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Literature Review of Regression-Based Normative Studies 

A literature review of normative studies under the regression-based approach was 

performed to have an overview of the following features: (i) sample size, (ii) violation of the 

normality and/or homoscedasticity assumptions, and (iii) most common predictors, and type 

of interaction between age and sex. The search was performed (in September 2019) using two 

archives: PubMed, an archive of biomedical and life sciences journals, and PsycINF, a 

database of abstracts in psychology produced by the American Psychological Association. 

The keywords “normative data” and “regression-based” were used and the search was 

restricted to documents in English (but no year range restriction), giving 109 results in 

PubMed and 68 in PsycINF. The list of results obtained from PubMed contained all titles 

from PsycINF, with the exception of two results (a corrigendum and a dissertation) which 

were excluded from the review. Another 44 papers were discarded for various reasons, such 

as being methodological papers or longitudinal studies. The remaining 65 papers dealt with 

norming psychological tests for assessing various cognitive functions, mostly in adults (58/65 

papers).  Online supplement B contains the list of the 109 papers, the reasons why the 44 

papers were discarded, and the information extracted from the 65 considered papers. 

In most of the 65 considered studies, a number of outcome variables were normed 

separately (i.e. with different regression models). These outcomes were either independent 

psychological tests or sub-scores of the same test, for a total of 396 outcome variables. Due to 

missing data, outliers or other technical reasons, the sample size varied across outcome 

variables. The distribution of the size of the normative sample across the 65 studies is shown 

in Figure S.A.1.  

Table S.A.1 shows how frequently the assumptions of normality and 

homoscedasticity were (i) satisfied, (ii) not satisfied, or (iii) their validity/non-validity was 
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not reported (i.e. “unknown”), over the 396 multiple linear regression models. For only 165 

of the 396 models, the validity/non-validity of both assumptions were stated. Of these 165 

models, 117 (71%) satisfied both assumptions, 23 (14%) satisfied one assumption, and 25 

(15%) none. When normality and homoscedasticity were both violated, a number of solutions 

was adopted. The most popular was, first, to compute the standard deviation of the residuals 

per quartile of the predicted values, then to standardize the residuals with these standard 

deviations and, finally, to estimate percentiles from the empirical distribution of the 

standardized residuals. As shown in Table S.A.1, for 231 of the 396 outcomes the users of the 

normative data are left with the uncertainty about whether the provided norms are sound or 

not, because the validity/non-validity of at least one assumption was not stated.  These 

concerns are partially attenuated by noting that, among those studies that did not state the 

assumption checks, a number of them used the empirical cumulative distribution of the (non-

standardized) residuals or other non-parametric methods to estimate percentiles, which at 

least addresses possible non-normality (but not heteroscedasticity). 

In the 65 studies, age, sex, and education were the most common predictors. The 

model used for norming included age for 349/396 outcomes, sex for 178/396 outcomes, and 

education for 321/396 outcomes (of which 226 treated education as quantitative and 95 as 

categorical). Of these 396 models, 101 included the main effects of age and sex only, 56 

included the main effects of age and sex, and a quadratic age effect, one model included the 

main effects of age and sex, and their interaction, and one model included the main effects of 

age and sex, their interaction, and a quadratic age effect. None of the models included the 

interaction between sex and the quadratic effect of age. These results should be taken with 

caution because not all studies tested the presence of all possible interactions or of quadratic 

effects.  
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Table S.A.1  

Frequencies of the Normality and Homoscedasticity Assumptions in the 396 Multiple 

Regression Models 

 Homoscedasticity 

Normality Satisfied Not satisfied Unknown Total 

Satisfied 117 7 67 191 

Not satisfied 16 25 26 67 

Unknown 0 0 138 138 

Total 133 32 231 396 

 

Figure S.A.1  

Distribution of the Size of the Normative Sample Across the 65 Normative Studies 
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Simulation Studies  

Checking the First-Order Taylor Series Approximations of the Sampling Variances 

Simulation Design 

Equations (7) and (8) in the main text are based on first-order Taylor series 

approximations, so their bias must be assessed. This is done through a simulation study in 

which equations (7) and (8) are compared with the true 𝑉(𝑍̂0) and 𝑉 (𝑃𝑅(𝑍̂0)), for which no 

analytical expressions are known. To generate the true 𝑉(𝑍̂0) and 𝑉 (𝑃𝑅(𝑍̂0)), one needs to 

artificially reproduce what would happen in practice: (i) a normative sample is drawn from 

the reference population, (ii) the model parameters are estimated using the normative sample, 

and (iii) the raw outcome of an individual (not belonging to the normative sample) is 

translated into an estimated Z-score and a PR-score. To compute 𝑉(𝑍̂0) and 𝑉 (𝑃𝑅(𝑍̂0)), 

these three steps must be repeated as many times as possible (here, 𝑆 = 20,000 times) while 

keeping the individual’s raw outcome in step (iii) constant. An additional goal of the 

simulation study is to assess the bias of 𝑍̂0 and 𝑃𝑅(𝑍̂0). While 𝑍̂0 is not expected to be biased 

because 𝜷̂ and 𝜎̂𝜀
2 are unbiased (Johnson & Wichern, 1998, pp. 389-390), there might be bias 

in 𝑃𝑅(𝑍̂0), since equation (6) is a nonlinear function of 𝑍̂0. 

In the simulation study, the considered true Z-scores were all values from −3 to 3 

with increment 0.5, yielding 𝑀 = 13 values. The considered PR-scores were not those 

corresponding to the 13 Z-scores but 𝑃𝑅0 ∈ {1, 2.5, 5, 10, 90, 95, 97.5, 99}, because the latter 

set of values is more relevant in practice. For 𝑋1 = age, all the values from 20 to 80, with step 

5, were considered, giving 𝑄 = 𝑄1 × 𝑄2 = 13 × 2 = 26 combinations of age and sex (age 

was centered before computing quadratic and interaction effects with models (1)-(5), and sex 

was coded 0/1). Hence, 𝑀 × 𝑄 was the number of combinations of age, sex, and Z-score, as 
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well as the number of individuals and raw scores 𝑌0 to whom the norms are applied. For the 

size of the generated normative samples, four values were considered: 𝑁 =

{338, 676, 1690, 3380}. These four values correspond to four values of 𝐿 = {1, 2, 5, 10}, 

where 𝐿 denotes the number of replications per combination of age, sex, and Z-score, so 𝑁 =

𝑀 × 𝑄 × 𝐿. These 𝑁-values are in line with literature. Specifically, Oosterhuis et al. (2016) 

found in their literature review that the sample size 𝑁 ∈ [122, 96585], and for 68% of the 

normative samples 𝑁 ∈ [500, 2500]. In the literature review of this paper, 𝑁 ∈ [96, 6730] 

and the first, second, and third quartiles of the sample size distribution were 237, 354, and 

758, respectively, while the average 𝑁 was 782 (see Figure S.A.1). 

