conditions because they

were the only method to have non-edge similarities that were greater than their edge

similarities.

This systematic comparison is an important first step for evaluating these methods

but more studies are needed. Comparisons of network estimation methods are beyond the

scope of this paper, so we provide users flexibility in the estimation method they prefer.

However, we provide two recommendations for future comparisons. First, the type of verbal

fluency data (e.g., free association, phonological, category) should be generated based on the

same data type. Although the USF network is a well-validated network that “accurately
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reflects mental associations between items in the network” (Zemla & Austerweil, 2018, p.

47), it would be surprising if the cognitive processes (e.g., strategic search, spreading

activation) of free association norms were identical to the processes of generating category

exemplars. Some processes are likely to be similar, but there are different task constraints

and people are likely using different strategies in their search processes (e.g., Unsworth,

Spillers, & Brewer, 2011). Therefore, methods should be assessed for each type of verbal

fluency task using data generated from the respective task.

Second, the category verbal fluency data were generated using a censored random

walk, which may be a reasonable data generating mechanism (Jun, Zhu, Rogers, Yang, &

Yuan, 2015), but it matches the way in which the U-INVITE method estimates networks.

This potentially confounds the results to the extent in which the data generating process

matches the way some methods estimate networks—that is, it’s plausible that the U-INVITE

and methods based on random walks (e.g., NRW) performed well because the data

generating model was highly similar to how the networks are estimated. Therefore, different

data generating mechanisms should be used to test the generality of these methods and how

they are affected should the true data generating model not correspond to a censored random

walk. In sum, more systematic investigations into how these network estimations perform

under different conditions (e.g., task type, data generating mechanism) are necessary to posit

any methodological recommendations beyond Zemla and Austerweil’s (2018) findings.

APCHRIST
Highlight

APCHRIST
Highlight


	Supplementary Information
	SI 1. R Session Information
	SI 2. SemNA Manuscript R Script
	SI 3. SemNA Template R Script
	SI 4. Manual Chages Made in textcleaner
	SI 5. Changes made during textcleaner verification
	SI 6. R Console Code for Different Network Estimation Methods
	SI 7. Comparison of All Network Estimation Methods
	SI 8. Review and Discussion of Zemla and Austerweil (2018)


