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This document includes the supplementary material of the study named Using

Structural Equation Modeling to Study Traits and States in Intensive Longitudinal

Data. The material is supplementary to the simulation study and the empirical

example. In relation to the simulation study, we provide (a) the true population pa-

rameters used during the simulation to generate the data, (b) a sensitivity analysis of

the Bayesian models, (c) the results of the simulation that was performed to manip-

ulate and explore the effect of the number of indicators, (d) the extended results of

the simulation taking into account the information criteria and the particular effect

of the trait-state variance ratio in some conditions, (e) the results of the additional

simulation that was performed to explore why the multilevel CUTS model failed to

fit to TSO data, and (f) a plot of the average bias of the autoregressive effect for the
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conditions where the TSO model was fitted to TSO data. Regarding the empirical

example, we present the results of the analyses when non-stationary time series were

excluded from the analyses, which reduced the sample size to 376 individuals. In par-

ticular, we added four tables that summarize these results: The first table shows the

ppp and the DIC of the models fitted to these data, the second and third tables show

the estimates of the multilevel TSO model and their credibility intervals for each set

of items, and the fourth table shows the estimates of the variance coefficients.

True Population Parameters

Table S1
MSST True Parameters per Trait-State Variance Ratio

MSST 1:3 MSST 1:1 MSST 3:1
Within loading λS1 1.00 1.00 1.00
Within loading λS2 0.50 0.50 0.50
Within loading λS3 1.30 1.30 1.30
Within loading λS4 0.80 0.80 0.80
State variance var(ζ) 1.80 1.20 0.60
Error variance var(ε1) 0.60 0.60 0.60
Error variance var(ε2) 0.25 0.25 0.25
Error variance var(ε3) 0.70 0.70 0.70
Error variance var(ε4) 0.50 0.50 0.50
Between loading λT1 1.00 1.00 1.00
Between loading λT2 0.50 0.50 0.50
Between loading λT3 1.30 1.30 1.30
Between loading λT4 0.80 0.80 0.80
Intercept α1 0.00 0.00 0.00
Intercept α2 0.20 0.20 0.20
Intercept α3 0.40 0.40 0.40
Intercept α4 0.60 0.60 0.60
Trait variance var(ξ) 0.60 1.20 1.80
Trait mean ξ̂ 4.00 4.00 4.00
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Table S2
CUTS True Parameters per Trait-State Variance Ratio

CUTS 1:3 CUTS 1:1 CUTS 3:1
Within loading λS1 1.00 1.00 1.00
Within loading λS2 0.50 0.50 0.50
Within loading λS3 1.30 1.30 1.30
Within loading λS4 0.80 0.80 0.80
Common State variance var(ζ) 1.80 1.20 0.60
Unique state variance var(ε1) 0.60 0.60 0.60
Unique state variance var(ε2) 0.25 0.25 0.25
Unique state variance var(ε3) 0.80 0.80 0.80
Unique state variance var(ε4) 0.50 0.50 0.50
Between loading λT1 1.00 1.00 1.00
Between loading λT2 0.50 0.50 0.50
Between loading λT3 1.30 1.30 1.30
Between loading λT4 0.80 0.80 0.80
Intercept α1 2.00 2.00 2.00
Intercept α2 2.50 2.50 2.50
Intercept α3 3.00 3.00 3.00
Intercept α4 3.50 3.50 3.50
Common Trait variance var(ξ) 0.40 1.00 1.60
Unique trait variance var(ϑ) 0.20 0.20 0.20
Unique trait variance var(ϑ) 0.10 0.10 0.10
Unique trait variance var(ϑ) 0.25 0.25 0.25
Unique trait variance var(ϑ) 0.15 0.15 0.15