With respect to the choice of true regression parameter values used to generate 

normative samples, Table S.A.2 shows three sets of true values. For 𝛽0, 𝛽1, 𝛽2, 𝛽3, and 𝜎𝜀, 

the true values were taken from the estimates of the corresponding parameters in three 

normative studies, where the assumptions of normality and homoscedasticity were both met 

(see Goretti et al., 2014; Parmenter et al., 2010; Van der Elst et al., 2006). Unfortunately, 

estimates for 𝛽4 and 𝛽5 were not reported in the aforementioned studies, because the 

associated predictors were not significant. Therefore, the true values of 𝛽4 and 𝛽5 were 

chosen such as to have three different patterns of 𝐸(𝑌) relative to sex and age, as shown in 

Figure S.A.2.  Specifically, the difference in 𝐸(𝑌) between men and women (i) decreases as 

age increases for the Profession Naming verbal fluency test (PNVFT), (ii) increases as age 

increases for the Delis-Kaplan Executive Function System Sorting test (DKEFS), (iii) is 

larger for extreme values of age for the Symbol Digit Modalities Test (SDMT). 
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Table S.A.2 

True Values of the Model Parameters 

  Table 2 of Van der Elst et 

al. (2006) 

Tables 2 and 4 of 

Parmenter et al. (2010) 

Tables 4-5 of Goretti et 

al. (2014) 

 𝑌 Profession Naming verbal 

fluency test (PNVFT) 

Delis-Kaplan Executive 

Function System 

(DKEFS) Sorting test 

Symbol Digit Modalities 

Test (SDMT) 

SD 

residuals 

𝜎𝜀 4.818 2.605 2.658 

Intercept 𝛽0 18.579 −3.316 10.854 

Age 𝛽1 −0.054 0.231 0.040 

Sex 𝛽2 0.753 0.794 −0.192 

Age2 𝛽3 −0.002 −0.004 −0.002 

Age×Sex 𝛽4 −0.030 0.050 0.050 

Age2×Sex 𝛽5 −0.001 0.001 0.004 

Range and 

coding of 

the 

predictors 

in the 

original 

study 

 Age(years − 50) ∈

[−25, 30], Sex ∈ {0,1} 

Age(years) ∈ [20, 60], 

Sex ∈ {1, 2} 

Age(years) ∈ [18, 65], 

Sex ∈ {1, 2} 
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Figure S.A.2  

Expected Value of the Outcome Variable as a Function of Age, for Different Values of Sex 

(curves), Different Models (rows), and Different Outcome Variables (columns)  
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The steps of the simulation study are the following (for technical details, see the Outline 

of the R codes for the Simulation Studies section).  

1. Choose population parameter values. 

a. Choose a set of true values for the model parameters (𝜷, 𝜎𝜀
2) from Table S.A.2, 

the joint distribution of the predictors age and sex and the set of true Z-score 

values (and the corresponding true PR-scores) as described before.  

b. For each combination of age, sex, and Z-score compute the corresponding raw 

score 𝑌0 (i.e. by adding 𝜀0 = 𝜎𝜀𝑍0 to 𝒙0′𝜷), and compute the values of 

equations (7) and (8). These 𝑀 × 𝑄 raw scores and values of equations (7) and 

(8) belong to the 𝑀 × 𝑄 individuals to whom the norms will be applied (i.e. 

not the members of the normative sample).   

2. Generate S normative samples of size 𝑁 = 𝑀 × 𝑄 × 𝐿. 

Generate 𝑆 normative samples of size 𝑁 (i.e. draw 𝑁 residuals 𝜀 from 𝑁(0, 𝜎𝜀
2) and 

do this 𝑆 times). For each of these 𝑆 normative samples, compute the 𝑁 raw scores 𝒚 

(i.e. by adding the 𝑁 residuals 𝜀 to 𝑿𝜷, where 𝑿 is obtained by replicating 𝐿 times 

each combination of age, sex, and Z-score), and estimate the model parameters. Note 

that the same 𝑆 samples of 𝑁 residuals 𝜀 was used for each model parameter sets in 

Table S.A.2. 

3. Calculate the true average and variance of 𝑍̂0 and 𝑃𝑅(𝑍̂0) over the S normative 

samples. 

For each individual and thus for each raw score 𝑌0  from step 1b (i.e. not members of 

the normative sample), compute:  

a. 𝑍̂0 and 𝑃𝑅(𝑍̂0) 𝑆 times (i.e. using 𝜷̂ and 𝜎̂𝜀
2 obtained from each of the 𝑆 

normative samples),  

b. the true variances of 𝑍̂0 and 𝑃𝑅(𝑍̂0) over the 𝑆 normative samples, and  
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c. the averages of 𝑍̂0 and 𝑃𝑅(𝑍̂0) over the 𝑆 normative samples, 

4. Calculate the (relative) bias of the first-order Taylor series approximation of the 

statistics. 

 Calculate the relative biases of equations (7) and (8)  

(i.e. 𝑅. 𝐵. =
approximated  variance − true variance

true variance
), and the (absolute) biases of 𝑍̂0 and 

𝑃𝑅(𝑍̂0). Here, the approximated variance is as obtained with equations (7) and (8) in 

step 1b and the true variance is obtained in step 3b.  

Since each individual from step 1b corresponds to a specific combination of age, sex, and Z-

score, one obtains the relative biases of equations (7) and (8), and the absolute biases of 

𝑍̂0 and PR(𝑍̂0), for each combination of true Z-score/true PR-score with age and sex. 

Simulation Results 

Figures S.A.3-S.A.10 show the results of the simulation study for PNVFT under 

models (1) and (5), which were chosen to show the patterns of the bias as the complexity of 

the model increases. These figures show the results only for the Z-scores and PR-scores that 

are most useful in practice, that is,  𝑍0 ∈ {−2.5, −2, −1.5, +1.5, +2, +2.5} and 𝑃𝑅0 ∈

{1, 2.5, 5, 10, 90, 95, 97.5, 99}. Online supplement B contains the results obtained under the 

other models (Figures S.B.1.1-S.B.1.12), and for the PR-scores corresponding to 𝑍0 ∈

{−2.5, −2, −1.5, +1.5, +2, +2.5} (Figures S.B.1.25-S.B.1.34). Online supplement B 

provides the results for DKEFS (Figures S.B.2.1-S.B.2.20), and SDMT (Figures S.B.2.21-

S.B.2.40). All figures have the same structure. Each figure refers to a specific model, and is 

composed of eight panels. Within a figure, each column refers to a value of sex, while each 

row refers to a sample size. Each panel shows a bias per Z- or PR-score that is plotted against 

age. For each combination of age, sex, and true Z-score, the corresponding 𝑍̂0 was the same 

across the three sets of true 𝜷 and 𝜎𝜀 values in Table S.A.2. As a result, the same was true for 
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the relative biases of equations (7) and (8), and the absolute biases of 𝑍̂0 and 𝑃𝑅(𝑍̂0) (see 

online supplement B). This follows from having used the same 𝑆 samples of 𝑁 residuals for 

each of the three sets of true model parameter values in Table S.A.2. Hence, only the figures 

for PNVFT are mentioned in presenting the simulation results.    

