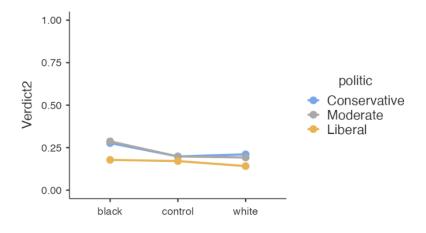
Supplemental Materials

Table of Contents

Study 1: Moderation by Political Affiliation	2
Study 1: Moderation by Modern Racism	3
Study 1: Moderation by Bayesian Racism	
Study 1: Moderation by Internal Motivation to Respond without Prejudice	
Study 1: Moderation by External Motivation to Respond without Prejudice	6
Study 2: Detailed Power Analysis for Three-way Interactions	7
Study 2: Moderation by Political Affiliation	8
Study 2: Moderation by Modern Racism	10
Study 2: Moderation by Bayesian Racism	12
Study 2: Moderation by Internal Motivation to Respond without Prejudice	15
Study 2: Moderation by External Motivation to Respond without Prejudice	17
The Impact of Manipulations on Prejudice-Related Measures	19
Details on restricted range of prejudice-related measures	19
Analyses comparing White and Black photos on relevant traits	20

Study 1: Moderation by Political Affiliation

Below are the results of a logistic regression predicting verdicts in the second focal case (Black defendant only) from (a) a set of dummy codes representing the credentialing manipulation (with the prior Black defendant as the reference group), (b) a categorical political affiliation measure (with conservatives as the reference group), and (c) all interactions.


Log Likelihood Ratio Tests

6			
	χ^2	df	p
Omnibus Credentialing Effect	4.78	2, 1009	.092
Political Affiliation	5.58	2, 1009	.061
Credentialing Effect*Political Affiliation	1.15	4, 1009	.886

Parameter Estimates

	B	SE	Odds	Lower	Upper	z	p
			Ratio				
No (vs. Black defendant) prior case	-0.32	0.19	0.72	0.50	1.04	-1.73	.084
White (vs. Black defendant) prior case	-0.39	0.19	0.68	0.46	0.99	-2.00	.045
Liberal (vs. Conservative)	-0.41	0.19	0.66	0.45	0.97	-2.12	.034
Moderate (vs. Conservative)	-0.02	0.19	0.98	0.68	1.41	-0.12	.908
No (vs. Black) prior*Lib (vs. Cons)	0.39	0.46	1.47	0.60	3.65	0.84	.401
White (vs. Black) prior*Lib (vs. Cons)	0.09	0.48	1.09	0.43	2.79	0.19	.852
No (vs. Black) prior*Mod (vs. Cons)	-0.05	0.45	0.95	0.39	2.27	-0.12	.906
White (vs. Black) prior*Mod (vs. Cons)	-0.16	0.45	0.85	0.35	2.06	-0.36	.717

Political affiliation was a significant predictor of verdicts, such that liberals were significantly less likely to convict a Black defendant than were conservatives (moderates and conservatives did not differ). The effect of our credentialing manipulation did not significantly differ depending on participants' political affiliation.

Study 1: Moderation by Modern Racism

Below are the results of a logistic regression predicting verdicts in the second focal case (Black defendant only) from (a) a set of dummy codes representing the credentialing manipulation (with the prior Black defendant as the reference group), (b) a continuous Modern Racism Scale score, and (c) all interactions.

Log Likelihood Ratio Tests

	χ^2	df	p
Omnibus Credentialing Effect	6.07	2, 1012	.048
Modern Racism Score	26.64	1, 1012	< .001
Credentialing Effect*Modern Racism Score	0.46	2, 1012	.794

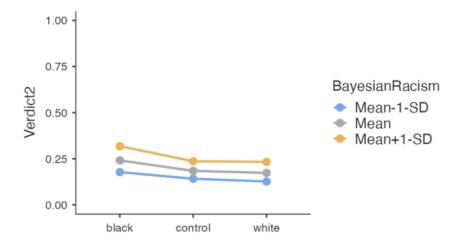
Parameter Estimates

		95% <i>OR CI</i> s					
	В	SE	Odds Ratio	Lower	Upper	z	p
No (vs. Black defendant) prior case	-0.37	0.19	0.69	0.47	1.00	-1.95	.051
White (vs. Black defendant) prior case	-0.44	0.20	0.64	0.43	0.95	-2.23	.026
Modern Racism Score (MR)	0.42	0.08	1.53	1.30	1.79	5.16	< .001
No (vs. Black) prior case*MR	0.01	0.20	1.01	0.68	1.49	0.03	.976
White (vs. Black) prior case*MR	0.12	0.20	1.13	0.76	1.68	0.60	.547

Modern racism was a significant predictor of verdicts, such that higher modern racism scores were significantly associated with increased convictions of the Black defendant in the second focal case. The effect of our credentialing manipulation did not, however, depend on participants' endorsement of modern racism.