4

Table S3
TSO True Parameters per Trait-State Variance Ratio

TSO 1:3 TSO 1:1 TSO 3:1
Within loading λS1 1.00 1.00 1.00
Within loading λS2 0.50 0.50 0.50
Within loading λS3 1.30 1.30 1.30
Within loading λS4 0.80 0.80 0.80
Occasion-specific residual variance var(ζ) 1.80 1.20 0.60
Error variance var(ε1) 0.60 0.60 0.60
Error variance var(ε2) 0.25 0.25 0.25
Error variance var(ε3) 0.70 0.70 0.70
Error variance var(ε4) 0.50 0.50 0.50
Autoregressive effect β 0.50 0.50 0.50
Intercept α1 2.00 2.00 2.00
Intercept α2 2.50 2.50 2.50
Intercept α3 3.00 3.00 3.00
Intercept α4 3.50 3.50 3.50
Latent trait indicator variance var(ξ1) 0.30 0.80 1.60
Latent trait indicator variance var(ξ2) 0.10 0.20 0.55
Latent trait indicator variance var(ξ3) 0.40 1.30 2.20
Latent trait indicator variance var(ξ4) 0.20 0.50 1.20
Cov(ξ1, ξ2) 0.14 0.32 0.75
Cov(ξ1, ξ3) 0.31 0.92 1.69
Cov(ξ2, ξ3) 0.16 0.41 0.88
Cov(ξ1, ξ4) 0.22 0.57 1.25
Cov(ξ2, ξ4) 0.10 0.22 0.57
Cov(ξ3, ξ4) 0.20 0.56 1.14
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Table S4
MSST True Variance Coefficient Components per Trait-State Variance Ratio

MSST 1:3 MSST 1:1 MSST 3:1
Reliability Y1 0.80 0.80 0.80
Reliability Y2 0.71 0.71 0.71
Reliability Y3 0.85 0.85 0.85
Reliability Y4 0.75 0.75 0.75

Consistency Y1 0.20 0.40 0.60
Consistency Y2 0.18 0.35 0.53
Consistency Y3 0.21 0.43 0.64
Consistency Y4 0.19 0.38 0.57
Occasion Specificity Y1 0.60 0.40 0.20
Occasion Specificity Y2 0.53 0.35 0.18
Occasion Specificity Y3 0.64 0.43 0.21
Occasion Specificity Y4 0.57 0.38 0.19

Table S5
CUTS True Variance Coefficient Components per Trait-State Variance Ratio

CUTS 1:3 CUTS 1:1 CUTS 3:1
Reliability Y1 0.80 0.80 0.80
Reliability Y2 0.72 0.72 0.72
Reliability Y3 0.83 0.83 0.83
Reliability Y4 0.76 0.76 0.76

Total Consistency Y1 0.20 0.40 0.60
Total Consistency Y2 0.22 0.39 0.56
Total Consistency Y3 0.19 0.41 0.62
Total Consistency Y4 0.20 0.38 0.57

Common Consistency Y1 0.13 0.33 0.53
Common Consistency Y2 0.11 0.28 0.44
Common Consistency Y3 0.14 0.35 0.57
Common Consistency Y4 0.12 0.31 0.50
Unique Consistency Y1 0.07 0.07 0.07
Unique Consistency Y2 0.11 0.11 0.11
Unique Consistency Y3 0.05 0.05 0.05
Unique Consistency Y4 0.07 0.07 0.07

Occasion Specificity Y1 0.60 0.40 0.20
Occasion Specificity Y2 0.50 0.33 0.17
Occasion Specificity Y3 0.64 0.43 0.21
Occasion Specificity Y4 0.56 0.37 0.19
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Table S6
TSO True Variance Coefficient Components per Trait-State Variance Ratio

TSO 1:3 TSO 1:1 TSO 3:1
Reliability Y1 0.82 0.80 0.80
Reliability Y2 0.74 0.71 0.75
Reliability Y3 0.86 0.85 0.84
Reliability Y4 0.78 0.75 0.77

Consistency Y1 0.27 0.40 0.60
Consistency Y2 0.26 0.35 0.60
Consistency Y3 0.27 0.42 0.60
Consistency Y4 0.26 0.37 0.60