Z-Scores. Figures S.A.3-S.A.4 (and S.B.1.1-S.B.1.3 in online supplement B) show 

the relative bias (𝑅. 𝐵.) of 𝑉(𝑍̂0) (i.e. equation (7)). In all the considered scenarios, this 

relative bias was always within the interval (−3%, 3%), which means that 𝑉(𝑍̂0) (i.e. 

equation (7)) is accurate even for small sample sizes (e.g. 𝑁 = 338). It is not clear how the 

relative bias is affected by the predictors or the sample size. Specifically, increasing the 

sample size the bias should decrease, since the Delta method is a large-sample 

approximation, but in some scenarios (e.g. Figure S.A.3), this is not the case. This might 

entail that the considered sample sizes are not large enough for the bias to vanish. But in any 

case and most importantly, 𝑅. 𝐵. ∈ (−3%, 3%) in all scenarios. Figures S.A.5-S.A.6 (and 

S.B.1.4-S.B.1.6 in online supplement B) show that, as expected, 𝑍̂0 is (nearly) unbiased (i.e. 

absolute bias ∈ (−0.01,0.01)) for any Z-score, age by sex combination, sample size, and 

model. 

PR-Scores. Figures S.A.7-S.A.8 (and S.B.1.7-S.B.1.9 in online supplement B) show 

the relative bias of 𝑉 (𝑃𝑅(𝑍̂0)) (i.e. equation (8)). Equation (8) tends to have a larger relative 

bias than 𝑉(𝑍̂0) (i.e. equation (7)). The relative bias decreases as the sample size increases 

and becomes acceptable (i.e. 𝑅. 𝐵. ∈ [−5%, 3%]) if 𝑁 ≥ 1690 for models (3)-(5) or if 𝑁 ≥

676 for models (1)-(2), except for the combinations of extreme values of age (i.e. age = 20 

and 80) with extreme PR-scores (𝑃𝑅0 =  1 or 99), for which combinations the relative bias is 

within the range [−10%, 3%]. Furthermore, the relative bias of 𝑉 (𝑃𝑅(𝑍̂0)) (i.e. equation 

(8)) increases as age moves away from the average age of 50 years toward 20 or 80, and as 
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the PR-score moves away from 50 toward 1 or 99, and as the complexity of the model 

increases (i.e. moving from model (1) to model (5)).  The bias of 𝑉 (𝑃𝑅(𝑍̂0)) does not 

depend in a systematic way on sex, which makes sense as there are only two values of sex 

and these are equally far removed from the average due to the 50:50 distribution of sex.  

Figures S.A.9-S.A.10 (and S.B.1.10-S.B.1.12 in online supplement B) show the absolute bias 

of 𝑃𝑅(𝑍̂0) (i.e. equation (6)). The bias decreases as the sample size increases and is always 

within the interval [−0.1,0.1], on the scale from 0 to 100, if 𝑁 ≥ 1690. Furthermore, 𝑃𝑅(𝑍̂0) 

overestimates 𝑃𝑅(𝑍0) if 𝑃𝑅0 < 50 and underestimates it if 𝑃𝑅0 > 50.  The bias increases 

when moving from 𝑃𝑅0 = 1 to 𝑃𝑅0 = 10 or from 𝑃𝑅0 = 99 to 𝑃𝑅0 = 90, or as age is 

further away from the average age, or as model complexity increases, and does not 

systematically depend on sex.  
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Figure S.A.3  

Relative Bias of Equation (7), 𝑉(𝑍̂0), Under Model (1) for 𝑌 = 𝑃𝑁𝑉𝐹𝑇, as a Function of 

Age ∈ [20,80] (x-axis) and Sex ∈ {0,1} (columns), for Different Sample Sizes 𝑁 ∈

{338,676,1690,3380} (rows), and 𝑍0 ∈ {±1.5, ±2, ±2.5} (curves)  
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Figure S.A.4 

Relative Bias of Equation (7), 𝑉(𝑍̂0), Under Model (5) for 𝑌 = 𝑃𝑁𝑉𝐹𝑇, as a Function of 

Age ∈ [20,80] (x-axis) and Sex ∈ {0,1} (columns), for Different Sample Sizes 𝑁 ∈

{338,676,1690,3380} (rows), and 𝑍0 ∈ {±1.5, ±2, ±2.5} (curves)  
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Figure S.A.5 

Absolute Bias of 𝑍̂0, Under Model (1) for 𝑌 = 𝑃𝑁𝑉𝐹𝑇, as a Function of Age ∈ [20,80] (x-

axis) and Sex ∈ {0,1} (columns), for Different Sample Sizes 𝑁 ∈ {338,676,1690,3380} 

(rows), and 𝑍 ∈ {±1.5, ±2, ±2.5} (curves) 
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Figure S.A.6 

Absolute Bias of 𝑍̂0, Under Model (5) for 𝑌 = 𝑃𝑁𝑉𝐹𝑇, as a Function of Age ∈ [20,80] (x-

axis) and Sex ∈ {0,1} (columns), for Different Sample Sizes 𝑁 ∈ {338,676,1690,3380} 

(rows), and 𝑍 ∈ {±1.5, ±2, ±2.5} (curves). 
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Figure S.A.7 

Relative Bias of Equation (8), 𝑉 (𝑃𝑅(𝑍̂0)), Under Model (1) for 𝑌 = 𝑃𝑁𝑉𝐹𝑇, as a Function 

of Age ∈ [20,80] (x-axis) and Sex ∈ {0,1} (columns), for Different Sample Sizes 𝑁 ∈

{338,676,1690,3380} (rows), and 𝑃𝑅0 ∈ {1,2.5,5,10,90,95,97.5,99} (curves)  

 

Note. The relative bias can be considered as acceptable within the range [−5%, 5%] 

(horizontal dotted lines) 
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Figure S.A.8 

Relative Bias of Equation (8), 𝑉 (𝑃𝑅(𝑍̂0)), Under Model (5) for 𝑌 = 𝑃𝑁𝑉𝐹𝑇, as a Function 

of Age ∈ [20,80] (x-axis) and Sex ∈ {0,1} (columns), for Different Sample Sizes 𝑁 ∈

{338,676,1690,3380} (rows), and 𝑃𝑅0 ∈ {1,2.5,5,10,90,95,97.5,99} (curves) 

 

Note. The relative bias can be considered as acceptable within the range [−5%, 5%] 

(horizontal dotted lines). 
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Figure S.A.9  