Study 1: Moderation by Bayesian Racism

Below are the results of a logistic regression predicting verdicts in the second focal case (Black defendant only) from (a) a set of dummy codes representing the credentialing manipulation (with the prior Black defendant as the reference group), (b) a continuous Bayesian Racism Scale score, and (c) all interactions.


Log Likelihood Ratio Tests

	χ^2	df	р
Omnibus Credentialing Effect	5.22	2, 1012	.073
Bayesian Racism Score	21.79	1, 1012	< .001
Credentialing Effect*Bayesian Racism Score	0.16	2, 1012	.923

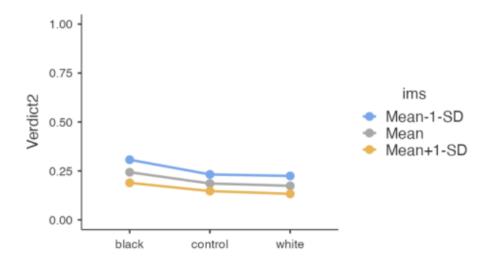
P	arameter	Estimates

		95% <i>OR CI</i> s					
	B	SE	Odds	Lower	Upper	\boldsymbol{z}	p
			Ratio				
No (vs. Black defendant) prior case	-0.34	0.19	0.71	0.49	1.03	-1.78	.075
White (vs. Black defendant) prior case	-0.41	0.20	0.66	0.45	0.97	-2.10	.036
Bayesian Racism Score (BR)	0.29	0.06	1.34	1.18	1.51	4.67	< .001
No (vs. Black) prior case*BR	-0.06	0.15	0.95	0.71	1.26	-0.38	.702
White (vs. Black) prior case*BR	-0.01	0.15	0.99	0.73	1.33	-0.08	.939

Bayesian racism was a significant predictor of verdicts, such that higher Bayesian racism scores were significantly associated with increased convictions of the Black defendant in the second focal case. The effect of our credentialing manipulation did not, however, depend on participants' endorsement of Bayesian racism.

Study 1: Moderation by Internal Motivation to Respond without prejudice

Below are the results of a logistic regression predicting verdicts in the second focal case (Black defendant only) from (a) a set of dummy codes representing the credentialing manipulation (with the prior Black defendant as the reference group), (b) a continuous Internal Motivation to Respond without prejudice score, and (c) all interactions.


Log Likelihood Ratio Tests

	χ^2	df	p
Omnibus Credentialing Effect	5.50	2, 1012	.064
Internal Motivation to Respond without prejudice	16.96	1, 1012	< .001
Score (IMS)			
Credentialing Effect*IMS	0.06	2, 1012	.971

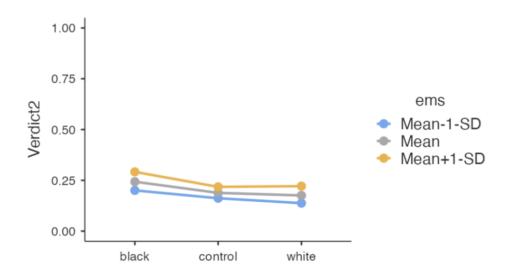
Parameter Estimates

	95% <i>OR CI</i> s						
	В	SE	Odds Ratio	Lower	Upper	z	p
No (vs. Black defendant) prior case	-0.34	0.19	0.71	0.49	1.03	-1.81	.070
White (vs. Black defendant) prior case	-0.42	0.20	0.66	0.44	0.96	-2.16	.031
Int. Motiv. to Respond without prejudice	-0.27	0.06	0.76	0.67	0.87	-4.18	< .001
(IMS)							
No (vs. Black) prior case*IMS	0.03	0.16	1.04	0.76	1.41	0.22	.825
White (vs. Black) prior case*IMS	0.003	0.16	1.00	0.74	1.37	0.02	.986

Internal Motivation to Respond without prejudice Score (IMS) was a significant predictor of verdicts, such that higher IMS scores were significantly associated with decreased convictions of the Black defendant in the second focal case. The effect of our credentialing manipulation did not, however, depend on participants' IMS scores.

Study 1: Moderation by External Motivation to Respond without prejudice

Below are the results of a logistic regression predicting verdicts in the second focal case (Black defendant only) from (a) a set of dummy codes representing the credentialing manipulation (with the prior Black defendant as the reference group), (b) a continuous External Motivation to Respond without prejudice score, and (c) all interactions.