Predictability by Trait Y1 0.09 0.27 0.53
Predictability by Trait Y2 0.11 0.24 0.55
Predictability by Trait Y3 0.08 0.28 0.52
Predictability by Trait Y4 0.09 0.25 0.54
Unpredictability by Trait Y1 0.18 0.13 0.07
Unpredictability by Trait Y2 0.16 0.12 0.05
Unpredictability by Trait Y3 0.20 0.14 0.08
Unpredictability by Trait Y4 0.17 0.13 0.06

Occasion Specificity Y1 0.55 0.40 0.20
Occasion Specificity Y2 0.47 0.35 0.15
Occasion Specificity Y3 0.59 0.43 0.24
Occasion Specificity Y4 0.52 0.38 0.17
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Sensitivity Analysis

When doing Bayesian estimation, researchers have to be careful in the selection

of their prior distributions because they can influence the estimates of the model. In

general, the effect of the prior distributions is diminished the larger the data are. For

the simulation study, we used the default prior distributions available in Mplus for

our Bayesian analyses. These default priors are uninformative priors, for example,

loadings are given normal priors N(0, 1010). To verify that a different selection of

priors would not affect our results, we conducted a sensitivity analysis on a random

sample of the analyses of the simulation. We selected one random replication from 20

random conditions, and fitted the Bayesian models using the default priors and some

weak priors selected by us (e.g., N(0, 5)). The results from these analyses showed that

the estimates are basically the same regardless of the priors. Differences between the

estimates at the within-level were not larger than 0.01 and differences between the

estimates at the between-level were not larger than 0.15. These larger differences

in the between-level were mainly associated to the variances, which are harder to

estimate because there was less information at this level due to the sample size. As

an example, Table S7 presents the estimates obtained by using both uninformative

and weak priors of one of the models in one of the replications.



8

Table S7
Estimates of the Multilevel TSO Model using Uninformative and Weak Priors with
the Base Model as the TSO, 30 Measurement Occasions, 0% Missing Values, and a
Trait-State Variance Ratio of 1:1.

Uninformative Priors Weak Priors
Within loading λS1 1.00 1.00
Within loading λS2 0.479 0.479
Within loading λS3 1.258 1.259
Within loading λS4 0.780 0.780
Occasion-specific residual variance var(ζ) 1.347 1.348
Error variance var(ε1) 0.599 0.599
Error variance var(ε2) 0.263 0.262
Error variance var(ε3) 0.644 0.642
Error variance var(ε4) 0.510 0.510
Autoregressive effect β 0.493 0.495
Intercept α1 1.930 1.935
Intercept α2 2.477 2.479
Intercept α3 2.903 2.918
Intercept α4 3.479 3.481
Latent trait indicator variance var(ξ1) 0.829 0.696
Latent trait indicator variance var(ξ2) 0.209 0.180
Latent trait indicator variance var(ξ3) 1.295 1.110
Latent trait indicator variance var(ξ4) 0.505 0.438
Cov(ξ1, ξ2) 0.339 0.279
Cov(ξ1, ξ3) 0.927 0.773
Cov(ξ2, ξ3) 0.424 0.352
Cov(ξ1, ξ4) 0.570 0.477
Cov(ξ2, ξ4) 0.235 0.192
Cov(ξ3, ξ4) 0.528 0.422
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Simulation: Effect of the Number of Indicators

When using the single-level state-trait SEMs, increasing the number of indica-

tors has a similar effect as increasing the number of measurement occasions in relation

to the number of observed variables that are included in the models. For example,

a study with six indicators and five measurement occasions has the same number of

observed variables as a study with three indicators and ten measurement occasions.

Because of this, it is reasonable to think that increasing the number of indicators also

impacts the performance of the models. However, this factor was kept fixed in the

simulation design because intensive longitudinal studies are not likely to include a lot

indicators to measure the same construct. Nevertheless, to verify how the number of

indicators might affect the performance of the models, we ran a small-scale simulation

where we manipulated this factor. In these analyses, the number of indicators was

varied between 4, 7, and 10; and the number of measurement occasions was varied

between 10, 20, 30, and 60. Moreover, we only analyzed the data with the same

model that was used to generate them.