Absolute Bias of Equation (6), 𝑃𝑅(𝑍̂0), Under Model (1) for 𝑌 = 𝑃𝑁𝑉𝐹𝑇, as a Function of 

Age ∈ [20,80] (x-axis) and Sex ∈ {0,1} (columns), for Different Sample Sizes 𝑁 ∈

{338,676,1690,3380} (rows), and 𝑃𝑅0 ∈ {1,2.5,5,10,90,95,97.5,99} (curves) 

 

Note. The absolute bias can be considered as acceptable within the range [−0.1,0.1] on the 

scale from 0 to 100 (horizontal dotted lines). 
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Figure S.A.10 

Absolute Bias of Equation (6), 𝑃𝑅(𝑍̂0), Under Model (5) for 𝑌 = 𝑃𝑁𝑉𝐹𝑇, as a Function of 

Age ∈ [20,80] (x-axis) and Sex ∈ {0,1} (columns), for Different Sample Sizes 𝑁 ∈

{338,676,1690,3380} (rows), and 𝑃𝑅0 ∈ {1,2.5,5,10,90,95,97.5,99} (curves)  

 

Note. The absolute bias can be considered as acceptable within the range [−0.1,0.1] on the 

scale from 0 to 100 (horizontal dotted lines). 
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Assessing the Bias of the Variance Estimators  

Simulation Design 

To assess the bias of 𝑉̂(𝑍̂0) and 𝑉̂ (𝑃𝑅(𝑍̂0)) (i.e. equations (9) and (10)) relative to 

the true variances of 𝑍̂0 and 𝑃𝑅(𝑍̂0), a new simulation study is needed to generate the true 

(unknown) variances. The simulation procedure follows the same steps as that described in 

the previous section up to step 3 (for details, see the Outline of the R codes for the Simulation 

Studies section). In the new step 3, the individual’s estimated Z-scores (so 𝑍̂0) are used to 

compute equations (9) and (10) instead of using their true Z-scores to compute equations (7) 

and (8), for each of the 𝑆 normative samples. The averages of equations (9) and (10) are then 

computed across the 𝑆 normative samples per combination of predictors and true Z-score of 

interest (this averaging was not needed for equations (7) and (8) that do not depend on the 

normative sample). In the new step 4, the relative biases of equations (9) and (10) are 

computed from these averages as 
average of  estimated variance − true variance

true variance
, where the true 

variance is computed as the variance of 𝑍̂0 and 𝑃𝑅(𝑍̂0) across the 𝑆 normative samples (like 

in the previous simulation study). Furthermore, for each combination of predictors and Z-

score of interest, the coverage of the 95% confidence interval for 𝑍0 and 𝑃𝑅0 was computed 

across the 𝑆 normative samples. The coverage was defined as the proportion of normative 

samples in which the 95% confidence interval, computed using equations (9) and (10), 

contained the true 𝑍0 and 𝑃𝑅0.  

The 𝑀 relevant Z-scores are the same as those of the previous simulation study, and 

so are the values of 𝑋1 = age and 𝑋2 = sex. The true values of 𝜷 and 𝜎𝜀
2 are those shown in 

Table S.A.2 for PNVFT only, because the previous simulation study has shown that these 

true values affect neither the bias of equations (7) and (8) nor that of 𝑍̂0. Since equation (7) 
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for 𝑉(𝑍̂0) was already accurate for 𝑁 = 338, the sample sizes used to check the bias of 

equation (9) are the same as those of the previous simulation study. In contrast, for equation 

(10) the sample sizes are 𝑁 = {676,1690,2028,3380}, which correspond to 𝐿 = {2,5,6,10} 

replications per combination of age, sex and true 𝑃𝑅0, because the bias of equation (8) for 

𝑉 (𝑃𝑅(𝑍̂0)) was too large in most scenarios if 𝑁 = 338.  

Simulation Results  

The results of this simulation study are shown in Figures S.A.11-S.A.18 for models 

(1) and (5), and in Figures S.B.1.13-S.B.1.24 in online supplement B for the other models. 

The structure of the figures is the same as that of the previous simulation study. The focus is 

on 𝑍0 = {−2.5, −2, −1.5, +1.5, +2, +2.5} and 𝑃𝑅0 ∈ {1, 2.5, 5, 10, 90, 95, 97.5, 99}. Results 

for the PR-scores corresponding to 𝑍0 = {−2.5, −2, −1.5, +1.5, +2, +2.5} are in Figures 

S.B.1.35-S.B.1.44 (online supplement B). 

Z-Scores. Figures S.A.11-S.A.12 (and S.B.1.13-S.B.1.15 in online supplement B) 

show the relative bias of 𝑉̂(𝑍̂0) (i.e. equation (9)), which has similar patterns to that of 𝑉(𝑍̂0) 

(i.e. equation (9)). Furthermore, the relative bias of 𝑉̂(𝑍̂0) (i.e. equation (9)) is always within 

the range (−3%, 3%) in all scenarios, just like the relative bias of 𝑉(𝑍̂0) (i.e. equation (7)). 

Figures S.A.13-S.A.14 (and S.B.1.16-S.B.1.18 in online supplement B) show the coverage of 

the 95% confidence interval for 𝑍0 obtained using 𝑉̂(𝑍̂0). In all considered scenarios 

(models, sample sizes), the coverage is close to the nominal coverage probability (i.e. 0.95) 

for all true 𝑍0 scores. 

PR-Scores. Figures S.A.15-S.A.16 (and S.B.1.19-S.B.1.21 in online supplement B) 

show the relative bias of 𝑉̂ (𝑃𝑅(𝑍̂0)) (i.e. equation (10)). This relative bias tends to decrease 

as sample size increases and is always within the interval [−3%, 10%]. For 𝑁 ≥ 1690, the 
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bias is always within [−3%, 5%]. In general, the patterns of the bias of 𝑉̂ (𝑃𝑅(𝑍̂0)) tend to 

be less smooth than those of the bias of 𝑉 (𝑃𝑅(𝑍̂0)). Figures S.A.17-S.A.18 (and S.B.1.22-

S.B.1.24 in online supplement B) show the coverage of the 95% confidence interval for 𝑃𝑅0 

obtained using equation (10). If 𝑁 = 676, the coverage for 𝑃𝑅0 tends to be worse than that 

for 𝑍0, but never smaller than 93%. The coverage tends to decrease moving from model (1) 

to model (5), but it is always close to 95% if  𝑁 ≥ 1690.  
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Figure S.A.11 

Relative Bias of Equation (9), 𝑉̂(𝑍̂0), Under Model (1) for 𝑌 = 𝑃𝑁𝑉𝐹𝑇, as a Function of 

Age ∈ [20,80] (x-axis) and Sex ∈ {0,1} (columns), for Different Sample Sizes 𝑁 ∈

{338,676,1690,3380} (rows), and 𝑍0 ∈ {±1.5, ±2, ±2.5} (curves) 
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Figure S.A.12 