Log Likelihood Ratio Tests

	χ^2	df	p
Omnibus Credentialing Effect	5.17	2, 1012	.076
External Motiv. to Respond without prejudice Score	9.23	1, 1012	.002
(EMS)			
Credentialing Effect*EMS	0.28	2, 1012	.870

Parameter Estimates

	95% <i>OR CI</i> s						
	В	SE	Odds Ratio	Lower	Upper	Z	p
No (vs. Black defendant) prior case	-0.33	0.19	0.72	0.50	1.04	-1.74	.082
White (vs. Black defendant) prior case	-0.41	0.19	0.66	0.45	0.97	-2.11	.035
Ext. Motiv. to Respond without	0.12	0.04	1.13	1.04	1.22	3.02	.003
prejudice (EMS)							
No (vs. Black) prior case*EMS	-0.03	0.09	0.97	0.80	1.16	-0.35	.729
White (vs. Black) prior case*EMS	0.02	0.10	1.02	0.84	1.24	0.21	.834

External Motivation to Respond without prejudice Score (EMS) was a significant predictor of verdicts, such that higher EMS scores were significantly associated with increased convictions of the Black defendant in the second focal case. The effect of our credentialing manipulation did not, however, depend on participants' EMS scores.

Study 2: Detailed Power Analysis for Three-way Interactions

We conducted sensitivity analyses following the process set out by van Lissa (2017). We simulated data for 1,253 participants across the 18 study conditions. We simulated the two-way interaction between our two manipulations, and then included the third variable (political orientation) and simulated a scenario where that two-way interaction persists for moderate and conservative participants but is eliminated out for liberal participants. We repeated the simulation process 1,000 times. We found that, given the sample size and 80% power, the minimal detectable effect size for the two-way interaction is d = .47, but the minimal detectable effect size for the overall three-way interaction is d = 1.13.

We then confirmed if this sensitivity analysis strategy was consistent with the proposed rule of thumb ((Giner-Sorrola's, 2018; Ledgerwood, YEAR). We conducted a power analysis for the three-way interaction if we assumed an effect of d = .47 and a sample size of 4,996 (4*1,249). In line with our power simulation, we would need 4 times the sample to be powered to detect an effect of d = .47 in the 3-way interaction.

Next, we followed the same process for each of the simple effects, using the number of participants in that cell. Specifically, when participants identified as conservative and the second defendant was Black, the analysis indicated that we were powered at 80% to detect a credentialing effect as small as d = .18, given the sample size of 220 and an alpha of .05. When participants identified as conservative and the second defendant was White, the analysis indicated that we were powered at 80% to detect a credentialing effect as small as d = .18, given the sample size of 194 and an alpha of .05. When participants identified as liberal and the second defendant was Black, the analysis indicated that we were powered at 80% to detect a credentialing effect as small as d = .17 given the sample size of 174 and an alpha of .05. Finally, when participants identified as liberal and the second defendant was White, the analysis indicated that we were powered at 80% to detect a credentialing effect as small as d = .18, given the sample size of 195 and an alpha of .05.

In summary, we were well-powered to detect the two-way interaction among our manipulations. Although we were not powered to detect the overall three-way interaction (which would have required somewhere between 3,852 and 4,996 participants to detect), we were well-powered to test each of the hypothesized simple effects.

Study 2: Moderation by Political Affiliation

Below are the results of a logistic regression predicting verdicts in the second focal case from (a) a set of dummy codes representing the credentialing manipulation (with the prior Black defendant as the reference group), (b) our defendant race manipulation in the second case (Black defendant as reference group), (c) a categorical political affiliation score, and (d) all interactions.

Log Likelihood Ratio Tests

	χ^2	df	p
Omnibus Credentialing Effect	30.35	2, 1231	< .001
Second case: Defendant Race	4.32	1, 1231	.038
Political Affiliation Score	5.66	2, 1231	.059
Credentialing Effect*Defendant Race	0.33	2, 1231	.848
Credentialing Effect*Political Affiliation	2.15	4, 1231	.707
Defendant Race*Political Affiliation	3.29	2, 1231	.193
Credentialing Effect*Def. Race*Pol. Aff.	3.87	4, 1231	.425