The number of analyses that finished successfully given each condition are shown

in Figures S1 to S3. These plots clearly show that the number of indicators does not

impact the performance of the models but the number of measurement occasions

does. This difference can be explained by how each of these factors directly affects

the models. On the one hand, increasing the number of measurement occasions makes

the models more complex because it introduces more latent variables that have to be
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modeled for each additional occasion. For example, if we are using the CUTS model

in a design with 3 indicators and increase the number of measurement occasions from

10 to 20, the number of latent variables in the model increases from 14 to 24. On the

other hand, while increasing the number of indicators increases the number of loadings

and within-residual variances, it barely increases the number of latent variables that

have to be modeled. For example, if we are applying the CUTS model and increase

the number of indicators from 3 to 6 in a design with 10 measurement occasions, we

go from a model with 14 to a model with 17 latent variables. In conclusion, with

large datasets, single-level state-trait SEMs are more likely to run into convergence

issues the more latent variables there are in the model. Therefore, as increasing the

number of indicators barely increases the number of latent variables in the model,

including this factor in the simulation study was unnecessary.
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Simulation: Extended Results

In this section, we provide extended results of the simulation study. Firstly, we

give a brief summary of the information criteria indices, which are useful to decide

which model fitted the data best. Secondly, we include the results of the number of

successful analyses and the quality of the estimates related to the conditions with a

trait-state variance ratio different from 1:1.

Information Criteria

To decide which model fitted the data best, we used the information criterion

indices available in Mplus. This includes the Akaike Information Criterion (AIC), the

Bayesian Information Criterion (BIC), and the adjusted Bayesian Information Crite-

rion (aBIC) when the estimation method was MLE; and the Deviance Information

Criterion (DIC) when the estimation method was MCMC Gibbs sampling.

Concerning the information criteria, we were only able to compare models es-

timated with the same method. When the estimation method was MLE, we selected

among five models (MSST, ML-MSST, CUTS, ML-CUTS, and TSO) by means of

the AIC, the BIC, and the aBIC. The percentage of the number of times a model

was selected as the best model is shown in Table S8 given the model used to generate

the data. In most of the cases, the correct model was selected as the best model

regardless of whether it was the single level or the multilevel version. However, when

the data were generated based on the TSO model, the model selected as the best
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model was actually the ML-MSST in about a third of the analyses. This happened

because when the number of measurement occasions was large and the base model

was the TSO, the only model that converged by means of MLE was the ML-MSST

model (see Figures S4 to S9). Hence, it was the only model to pick from as the best

model.

Table S8
Percentage of Times a Model was Selected as Best Model According to the Information
Criteria Indices Available with Maximum Likelihood Estimation

Base Model Information
Criterion

Fitted Model
MSST ML-MSST CUTS ML-CUTS TSO

MSST
AIC 35.9 63.6 0.1 0.4 0
BIC 58.4 41.6 0 0 0
aBIC 58.2 41.6 0.2 0 0

CUTS
AIC 0 0 50.1 42.4 7.4
BIC 0 0 56.5 38.4 5.1
aBIC 0 0 42.9 38.4 18.7

TSO
AIC 0.1 42.8 0.7 1.1 55.4
BIC 6.6 36.2 0.7 1.1 55.4
aBIC 6.6 36.2 0.7 1.1 55.4

When the estimation method was Bayesian, we compared the models by means

of the DIC. The ML-TSO model was almost always selected as the best model across

all the conditions independently of the base model. For example, when the data were

generated based on the MSST model, the ML-TSO model was selected as the best

model 5383 times out of 5400 regardless of the number of measurement occasions, the

proportion of missing values, or the trait-state variance ratio. Note that if the data

were in wide format and had 30 measurement occasions or more, Mplus was unable

to compute the DIC.1This means that when the number of measurement occasions
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was 30 or more, the best model according to the DIC was selected only from the

multilevel models.

Effect of the Trait-State Variance Ratio

We included the trait-state variance ratio in the simulation design expecting

little to no differences when manipulating this factor. While this was generally true,

there are some particular conditions where the trait-state variance ratio interacts with

other manipulated factors and shows some effects in the performance of the models

and the quality of the estimates. In this section, we further explain these results.