Relative Bias of Equation (9), 𝑉̂(𝑍̂0), Under Model (5) for 𝑌 = 𝑃𝑁𝑉𝐹𝑇, as a Function of 

Age ∈ [20,80] (x-axis) and Sex ∈ {0,1} (columns), for Different Sample Sizes 𝑁 ∈

{338,676,1690,3380} (rows), and 𝑍0 ∈ {±1.5, ±2, ±2.5} (curves) 
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Figure S.A.13 

Coverage of the 95% Confidence Interval for 𝑍0 Computed with Equation (9), 𝑉̂(𝑍̂), Under 

Model (1) for 𝑌 = 𝑃𝑁𝑉𝐹𝑇, as a Function of Age ∈ [20,80] (x-axis) and Sex ∈ {0,1} 

(columns), for Different Sample Sizes 𝑁 ∈ {338,676,1690,3380} (rows), and 𝑍0 ∈

{±1.5, ±2, ±2.5} (curves)  
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Figure S.A.14 

Coverage of the 95% Confidence Interval for 𝑍0 Computed with Equation (9), 𝑉̂(𝑍̂), Under 

Model (5) for 𝑌 = 𝑃𝑁𝑉𝐹𝑇, as a Function of Age ∈ [20,80] (x-axis) and Sex ∈ {0,1} 

(columns), for Different Sample Sizes 𝑁 ∈ {338,676,1690,3380} (rows), and 𝑍0 ∈

{±1.5, ±2, ±2.5} (curves)  
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Figure S.A.15 

Relative Bias of Equation (10), 𝑉̂ (𝑃𝑅(𝑍̂0)), Under Model (1) for 𝑌 = 𝑃𝑁𝑉𝐹𝑇, as a 

Function of Age ∈ [20,80] (x-axis) and Sex ∈ {0,1} (columns), for Different Sample Sizes 

𝑁 ∈ {338,676,1690,3380} (rows), and 𝑃𝑅0 ∈ {1,2.5,5,10,90,95,97.5,99} (curves)  

 

Note. The relative bias can be considered as acceptable within the range [−5%, 5%] 

(horizontal dotted lines). 
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Figure S.A.16 

Relative Bias of Equation (10), 𝑉̂(𝑃𝑅(𝑍̂0)), Under Model (5) for 𝑌 = 𝑃𝑁𝑉𝐹𝑇, as a Function 

of Age ∈ [20,80] (x-axis) and Sex ∈ {0,1} (columns), for Different Sample Sizes 𝑁 ∈

{338,676,1690,3380} (rows), and 𝑃𝑅0 ∈ {1,2.5,5,10,90,95,97.5,99} (curves)  

 

Note. The relative bias can be considered as acceptable within the range [−5%, 5%] 

(horizontal dotted lines). 
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Figure S.A.17  

Coverage of the 95% Confidence Interval for 𝑃𝑅0 Computed with Equation (10), 

𝑉̂ (𝑃𝑅(𝑍̂0)), Under Model (1) for 𝑌 = 𝑃𝑁𝑉𝐹𝑇, as a Function of Age ∈ [20,80] (x-axis) and 

Sex ∈ {0,1} (columns), for Different Sample Sizes 𝑁 ∈ {676,1690,2028,3380} (rows), and 

𝑃𝑅0 ∈ {1,2.5,5,10,90,95,97.5,99} (curves)  
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Figure S.A.18 

Coverage of the 95% Confidence Interval for 𝑃𝑅0 Computed with Equation (10), 

𝑉̂ (𝑃𝑅(𝑍̂0)), Under Model (5) for 𝑌 = 𝑃𝑁𝑉𝐹𝑇, as a Function of Age ∈ [20,80] (x-axis) and 

Sex ∈ {0,1} (columns), for Different Sample Sizes 𝑁 ∈ {676,1690,2028,3380} (rows), and 

𝑃𝑅0 ∈ {1,2.5,5,10,90,95,97.5,99} (curves) 
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Outline of the R Codes for the Simulation Studies 

Steps of the R Code for the First Simulation Study  

The bias of equations (7) and (8) is assessed with the following procedure that must 

be repeated for each model considered in the main text, and set of parameter (𝜷, 𝜎𝜀) values in 

Table S.A.2. 

0. Choose a set of 𝑀 Z-score values that are relevant in practice. Denote by 𝒛𝟎 the 𝑀 × 1 

vector of these relevant Z-scores. Compute 𝜺0 = 𝜎𝜀𝒛𝟎 and 𝑷𝑹(𝒛𝟎) = 𝚽(𝒛𝟎) × 100. 

Define all possible combinations of the levels of 𝑋1 = age and 𝑋2 = sex. Denote by 𝑄 the 

number of all possible combinations for 𝑋1 = age and 𝑋2 = sex ∈ {0,1}. Center 𝑋1 (i.e. 

𝑋1 − 𝑋̅1) prior to the computation of the quadratic effect of 𝑋1 and the interaction terms. 

Generate 𝑿𝑁×(𝑘+1), that is, the design matrix of the 𝑆 normative samples, by replicating 𝐿 

times each combination of 𝑍0 ∈ 𝒛, 𝑋1, and 𝑋2, so that the sample size of the normative 

sample is 𝑁 = 𝐿 × 𝑀 × 𝑄. In this way the size of the normative sample is not fully 

determined by the number of combinations of 𝑍0, 𝑋1, and 𝑋2 (i.e. 𝑀 × 𝑄). 

1. Individuals to whom the norms will be applied (i.e. not members of the normative 

sample). Each individual (𝑗 = 1, . . , 𝑀 × 𝑄), to whom the norms will be applied, 

corresponds to a different combination of 𝑍0, 𝑋1, and 𝑋2. For each individual 𝑗 (i.e. for 

each combination of 𝑍0, 𝑋1, and 𝑋2), compute the observed raw score 𝑦0𝑗 by filling 𝜷, 

𝜀0𝑗 = 𝜎𝜀𝑍0𝑗, 𝒙0𝑗
′ = [1 𝑋1,0𝑗 𝑋2,0𝑗] in the chosen model. This gives the (𝑀 × 𝑄) × 1 

vector 𝒚0 (these 𝑀 × 𝑄 raw scores will be translated into estimated Z-scores and PR-

scores once 𝜷̂ and 𝜎̂𝜀 are obtained from the normative sample).  

2. For each individual 𝑗 from step 1 (i.e. for each combination of 𝑍0, 𝑋1, and 𝑋2, with 𝑗 =

1, . . , 𝑀 × 𝑄), compute equations (7) and (8) by filling 𝒙0′, 𝑿𝑁×(𝑘+1), 𝑍0𝑗, 𝑁, and 𝑘, in 
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these formulae. Denote the variances computed with equations (7) and (8) by 𝑉(𝑍̂0𝑗)
𝐷.𝑀.