Parameter Estimates

				95% (
	В	SE	Odds Ratio	Lower	Upper	Z	p
No (vs. Black defendant) prior case	-0.74	0.15	0.48	0.36	0.64	-4.87	<.001
White (vs. Black defendant) prior case	-0.66	0.15	0.52	0.39	0.69	-4.47	<.001
Defendant race	-0.26	0.12	0.77	0.61	0.99	-2.08	.038
Moderate (vs. Conservative) Political Affiliation	-0.34	0.15	0.72	0.53	0.96	-2.27	.023
Liberal (vs. Conservative) Political Affiliation	-0.08	0.15	0.93	0.69	1.25	-0.49	.624
Defendant race*Mod (vs. Cons)	0.06	0.30	1.06	0.59	1.90	0.20	.839
Defendant race*Lib (vs. Cons)	-0.46	0.31	0.63	0.35	1.16	-1.49	.137
White (vs. Black) prior*Defendant race	0.02	0.30	1.02	0.57	1.82	0.06	.951
No (vs. Black) prior*Defendant race	0.16	0.30	1.18	0.65	2.14	0.54	.590
White (vs. Black) prior case*Mod (vs. Cons)	0.12	0.36	1.13	0.56	2.28	0.35	.727
White (vs. Black) prior case*Lib (vs. Cons)	0.45	0.36	1.57	0.77	3.21	1.24	.216
No (vs. Black) prior case*Mod (vs. Cons)	0.11	0.36	1.12	0.55	2.26	0.30	.762
No (vs. Black) prior case*Lib (vs. Cons)	0.01	0.38	1.01	0.48	2.11	0.03	.979
White (vs. Black) prior*Def. race*Mod (vs.	0.77	0.71	2.15	0.53	8.73	1.08	.282
Cons)							
White (vs. Black) prior*Def. race*Lib (vs. Cons)	0.67	0.73	1.96	0.47	8.19	0.92	.355
No (vs. Black) prior*Def. race*Mod (vs. Cons)	1.30	0.72	3.66	0.89	15.15	1.80	.072

No (vs. Black) prior*Def. race*Lib (vs. Cons)	1.13	0.75	3.09	0.71	13.59	1.50	.134

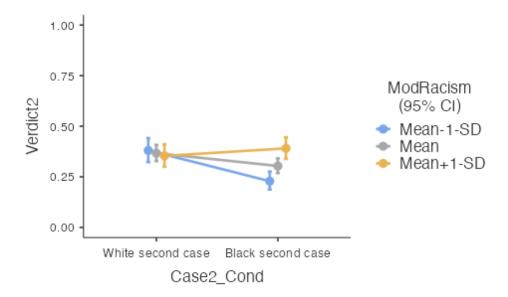
Political affiliation was a significant predictor of verdicts, such that moderates were significantly less likely to convict a Black defendant than were conservatives (liberals and conservatives did not differ). The effect of our credentialing manipulation did not significantly differ depending on participants' political affiliation.

Study 2: Moderation by Modern Racism

Below are the results of a logistic regression predicting verdicts in the second focal case from (a) a set of dummy codes representing the credentialing manipulation (with the prior Black defendant as the reference group), (b) our defendant race manipulation in the second case (Black defendant as reference group), (c) a continuous Modern Racism Scale score, and (d) all interactions.

Log Likelihood Ratio Tests

	χ^2	df	p
Omnibus Credentialing Effect	32.22	2, 1241	< .001
Second case: Defendant Race	05.23	1, 1241	.022
Modern Racism Score (MR)	07.04	1, 1241	.008
Credentialing Effect*Defendant Race	0.55	2, 1241	.759
Credentialing Effect*MR	0.70	2, 1241	.705
Defendant Race*MR	13.06	1, 1241	< .001
Credentialing Effect*Defendant Race*MR	0.51	2, 1241	.774


Parameter Estimates

		95% OR CIs						
	B	SE	Odds	Lower	Upper	\boldsymbol{z}	p	
			Ratio					
No (vs. Black defendant) prior case	-0.74	0.15	0.48	0.35	0.64	-4.90	<.001	
White (vs. Black defendant) prior case	-0.70	0.15	0.50	0.37	0.66	-4.73	<.001	
Second Case: Defendant Race	-0.28	0.12	0.75	0.59	0.96	-2.29	.022	
Modern Racism Score (MR)	0.17	0.07	1.19	1.05	1.35	2.65	.008	
No (vs. Black) prior case*Def. Race	0.06	0.30	1.07	0.59	1.93	0.21	.831	
White (vs. Black) prior case*Def. Race	-0.16	0.30	0.85	0.47	1.52	-0.54	.586	
No (vs. Black) prior case*MR	0.01	0.16	1.01	0.74	1.37	0.04	.969	
White (vs. Black) prior case*MR	0.12	0.16	1.13	0.83	1.53	0.76	.447	
Defendant Race*MR	0.47	0.13	1.60	1.24	2.07	3.59	<.001	
No (vs. Black) prior case*Def. Race*MR	-0.01	0.32	0.99	0.53	1.85	-0.02	.982	
White (vs. Black) prior case*Def. Race*MR	0.20	0.31	1.22	0.66	2.25	0.63	.532	

Modern racism was a significant predictor of verdicts, such that higher modern racism scores were significantly associated with increased convictions overall. This effect was qualified, however, by a significant interaction between modern racism and defendant race. More specifically, those who were relatively higher in modern racism (+1 SD) were unaffected by defendant race, B = 0.16, OR = 1.17, 95% CI [1.17, 0.84], P = .35. In contrast, those who were at the mean, P = -0.28, P = 0.75, 95% P = 0.75, 95% P = 0.75, 0.96], P = 0.75, or relatively lower in modern racism (-1 P = 0.75), P = 0.75, P = 0.