First of all, in Figures S4 to S9, we present the number of analyses that finished

successfully in the conditions with a trait-state variance ratio different from 1:1 given

each proportion of missingness. In particular, Figures S7 to S9 show how having

more state-like variables can affect the performance of the MSST when analyzing

CUTS data and the performance of the TSO model when analyzing its own data.

Firstly, the single-level and the multilevel MSST models performed very poorly when

analyzing CUTS data across all conditions. This means that the MSST model is

problematic if the variables of interest are more state-like and if real method effects

are present in the data. Secondly, the single-level TSO model with MLE seemed to

1When doing the analyses in wide-format by means of the Gibbs sampling algorithm, the following
message was always printed in the Mplus output: “Problem occurred in the computation of the
posterior predictive p-value. This may be due to a singular sample variance-covariance matrix, such
as with zero sample variances.” This happened because of the large number of observed variables that
were included in some of our analyses (120, 240, 360), which led to huge sample variance-covariance
matrices. These huge matrices might make it impossible for Mplus to compute the deviance and the
posterior predictive p-value of the model.
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improve as the number of measurement occasions increased. One possible explanation

is that, because the variables were more state-like, more data was needed to correctly

capture the structure of the latent trait indicator variables (the trait component of

the variables).
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Figure S4 . Number of Successful Analyses per Condition with 0% Missingness and
3:1 Trait-State Variance Ratio

Finally, varying the trait-state variance ratio also had some specific effects in

the quality of the estimates of some of the parameters. Firstly, while the estimates

of the within factor loadings λSj
were practically unbiased in most conditions, they

tended to be overestimated when analyzing TSO data in conditions that had a trait-

state variance ratio of 3:1 with the MSST model. Moreover, as mentioned in the main
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Figure S5 . Number of Successful Analyses per Condition with 10% Missingness and
3:1 Trait-State Variance Ratio

text, the estimates of the consistencies tended to show more bias when the variables

were more state-like. In contrast, the estimates of the occasion-specificities tended to

show more bias when the variables were more trait-like.
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Simulation: Fitting the Multilevel CUTS model to TSO data

In the simulation study, it was unexpected that the multilevel version of the

CUTS model failed to converge to a reasonable solution in all the replications of

certain conditions. Particularly, the CUTS model failed when it was estimated with

maximum likelihood estimation (MLE) and the TSO model was used to generate the

data. As a consequence, we decided to further investigate these results.

To start with, we repeated some analyses under the problematic conditions.

We noted that the CUTS model was estimating at least one negative variance, which

resulted in an improper solution. To find what was causing these results, we repeated

part of the simulation changing the true parameters of the TSO model. Specifically,

we decided to modify the correlation matrix used to simulate the latent trait indicator

variables of the TSO. We followed the next process: (a) Generate a new correlation

matrix based on a specific seed, (b) simulate 50 datasets with 30 measurement occa-

sions and without missing values, (c) fit the multilevel CUTS model to the data by

means of MLE, (d) count how many analyses failed. This procedure was repeated 14

times, using seven different seeds and with high (i.e., 0.7, 0.8, 0.9) and low (i.e., 0.5,

0.6, 0.7) correlations.

The results of the analyses with high correlations are shown in Table S9. This

table presents the seed used to generate the correlation matrix, the correlation matrix,

its determinant, and the number of analyses that failed out of the 50 replications. The

first row is actually the correlation matrix used in the simulation of this study, which
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failed in 50 out of 50 analyses. Next, by generating the correlation matrix based on

a different seed, the results change dramatically. In some cases, the CUTS model did

an excellent job (seeds 13002 and 666), in other cases, the CUTS model was mediocre

(seeds 13003, 13004, and 2019), and in others, it failed completely (seeds 13001 and

13014).

We also repeated the previous simulations but with low correlations. The results

are shown in Table S10. In these cases, the CUTS model did, generally speaking, a

good job. There were only two situations were there was at least one analysis that

failed, and the number of analyses that failed was rather small.