 

and 𝑉 (𝑃𝑅(𝑍̂0𝑗))
𝐷.𝑀.

, where “D.M” means “Delta method”.   

3. Generate 𝑆 normative samples. To create a normative sample (𝑠 = 1, . . , 𝑆, with 𝑆 =

20,000), sample a new 𝑁 × 1 vector 𝜺(𝑠)~𝑁(0, 𝜎𝜀
2). Compute the 𝑁 × 1 vector  𝒚(𝑠) 

from the chosen model, using 𝜷, 𝑿𝑁×(𝑘+1), and 𝜺(𝑠).  

4. For each normative sample (𝑠 = 1, . . , 𝑆), fit the model, obtaining then 𝜷̂(𝑠) =

(𝑿′𝑿)−1𝑿′𝒚(𝑠),  𝜺̂(𝑠) = 𝒚(𝑠) − 𝑿𝜷̂(𝑠), and 𝜎̂𝜀
(𝑠)

= √𝜺̂(𝑠)′𝜺̂(𝑠)

𝑁−𝑘−1
. 

5. For each individual 𝑗 from step 1 (i.e. for each combination of 𝑍0, 𝑋1, and 𝑋2, with 𝑗 =

1, . . , 𝑀 × 𝑄), estimate the 𝑍0 score, based on the 𝑠-th normative sample, with 𝑍̂0𝑗
(𝑠)

=

𝑌0𝑗−𝑌̂𝑗
(𝑠)

𝜎̂𝜀
(𝑠) =

𝑌0𝑗−𝒙0𝑗
′ 𝜷̂(𝑠)

𝜎̂𝜀
(𝑠) , and the 𝑃𝑅 score with 𝑃𝑅(𝑍̂0𝑗)

(𝑠)
= Φ(𝑍̂0𝑗

(𝑠)
) × 100.  

6. For each individual 𝑗 from step 1 (i.e. for each combination of 𝑍0, 𝑋1, and 𝑋2, with 𝑗 =

1, . . , 𝑀 × 𝑄), compute 𝑍̅̂0𝑗 = ∑ 𝑍̂0𝑗
(𝑠)

/𝑆𝑆
𝑠=1 , 𝑃𝑅(𝑍̂0𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∑ 𝑃𝑅(𝑍̂0𝑗)

(𝑠)
/𝑆𝑆

𝑠=1 , 𝑉(𝑍̂0𝑗) =

∑ (𝑍̂0𝑗
(𝑠)

−𝑍̅̂0𝑗)
2

𝑆
𝑠=1

𝑆−1
, and 𝑉 (𝑃𝑅(𝑍̂0𝑗)) =

∑ (𝑃𝑅(𝑍̂0𝑗)
(𝑠)

−𝑃𝑅(𝑍̂0𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

𝑆
𝑠=1

𝑆−1
. 

7. For each individual 𝑗 from step 1 (i.e. for each combination of 𝑍0, 𝑋1, and 𝑋2, with 𝑗 =

1, . . , 𝑀 × 𝑄), compute the relative biases of equations (7) and (8), that is, 

𝑅. 𝐵. (eq. (7)) =
𝑉(𝑍0𝑗)

𝐷.𝑀.
−𝑉(𝑍̂0𝑗)

𝑉(𝑍̂0𝑗)
 and 𝑅. 𝐵. (eq. (8)) =

𝑉(𝑃𝑅(𝑍̂0𝑗))
𝐷.𝑀.

−𝑉(𝑃𝑅(𝑍̂0𝑗))

𝑉(𝑃𝑅(𝑍̂0𝑗))
, 

respectively, where 𝑉(𝑍̂0𝑗)
𝐷.𝑀.

 and 𝑉 (𝑃𝑅(𝑍̂0𝑗))
𝐷.𝑀.

 have been computed in step 2. 

Furthermore, compute the absolute biases of 𝑍̂0 and of 𝑃𝑅(𝑍̂0𝑗), that is, 𝑍̅̂0𝑗 − 𝑍0𝑗 and 

𝑃𝑅(𝑍̂0𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑃𝑅(𝑍0𝑗). 
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Steps of the R Code for the Second Simulation Study 

The simulation procedure is the same as that in the previous section apart from the 

following steps. 

5. For each individual 𝑗 from step 1 (i.e. for each combination of 𝑍0, 𝑋1, and 𝑋2, with 𝑗 =

1, . . , 𝑀 × 𝑄), estimate the 𝑍0 score, based on the 𝑠-th normative sample, with 𝑍̂0𝑗
(𝑠)

=

𝑌0𝑗−𝑌̂𝑗
(𝑠)

𝜎̂𝜀
(𝑠) =

𝑌0𝑗−𝒙0𝑗
′ 𝜷̂(𝑠)

𝜎̂𝜀
(𝑠) . Compute equations (9) and (10) by filling 𝒙0′, 𝑿𝑁×(𝑘+1), 𝑍̂0𝑗

(𝑠)
, 𝑁, 

and 𝑘, in these formulas. Denote the variances computed with equations (9) and (10) by 

𝑉̂(𝑍̂0𝑗)
𝐷.𝑀.

(𝑠)
 and 𝑉̂ (𝑃𝑅(𝑍̂0𝑗))

𝐷.𝑀.

(𝑠)

, respectively.  

6. For each individual 𝑗 from step 1 (i.e. for each combination of 𝑍0, 𝑋1, and 𝑋2, with 𝑗 =

1, . . , 𝑀 × 𝑄), compute the Monte Carlo averages 𝑉̂(𝑍̂0𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅
𝐷.𝑀.

= ∑ 𝑉̂(𝑍̂0𝑗)
𝐷.𝑀.

(𝑠)
/𝑆𝑆

𝑠=1   and  

𝑉̂ (𝑃𝑅(𝑍̂0𝑗))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐷.𝑀.
= ∑  𝑉̂ (𝑃𝑅(𝑍̂0𝑗))

𝐷.𝑀.

(𝑠)

/𝑆𝑆
𝑠=1 , and the true variances 𝑉(𝑍̂0𝑗) =

∑ (𝑍̂0𝑗
(𝑠)

−𝑍̅̂0𝑗)
2

𝑆
𝑠=1

𝑆−1
 and 𝑉 (𝑃𝑅(𝑍̂0𝑗)) =

∑ (𝑃𝑅(𝑍̂0𝑗)
(𝑠)

−𝑃𝑅(𝑍̂0𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

𝑆
𝑠=1

𝑆−1
. 