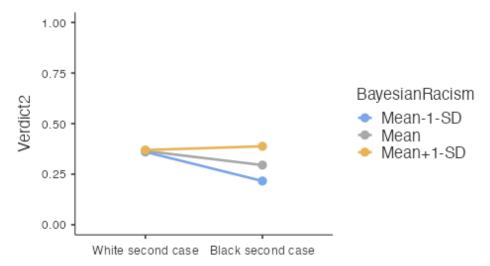
racism effects. That is, those who had average or relatively lower modern racism scores were significantly more likely to convict the White defendant relative to the Black defendant in the second case.

The effect of our credentialing manipulation did not, however, depend on participants' endorsement of modern racism.

Study 2: Moderation by Bayesian Racism

Below are the results of a logistic regression predicting verdicts in the second focal case from (a) a set of dummy codes representing the credentialing manipulation (with the prior Black defendant as the reference group), (b) our defendant race manipulation in the second case (Black defendant as reference group), (c) a continuous Bayesian Racism Scale score, and (d) all interactions.

Log Likelihood Ratio Tests


6			
	χ^2	df	р
Omnibus Credentialing Effect	33.03	2, 1241	< .001
Second case: Defendant Race	6.34	1, 1241	.012
Bayesian Racism Score (BR)	12.24	1, 1241	< .001
Credentialing Effect*Defendant Race	0.24	2, 1241	.889
Credentialing Effect*BR	7.84	2, 1241	.020
Defendant Race*BR	10.20	1, 1241	.001
Credentialing Effect*Defendant Race*BR	2.67	2, 1241	.263

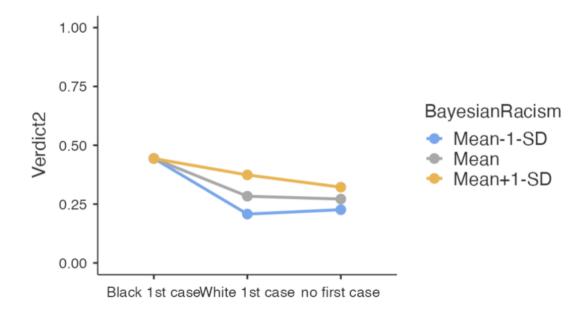
Parameter Estimates

				_			
	B	SE		Lower	Upper	\boldsymbol{z}	p
			Ratio				
No (vs. Black defendant) prior case	-0.76	0.15	0.47	0.35	0.63	-5.02	<.001
White (vs. Black defendant) prior case	-0.70	0.15	0.50	0.37	0.66	-4.68	<.001
Second Case: Defendant Race	-0.32	0.13	0.73	0.57	0.93	-2.51	.012
Bayesian Racism Score (BR)	0.17	0.05	1.19	1.08	1.31	3.50	<.001
No (vs. Black) prior case*Def. Race	0.03	0.30	1.03	0.57	1.87	.10	.923
White (vs. Black) prior case*Def. Race	-0.12	0.30	0.89	0.49	1.60	39	.699
No (vs. Black) prior case*BR	0.19	0.12	1.21	0.96	1.55	1.58	.114
White (vs. Black) prior case*BR	0.33	0.12	1.39	1.10	1.76	2.77	.006
Def. Race*BR	0.32	0.10	1.37	1.13	1.67	3.17	.001
No (vs. Black) prior case*Def. Race*BR	0.33	0.25	1.39	0.86	2.26	1.35	.176
White (vs. Black) prior case*Def. Race*BR	0.34	0.24	1.41	0.89	2.26	1.45	.147

Bayesian racism was a significant predictor of verdict, such that higher Bayesian racism scores were significantly associated with increased convictions in the second focal case. This effect was qualified, however, by a significant interaction between Bayesian racism and defendant race. More specifically, those who were relatively higher in Bayesian racism (+1 SD) were unaffected by defendant race, B = 0.08, OR = 1.08, 95% CI [0.78, 1.51], p = .64. In contrast, those who were at the mean, B = -0.32, OR = 0.73, 95% CI [0.57, 0.93], p = .01, or relatively lower in Bayesian racism (-1 SD), B = -.71, OR = 0.49, 95% CI [0.34, 0.71], p < .001,

showed significant reverse racism effects. That is, those who had average or relatively lower Bayesian racism scores were significantly more likely to convict the White defendant relative to the Black defendant in the second case.

Among all of the moderation analyses that we ran across both studies, this analysis produced the only significant interaction between the credentialing manipulation and an individual difference measure. The pattern was unexpected and was not evident in Study 1, thus we are not confident it is reliable and, therefore, do not draw conclusions from it. For transparency, however, we report it here.


The credentialing manipulation significantly affected verdicts for those relatively lower, $\chi^2 = 34.20$, p < .001, at the mean, $\chi^2 = 33.00$, p < .001, and relatively higher, $\chi^2 = 5.95$, p = .051, in Bayesian racism.