To sum up, it is a fact that the correlation matrix used to generated the TSO

data has an effect on the number of analyses that fail when fitting the CUTS model

by means of MLE. Importantly, if the correlations in the correlation matrix are high

then it is more likely that analyses will fail. However, it is unclear what exactly in

the correlation matrix results in more failed analyses.
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Table S9
Results of Simulations Varying the Correlation Matrix of High Correlations used to
Generate TSO Data

High Correlations
Seed Correlation matrix Determinant # of Analyses that Failed

13001


1

0.8 1
0.9 0.8 1
0.9 0.7 0.7 1

 0.0077 50

13002


1

0.7 1
0.8 0.9 1
0.8 0.8 0.8 1

 0.0168 1

13003


1

0.8 1
0.8 0.7 1
0.9 0.9 0.8 1

 0.0117 15

13004


1

0.9 1
0.7 0.9 1
0.9 0.8 0.7 1

 0.0032 9

13014


1

0.9 1
0.8 0.9 1
0.7 0.9 0.8 1

 0.0045 49

666


1

0.8 1
0.7 0.7 1
0.7 0.7 0.7 1

 0.066 0

2019


1

0.7 1
0.7 0.8 1
0.7 0.7 0.9 1

 0.0288 7
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Table S10
Results of Simulations Varying the Correlation Matrix of Low Correlations used to
Generate TSO Data

Low Correlations
Seed Correlation matrix Determinant # of Analyses that Failed

13001


1

0.6 1
0.7 0.6 1
0.7 0.5 0.5 1

 0.1469 3

13002


1

0.5 1
0.6 0.7 1
0.6 0.6 0.6 1

 0.1616 0

13003


1

0.6 1
0.6 0.5 1
0.7 0.7 0.6 1

 0.1421 0

13004


1

0.7 1
0.5 0.7 1
0.7 0.6 0.5 1

 0.1236 0

13014


1

0.7 1
0.6 0.7 1
0.5 0.7 0.6 1

 0.1205 1

666


1

0.6 1
0.5 0.5 1
0.5 0.5 0.5 1

 0.28 0

2019


1

0.5 1
0.5 0.6 1
0.5 0.5 0.7 1

 0.21 0
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Average Bias of the Autoregressive Effect
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Figure S10 . Average Bias of the Autoregressive Effect when fitting the single-level
and multilevel TSO models to TSO data.
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Empirical Example Excluding Non-stationary Time Series

Stationarity is an important assumption of state-trait SEMs when analyzing

intensive longitudinal data. For this reason, the HND data were analyzed a second

time but excluding individuals with at least one non-stationary time series. To test

for stationarity, we used the Kwiatkowski–Phillips–Schmidt–Shin test (Kwiatkowski,

Phillips, Schmidt, & Shin, 1992). This procedure reduced our sample size from 644

to 376 individuals. Next, we present the fit measures of the MSST, the CUTS, and

TSO models in Table S11. The DICs indicated that the TSO model fit best the data.

Moreover, Tables S12 and S13 present the estimates of the TSO model for the two

samples: The sample with 644 individuals and the sample with 376 individuals that

excludes non-stationary time series. Finally, Table S14 presents the estimates of the

variance coefficients for the TSO model on the sample without non-stationary time

series.

Although there were some small differences in the estimates, they were not large

enough to change our interpretation of the results. For example, the autoregressive

effect of the multilevel TSO model fitted to the items of positive affect deactivation

went from 0.37 with the whole sample to 0.32 with the stationary sample (see S12).

However, the fact that the differences were not substantial does not mean that sta-

tionarity is not a required assumption for state-trait SEMs. Simply, in this particular

data the violations of stationarity were not large enough to bias our results. In gen-

eral, we advice practitioners to always test for stationarity and to fit the models with
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both the whole sample and the stationary sample. If the results from these analyses

lead to different interpretations, the results from the stationary sample should be

preferred.