7. For each individual 𝑗 from step 1 (i.e. for each combination of 𝑍0, 𝑋1, and 𝑋2, with 𝑗 =

1, . . , 𝑀 × 𝑄), compute the relative biases of equations (9) and (10), that is, 

𝑅. 𝐵. (eq. (9)) =
𝑉(𝑍0𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐷.𝑀.
−𝑉(𝑍̂0𝑗)

𝑉(𝑍̂0𝑗)
 and 𝑅. 𝐵. (eq. (10)) =

𝑉(𝑃𝑅(𝑍̂0𝑗))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐷.𝑀.
−𝑉(𝑃𝑅(𝑍̂0𝑗))

𝑉(𝑃𝑅(𝑍̂0𝑗))
, 

respectively, as well as the coverage of 95% confidence intervals for 𝑍0𝑗 and 𝑃𝑅(𝑍0𝑗), 

that is, the number of times 𝑍0𝑗 ∈ [𝑍̂0𝑗 ± 1.96√𝑉̂(𝑍̂0𝑗)
𝐷.𝑀.

(𝑠)
] and 𝑃𝑅(𝑍0𝑗) ∈

[𝑃𝑅(𝑍̂0𝑗) ± 1.96√𝑉̂ (𝑃𝑅(𝑍̂0𝑗))
𝐷.𝑀.

(𝑠)

] divided by 𝑆.  
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Optimal and Robust Design 

Derivation of the D-Optimal Designs in Table 2 (main text). 

The derivation of the D-optimal designs in Table 2 (main text) depends on two sets of 

assumptions. First, normality and homoscedasticity of the residual 𝜀 must hold. Second, for 

each predictor the range of possible values (e.g. age ∈ [20, 80]) and its regression function 

(e.g. quadratic regression for age) do not depend on other predictors (Schwabe, 1996, p. 36). 

In other words, the range of values and the model for age (e.g. quadratic regression) are the 

same for men and women under the model assumed to plan the study. 

The derivation of the D-optimal designs in Table 2 (main text) can be summarized in the 

following steps:  

1. Find the Marginal Models. The multiple regression model (Table 2, leftmost 

column, main text) is decomposed into as many components as there are predictors. 

Specifically, for each predictor the corresponding component is obtained by deleting 

from the full model (Table 2, leftmost column, main text) the other predictors, all 

interactions, and the intercept if already included in another component (see Example 

6.4, p. 83, in Schwabe, 1996). Each component can be then rewritten as a single 

predictor model for 𝑌 and, for this reason, is called the marginal model for that 

predictor (see Table 2, second column, main text). For example, deleting 𝛽2𝑋2 and 

interaction term  𝛽4𝑋1𝑋2 from model (3) (i.e. from 𝐸(𝑌) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +

 𝛽4𝑋1𝑋2), yields the marginal model for age which is 𝐸1(𝑌) = 𝛽0 + 𝛽1𝑋1 and, 

consequently, the marginal model for sex is 𝐸2(𝑌) = 𝛽2𝑋2.  

2. Derive the Optimal Designs for the Marginal Models. For models (1)-(3) and (5), 

the D-optimal designs for the marginal models for 𝑋1 (Table 2, third column, main 
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text) are taken from Table 3.5, p. 67, in Berger and Wong (2009). For model (4), the 

optimal design for the marginal model for 𝑋1 (Table 2, third column, main text) is 

taken from Table 6.1, p. 94, in Schwabe (1996). This latter design is not D-optimal 

but is obtained by optimizing a particular criterion (i.e. the determinant of the 

information matrix for the marginal model of the quantitative predictor times a 

function of the categorical predictor) such that the design for the full model is D-

optimal (this criterion is given in Corollary 6.14.i, p. 91, in Schwabe, 1996). The D-

optimal design for the marginal model for 𝑋2 (Table 2, fourth column, main text) is 

taken from p. 24 in Schwabe (1996). 

3. Construct the D-Optimal Design for the Full Model. For models (1)-(5), the D-

optimal design 𝜉∗ (Table 2, rightmost column, main text) is obtained from the optimal 

designs of the marginal models in step 2 as follows. The support points of 𝜉∗ are all 

possible combinations of support points of the designs from step 2, and the 

corresponding design weights of 𝜉∗ are the product of the design weights of the 

optimal designs from step 2.  

One could verify that the designs obtained in step 3 are D-optimal by making use of the 

equivalence theorem (Atkinson et al., 2007, p. 122), which states that a design 𝜉 is D-optimal 

if and only if 𝑑(𝑿, 𝜉) = (𝑘 + 1) at its support points and 𝑑(𝑿, 𝜉) < (𝑘 + 1) over the rest of 

the design region (see Figure 2, main text). Schwabe (1996) has analytically proven that 

designs obtained from steps 1-3 are D-optimal. Specifically, Schwabe (1996) has shown that 

the D-optimal design of a model with either complete or no interaction is given by the 

Kronecker product of the D-optimal designs for the marginal models (Theorem 4.2, p. 41, 

and Theorem 5.2, p. 52, in Schwabe, 1996). This result still holds when 𝑘 ≥ 2 predictors are 

included into these two types of models (Corollary 4.6, p. 44, and Corollary 5.3, p.53, in 

Schwabe, 1996), which makes the extension to the inclusion of education in these types of 
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models straightforward. Furthermore, Schwabe (1996) has shown that the Kronecker product 

of the optimal designs for the marginal models is the D-optimal design for models with 

partial interaction with two predictors of which one is categorical (Corollary 6.14, p. 91, in 

Schwabe, 1996). However, in this case the designs for the marginal models might not be D-

optimal. For the categorical predictor with 𝑄2 levels (e.g. sex), the optimal design for the 

marginal model is the design that gives equal weight 
1

𝑄2
 to each level of the predictor 

(Schwabe, 1996, p. 83), which is D-optimal (Schwabe, 1996, Corollary 3.16.i, p. 24). In 

contrast, the optimal design for the marginal model for the other predictor (e.g. age) is not D-

optimal, because it is obtained by maximizing a different optimality criterion given in 

Corollary 6.14.i, p. 91, in Schwabe (1996). For models with partial interaction as in model (4) 

where age, but not age2, is assumed to interact with sex, extension to 𝑘 ≥ 2 predictors is 

complicated and beyond the scope of this paper.  