For those who reported lower Bayesian racism (-1 SD), participants who had established non-racist credentials (i.e., those who voted Not Guilty for a prior Black defendant), were significantly more likely to convict the defendant compared to those who voted Not Guilty in the same prior case but with a White defendant, B = -1.14, OR = 0.33, 95% CI [0.21, 0.50], p < .001, or those who did not judge a prior case, B = -1.01, OR = 0.27, 95% CI [0.24, 0.56], p < .001.

We found a similar pattern for those who reported average levels of Bayesian racism. Participants with average levels of Bayesian racism, who had established non-racist credentials (i.e., those who voted Not Guilty for a prior Black defendant), were significantly more likely to convict the defendant compared to those who voted Not Guilty in the same prior case but with a White defendant, B = -0.70, OR = 0.50, 95% CI [0.37, 0.67], p < .001, or those who did not judge a prior case, B = -0.76, OR = 0.47, 95% CI [0.35, 0.63], p < .001.

We found a similar, but weaker, effect for those who were relatively higher in Bayesian racism (+ 1 SD). Participants with relatively higher Bayesian racism scores, who had established non-racist credentials (i.e., those who voted Not Guilty for a prior Black defendant) were significantly more likely to convict the defendant compared to those who did not judge a prior case, B = -0.52, OR = 0.60, 95% CI [0.39, 0.90], p = .015. Although participants with relatively lower Bayesian racism demonstrated the expected credentialing effect, participants with relatively higher Bayesian racism showed no differences in verdicts between those who established non-racist credentials (i.e., judged a prior Black defendant) and those who did not (i.e., judged a prior White defendant), B = -0.29, OR = 0.75, 95% CI [0.50, 1.21], p = .16.

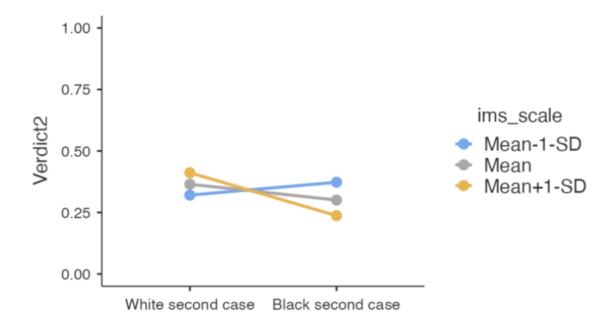
In summary, establishing non-racist credentials increased convictions significantly —for Black and White defendants—among all levels of Bayesian racism. However, for those who were relatively higher in Bayesian racism, the credentialed condition was significantly different from not judging a prior case at all but was not significantly different from voting Not Guilty for the same case with a White defendant.

Study 2: Moderation by Internal Motivation to Respond without prejudice

Below are the results of a logistic regression predicting verdicts in the second focal case from (a) a set of dummy codes representing the credentialing manipulation (with the prior Black defendant as the reference group), (b) our defendant race manipulation in the second case (Black defendant as reference group), (c) a continuous Internal Motivation to Respond without prejudice score, and (d) all interactions.

Log Likelihood Ratio Tests

	χ^2	df	р
Omnibus Credentialing Effect	31.84	2, 1241	< .001
Second case: Defendant Race	5.42	1, 1241	.020
Internal Motivation to Respond without prejudice	1.00	1, 1241	.318
(IMS)			
Credentialing Effect*Defendant Race	0.51	2, 1241	.776
Credentialing Effect*IMS	2.79	2, 1241	.248
Defendant Race*IMS	17.58	1, 1241	<.001
Credentialing Effect*Defendant Race*IMS	1.88	2, 1241	.392


Parameter Estimates

		95% <i>OR CI</i> s					
	B	SE	Odds	Lower	Upper	\boldsymbol{z}	p
			Ratio				
No (vs. Black defendant) prior case	-0.74	0.15	0.48	0.35	0.64	-4.90	<.001
White (vs. Black defendant) prior case	-0.69	0.15	0.50	0.37	0.67	-4.66	<.001
Second Case: Defendant Race	-0.29	0.12	0.75	0.59	0.96	-2.33	.020
Internal Motivation to Respond without prejudice	-0.04	0.04	0.96	0.90	1.04	-1.00	.315
(IMS)							
No (vs. Black) prior case*Defendant Race	0.08	0.30	1.09	0.60	1.97	0.27	.786
White (vs. Black) prior case*Defendant Race	-0.14	0.30	0.87	0.49	1.55	-0.47	.636
No (vs. Black) prior case*IMS	-0.01	0.09	0.99	0.83	1.18	-0.15	.879
White (vs. Black) prior case*IMS	-0.13	0.08	0.88	0.74	1.04	-1.54	.123
Defendant Race*IMS	-0.30	0.07	0.74	0.64	0.85	-4.11	<.001
No (vs. Black) prior case*Def. Race*IMS	-0.25	0.18	0.78	0.54	1.11	-1.35	.176
White (vs. Black) prior case*Def. Race*IMS	-0.09	0.17	0.91	0.65	1.27	-0.55	.586