Table S11
ppp and DIC of the Three Models for the Two Sets of Items

MSST CUTS TSO

PAD ppp 0.614 0.655 -
DIC 688083.833 680948.219 656303.508

PAA ppp 0.603 0.650 -
DIC 687287.995 680842.489 647618.688

Table S12
Estimates of the Multilevel TSO for the Items of Positive Affect Deactivation

N = 644 N = 376
Parameter θ̂ θ̂

(Credibility Interval) (Credibility Interval)
Within Loading R 1 1
Within Loading Co 0.89 (0.88, 0.9) 0.89 (0.87, 0.91)
Within Loading Ca 0.89 (0.87, 0.9) 0.86 (0.84, 0.88)
Autoregressive Effect 0.37 (0.36, 0.38) 0.32 (0.3, 0.33)
Within Variance R 74.15 (72.01, 76.23) 71.74 (68.87, 74.58)
Within Variance Co 135.45 (133.12, 137.79) 136.67 (133.63, 139.93)
Within Variance Ca 130.34 (128.14, 132.6) 132.21 (129.34, 135.27)
Latent Occasion-Specific
Residual Variance: PAD

143.56 (140.3, 146.98) 153.02 (148.56, 157.57)

Latent Trait Indicator Vari-
ance: R

124.38 (111.26, 139.93) 104.89 (90.66, 122.35)

Latent Trait Indicator Vari-
ance: Co

157.47 (141.13, 176.96) 141.34 (121.83, 164.55)

Latent Trait Indicator Vari-
ance: Ca

138.43 (123.97, 155.18) 121.22 (104.68, 141.38)

Covariance R-Co 119.75 (106.39, 135.84) 104.95 (89.11, 123.77)
Covariance R-Ca 119.04 (105.89, 134.48) 100.89 (86.2, 118.49)
Covariance Co-Ca 117.98 (104.05, 134.32) 104.87 (88.3, 124.26)
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Table S13
Estimates of the Multilevel TSO for the Items of Positive Affect Activation

N = 644 N = 376
Parameter θ̂ θ̂

(Credibility Interval) (Credibility Interval)
Within Loading Eg 1 1
Within Loading Et 1.13 (1.11, 1.14) 1.13 (1.11, 1.14)
Within Loading Ch 1.05 (1.04, 1.06) 1.06 (1.05, 1.08)
Autoregressive Effect 0.32 (0.31, 0.33) 0.28 (0.26, 0.29)
Within Variance Eg 140.1 (137.91, 142.36) 140.66 (137.75, 143.57)
Within Variance Et 68.83 (66.92, 70.72) 68.51 (66, 71.04)
Within Variance Ch 92.11 (90.21, 94.06) 92.41 (89.9, 94.99)
Latent Occasion-Specific
Residual Variance: PAD

158.55 (155.06, 162.17) 163.11 (158.39, 167.91)

Latent Trait Indicator Vari-
ance: Eg

144.93 (129.81, 162.75) 119.77 (103.65, 139.86)

Latent Trait Indicator Vari-
ance: Et

148.82 (133.23, 167.41) 128.13 (110.17, 149.22)

Latent Trait Indicator Vari-
ance: Ch

152.34 (136.63, 170.84) 125.63 (108.52, 146.89)

Covariance Eg-Et 130.74 (116.22, 147.84) 110.42 (94.28, 129.97)
Covariance Eg-Ch 127.22 (112.71, 144.05) 105.07 (89.49, 124.2)
Covariance Et-Ch 138.49 (123.49, 156.24) 115.51 (98.71, 135.75)

Table S14
Variance Coefficients of the Three Models for the Two Sets of Items

Variance Coefficient Items

PAD

Relaxed Content Calm
Reliability 0.79 0.67 0.65

Consistency 0.35 0.38 0.35
Predictability by Trait 0.30 0.34 0.32
Unpredictability by Trait 0.05 0.03 0.03

Occasion Specificity 0.44 0.29 0.30

PAA

Energetic Enthusiastic Cheerful
Reliability 0.68 0.84 0.78

Consistency 0.30 0.34 0.34
Predictability by Trait 0.27 0.30 0.30
Unpredictability by Trait 0.03 0.04 0.04

Occasion Specificity 0.37 0.49 0.44
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