Robust Design  

Maximin Design Based on the Relative Efficiency Criterion 

As explained in the main text, the optimal design depends on the assumed model. In 

presence of uncertainty about the “true” model, a robust alternative to the optimal design is 

the maximin design. Based on the relative efficiency criterion, the maximin design is defined 

as that design that maximizes the minimum relative efficiency. The relative efficiency is 

defined as the ratio of 𝑉(𝑍̂0) or 𝑉 (𝑃𝑅(𝑍̂0)) (i.e. equations (7) and (8) in the main text) 

under the optimal design 𝜉∗ to 𝑉(𝑍̂0) or 𝑉 (𝑃𝑅(𝑍̂0)) under the non-optimal design 𝜉. This 

variance ratio can be shown to reduce to equation (11) in the main text: 

𝑅𝐸( 𝜉 𝑣𝑠 𝜉∗) =
𝑉(𝑃𝑅(𝑍̂0)|𝜉∗)

𝑉(𝑃𝑅(𝑍̂0)|𝜉)
=

1002𝜙(𝑍0)2[
𝑑(𝑿,𝜉∗)

𝑁
+

1

2(𝑁−𝑘−1)
𝑍0

2]

1002𝜙(𝑍0)2[
𝑑(𝑿,𝜉)

𝑁
+

1

2(𝑁−𝑘−1)
𝑍0

2]
=  
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=
𝑉(𝑍̂0|𝜉∗)

𝑉(𝑍̂0|𝜉)
=

𝑑(𝑿,𝜉∗)

𝑁
+

1

2(𝑁−𝑘−1)
𝑍0

2

𝑑(𝑿,𝜉)

𝑁
+

1

2(𝑁−𝑘−1)
𝑍0

2
≈

𝑑(𝑿,𝜉∗)+
𝑍0

2

2

𝑑(𝑿,𝜉)+
𝑍0

2

2

, 

where 𝑑(𝑿, 𝜉) = 𝑁𝒙0′(𝑿′𝑿)−1𝒙0 is the standardized prediction variance under design 𝜉, and 

the approximation follows from 𝑁 − 𝑘 − 1 ≈ 𝑁.  Recall from the Simulation Studies section 

that equation (7) (main text) is an accurate approximation of the true 𝑉(𝑍̂0) for 𝑁 ≥ 338, and 

equation (8) (main text) is an accurate approximation of the true 𝑉 (𝑃𝑅(𝑍̂0)) for 𝑁 ≥ 1690. 

For these lower-bounds for the sample size 𝑁 − 𝑘 − 1 ≈ 𝑁, yielding equation (11) in the 

main text.   

 Note that 𝑅𝐸( 𝜉 𝑣𝑠 𝜉∗) (i.e. equation (11)) is a function of the design of the normative 

sample (through 𝑿 in 𝑑(𝑿, 𝜉)), and of the individual’s 𝒙0 and 𝑍. Hence, the maximin design 

is obtained by first finding, for each design, the lowest value of equation (11) over 𝒙0 for a 

given 𝑍0, for each model, and then choosing the design with the highest minimum relative 

efficiency across all models. For the designs and models in Table 3 (main text), a numerical 

evaluation of equation (11) for several values of 𝒙0 and 𝑍0 ∈

{±3, ±2.5, ±2, ±1.5, ±1, ±0.5,0}, has shown that the maximin design does not depend on 𝑍0, 

because in all considered scenarios the design in the second row of Table 3 (main text) was 

the design with the highest minimum relative efficiency across all models. In Table 3 (main 

text), the lowest value of equation (11) over 𝒙0 are shown only for 𝑍0 = 0 and  𝑍0 = ±2, 

because 𝑍0 = 0 yields the maximum efficiency loss for 𝜉, and 𝑍0 = ±2 is often used in 

practice as a cut-off to identify extreme performance or symptoms. Both for 𝑍0 = 0 and 𝑍0 =

±2, the minimum of equation (11) was obtained for an 𝒙0 that is a support point of the 

optimal design under the “true” model (e.g. age ∈ {−1, 0, +1} and sex = 0/1). The R code of 

the numerical evaluation is given in online supplement B. 
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Maximin Design Based on the Efficiency Criterion 

Based on the efficiency criterion, the maximin design is defined as that design that 

maximizes the minimum efficiency, that is, that design that minimizes the maximum 

sampling variance (i.e. equations (7) and (8) in the main text). Note that in equations (7) and 

(8) (main text) the only component that depends on the normative sample is 𝒙0′(𝑿′𝑿)−1𝒙0 =

𝑑(𝑿,𝜉)

𝑁
, where 𝑑(𝑿, 𝜉) is the standardized prediction variance. Hence, maximizing 𝑑(𝑿, 𝜉) 

maximizes equations (7) and (8), given 𝑁 and 𝑍0. Therefore, to find the maximin design 

based on the efficiency criterion, Table S.A.3 shows the maximum 𝑑(𝑿, 𝜉) for each design 

(row) under the “true” model (column). As can be seen in Table S.A.3, model (5) is the 

model that yields the maximum 𝑑(𝑿, 𝜉) for all designs (except the two age levels design 

under which the quadratic age effect is not identifiable), and the optimal design for model (5) 

(i.e. Table S.A.3, second row) is the maximin design, because it yields the smallest maximum 

𝑑(𝑿, 𝜉) (and thereby the smallest maximum of equations (7) and (8)). The R code of the 

numerical evaluation to obtain the results in Table S.A.3 is given in online supplement B. 
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Table S.A.3 

Maximum Standardized Prediction Variance 𝑑(𝑿, 𝜉) = 𝑁𝒙0′(𝑿′𝑿)−1𝒙0 for Each Design 

(row) Under the “True” Model (column)  

Note. Minimum efficiency (i.e. maximum d(𝐗, ξ)) per design in boldface. Recall that 

𝐱0′(𝐗′𝐗)−1𝐱0 is the component of equations (7) and (8) that depends on the normative 

sample. 

Design “True” model 

Model 

(1) 

Model 

(2) 

Model 

(3) 

Model 

(4) 

Model 

(5) 

2 Age levels. Equal weight 𝑤∗ =
1

4
 to −1 

and 1 of 𝑋1 = Age, for each level of 𝑋2 =

Sex  

3  4   

3 Age levels. Equal weight 𝑤∗ =
1

6
 to −1, 0, 

and 1 of 𝑋1 = Age, for each level of 𝑋2 =

Sex  

3.5 4 5 5.5 6 

3 Age levels. Equal weight 
3

16
 to −1 and 1 of 

𝑋1 = Age, and weight 
1

8
 to 0 of 𝑋1 = Age , 

for each level of 𝑋2 = Sex  

3.33 5 4.67 5 8 

4 Age levels. Equal weight 𝑤∗ =
1

8
 to 

−1, −0.333, 0.333 and 1 of 𝑋1 = Age, for 

each level of 𝑋2 = Sex  

3.8 4.8 5.6 6.6 7.6 

5 Age levels. Equal weight 𝑤∗ =
1

10
 to 

−1, −0.5, 0, 0.5 and 1 of 𝑋1 = Age, for each 

level of 𝑋2 = Sex  

4 5.43 6 7.43 8.86 

6 Age levels. Equal weight 𝑤∗ =
1

12
 to 

−1, −0.6, −0.2, 0.2, 0.6 and 1 of 𝑋1 = Age, 

for each level of 𝑋2 = Sex  

4.14 5.93 6.29 8.07 9.86 

13 Age levels. Equal weight 𝑤∗ =
1

26
 to 

−1, −0.833, −0.667, −0.5, −0.333, −0.167, 

 0, 0.167, 0.333, 0.5, 0.667, 0.833, and 1 of 

𝑋1 = Age, for each level of 𝑋2 = Sex  

4.57 7.71 7.14 10.29 13.43 
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