Internal Motivation to Respond without prejudice (IMS) was not a significant predictor of verdicts overall. This effect was qualified, however, by a significant interaction between IMS and defendant race. More specifically, those who were relatively lower in internal motivation (-1 SD) were unaffected by defendant race, B = 0.23, OR = 0.18, 95% CI [0.89, 1.78], p = .19. In

contrast, those who were at the mean, B = -0.29, OR = 0.75, 95% CI [0.59, 0.96], p = .02, or relatively higher in internal motivation to respond without prejudice (+1 SD), B = -0.81, OR = 0.44, 95% CI [0.31, 0.63], p < .001, showed significant reverse racism effects. That is, those who had average or relatively higher internal motivation to respond without prejudice were significantly more likely to convict the White defendant relative to the Black defendant in the second case.

The effect of our credentialing manipulation did not depend on participants' IMS scores.

Study 2: Moderation by External Motivation to Respond without prejudice

Below are the results of a logistic regression predicting verdicts in the second focal case from (a) a set of dummy codes representing the credentialing manipulation (with the prior Black defendant as the reference group), (b) our defendant race manipulation in the second case (Black defendant as reference group), (c) a continuous External Motivation to Respond without prejudice score, and (d) all interactions.

Log Likelihood Ratio Tests

sog Ememmeda Hand Tests			
	χ^2	df	p
Omnibus Credentialing Effect	30.66	2, 1241	< .001
Second case: Defendant Race	5.19	1, 1241	.023
External Motivation to Respond without prejudice	4.22	1, 1241	.040
(EMS)			
Credentialing Effect*Defendant Race	0.23	2, 1241	.890
Credentialing Effect*EMS	4.60	2, 1241	.100
Defendant Race*EMS	3.70	1, 1241	.054
Credentialing Effect*Defendant Race*EMS	4.06	2, 1241	.131

Parameter Estimates

				95% (=,		
	B	SE	Odds	Lower	Upper	\boldsymbol{z}	p
			Ratio				
No (vs. Black defendant) prior case	-0.73	0.15	0.48	0.36	0.65	-4.86	<.001
White (vs. Black defendant) prior case	-0.66	0.15	0.52	0.39	0.69	-4.52	<.001
Second Case: Defendant Race	-0.28	0.12	0.76	0.59	0.96	-2.28	.023
External Motiv. to Respond without prejudice	0.06	0.03	1.06	1.00	1.12	2.05	.040
(EMS)							
No (vs. Black) prior case*Def. Race	0.11	0.30	1.11	0.62	2.00	0.35	.724
White (vs. Black) prior case*Def. Race	-0.04	0.29	0.96	0.54	1.71	-0.14	.888
No (vs. Black) prior case*EMS	0.06	0.07	1.06	0.92	1.22	0.80	.422
White (vs. Black) prior case*EMS	0.15	0.07	1.16	1.01	1.32	2.13	.033
Defendant Race*EMS	0.11	0.06	1.12	1.00	1.25	1.92	.055
No (vs. Black) prior case*Def. Race*EMS	0.28	0.14	1.32	1.00	1.75	1.95	.051
White (vs. Black) prior case*Def. Race*EMS	0.18	0.14	1.20	0.92	1.57	1.33	.185

External Motivation to Respond without prejudice (EMS) was a significant predictor of verdicts in the second focal case, such that higher EMS scores were significantly associated with

increased convictions in the subsequent case. The effect of our credentialing manipulation did not significantly depend on EMS.

The Impact of Manipulations on Prejudice-Related Measures (Study 2)

We conducted analyses of our manipulations on our prejudice-related measures and found reported prejudice-related variables were influenced by our manipulations. More specifically, we found that, compared to participants who judged an initial Black defendant, participants who did not judge a prior case, B = 0.19, OR = 1.22, 95% CI [1.07, 1.38], p = .003, or initially judged a White defendant, B = 0.19, OR = 1.21, 95% CI [1.07, 1.37], p = .003, reported significantly more modern racism. They also reported significantly greater Bayesian racism than did those who did not judge a prior case, B = 0.21, OR = 1.24, 95% CI [1.04, 1.47], p = .01, or initially judged a White defendant, B = 0.19, OR = 1.21, 95% CI [1.02, 1.43], p = .03. Finally, they reported marginally or significantly lower internal motivation to respond without prejudice than did those who did not judge a prior case, B = -0.23, OR = 0.79, 95% CI [0.62, 1.01], p = .057, or initially judged a White defendant, B = .26, OR = .77, 95% CI [.61, .98], p = .057.031. This not only limits our ability to draw conclusions about whether the effect of our credentialing manipulation depends on explicit prejudice measures, but also serves as a warning to future researchers who include these measures after manipulating race in legal settings. If possible, having participants complete these measures in an ostensibly unrelated session would be ideal.

In contrast, an ordinal regression demonstrated that the neither manipulation nor the interaction predicted the likelihood that participants identified as conservative, moderate, or liberal, all ps > .19.

Details on restricted range of Prejudice-Related Measures

Our proposed explanation for why our credentialing manipulation had different effects for political subgroups raises an obvious question: if this is due to conservatives and liberals having different levels of racial prejudice and different motives for controlling it, why didn't those measures moderate the credentialing manipulation? We suspect that the political affiliation variable was less vulnerable to the very social desirability concerns we explored in these experiments. We had an equal distribution of conservatives (Study 1 = 34.6%, Study 2 = 33.1%), moderates (Study 1 = 31.2%, Study 2 = 37.3%), and liberals (Study 1 = 34.2%, Study 2 = 37.3%) 29.5%) in our samples, but our prejudice-related variables were positively skewed in both studies (Modern Racism = .61, .67, Bayesian Racism = .608, .612), with a small proportion being willing to admit any racial prejudice. Participants were, on average below the midpoint on Bayesian Racism (M = 2.56-2.61 out of 7, 74-75% scoring below the midpoint, across the two studies), Modern Racism (M = 2.36-2.27 out of 5, 59-63% below the midpoint), and External Motivation to Respond without prejudice (M = 4.34-4.52 out of 10, 45-57.5% below the midpoint). However, the more anti-prejudice—and therefore more socially desirable—attitudes were very negatively skewed in both studies (-1.23, -1.43); for Internal Motivation to Respond without prejudice, participants were above the midpoint on average (M = 7.35-7.43 out of 10, only 7.4-8.3% below the midpoint). Because so few people were willing to endorse the less socially desirable end of the scales, these measures might not have had enough construct validity or range to detect interactions with our manipulations.

Analyses Comparing White and Black Photographs on Relevant Traits

Study 1

The database provides information on how each photo was rated on a variety of characteristics, enabling us to ensure that our White and Black faces were (a) likely to be perceived as the race we intended and (b) similar across racial categories on relevant characteristics. First, we chose faces that were unambiguous when it came to race: all of the Black defendant photographs we chose were rated as Black by 100% of raters, and all White defendant photographs we chose were rated as White by 100% of raters. Second, we compared the eight Black photos (four used in the first case and four used in the second case) and four White photos (used in the first case where we manipulated race) on six theoretically relevant traits. We confirmed that the eight Black photographs did not significantly differ from the four White photographs on any of these six traits, in terms of how threatening (Black: M = 2.68, SD =0.52; White: M = 2.83, SD = 0.37, t(10) = .61, p = .56), baby-faced (Black: M = 2.24, SD = 0.42; White: M = 2.38, SD = 0.24, t(10) = .62, p = .55), dominant (Black: M = 3.63, SD = 0.43; White: M = 3.51, SD = 0.43, t(10) = -.44, p = .67), attractive (Black: M = 3.28, SD = 0.59; White: M = 0.593.33, SD = 0.57, t(10) = .15, p = .89), trustworthy (Black: M = 3.37, SD = 0.34; White: M = 3.10, SD = 0.27, t(10) = -1.40, p = .19), and masculine (Black: M = 5.09, SD = 0.25; White: M = 4.47, SD = 0.25, t(10) = -2.08, p = .06) raters perceived them to be.

Study 2

Our materials were very similar to Study 1 with the addition of a White defendant condition to the second, focal case. This necessitated an additional set of four White defendant photos for the second ambiguous case. Similar to Study 1, we chose White faces that were unambiguously White (100% of raters classified them as White). We re-ran analyses from Study 1 and confirmed that—after adding the four new White faces—the eight Black photographs did not significantly differ from the eight White photographs, in terms of how threatening (Black: M = 2.68, SD = 0.52; White: M = 2.65, SD = 0.32, t(14) = -1.65, p = .87), baby-faced (Black: M = 2.24, SD = 0.42; White: M = 2.23, SD = 0.27, t(14) = -0.8, p = .94), dominant (Black: M = 3.63, SD = 0.43; White: M = 3.35, SD = 0.44, t(14) = -1.27, p = .23), attractive (Black: M = 3.28, SD = 0.59; White: M = 3.22, SD = 0.45, t(14) = -1.23, p = .82), trustworthy (Black: M = 3.37, SD = 0.34; White: M = 3.16, SD = 0.26, t(14) = -1.41, p = .18), and masculine (Black: M = 5.09, SD = 0.25; White: M = 4.90, SD = 0.28, t(14) = -1.45, t(14) = -1.45