Supplemental Table 1

References for Studies and Data Sets Included in Meta-analysis Models

<table>
<thead>
<tr>
<th>Source ID</th>
<th>Sample ID</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
</table>

Note. These sources have linked parents’ stress, parents’ physical health, parents’ mental health, parents’ SES, parents’ employment status, and parents’ marital status with parental differential treatment.
Supplemental Table 2

Source and Effect-Size Characteristics for Models Examining Correlations Between Parents’ Stress and PDT

<table>
<thead>
<tr>
<th>Source ID</th>
<th>Sample ID</th>
<th>Peer-reviewed</th>
<th>Sample size</th>
<th># of effect sizes</th>
<th>U.S. Avg. fam. size</th>
<th>Avg. age difference</th>
<th>Used beta</th>
<th>Avg. age of child</th>
<th>White (%)</th>
<th>Latinx (%)</th>
<th>Black (%)</th>
<th>Same-sex sibling pairs (%)</th>
<th>Male (%)</th>
<th>Younger target siblings (%)</th>
<th>Variation or perception</th>
<th>Recollected or concurrent</th>
<th>Types of PDT</th>
<th>Child or parent report</th>
<th>PDT from mom, dad, or both</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>172</td>
<td>16</td>
<td>N</td>
<td>2.43</td>
<td>2.2</td>
<td>N</td>
<td>6.30</td>
<td>90.2</td>
<td>-</td>
<td>-</td>
<td>46.51</td>
<td>49.71</td>
<td>50</td>
<td>V</td>
<td>C</td>
<td>P, N, C, P, M, D</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>N</td>
<td>164–170</td>
<td>2</td>
<td>Y</td>
<td>2.65</td>
<td>3.08</td>
<td>N</td>
<td>16.32</td>
<td>64</td>
<td>0</td>
<td>12.8</td>
<td>100</td>
<td>48.00</td>
<td>48</td>
<td>P</td>
<td>C</td>
<td>O, C</td>
<td>M, D</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>N</td>
<td>196–201</td>
<td>2</td>
<td>Y</td>
<td>2.60</td>
<td>3.16</td>
<td>N</td>
<td>16.25</td>
<td>70.7</td>
<td>0.5</td>
<td>12.5</td>
<td>0</td>
<td>48.29</td>
<td>46.34</td>
<td>P</td>
<td>C</td>
<td>O</td>
<td>M, D</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>N</td>
<td>163–170</td>
<td>2</td>
<td>Y</td>
<td>2.74</td>
<td>3.03</td>
<td>N</td>
<td>17.35</td>
<td>64.8</td>
<td>0</td>
<td>12.8</td>
<td>100</td>
<td>48.30</td>
<td>48.86</td>
<td>P</td>
<td>C</td>
<td>O</td>
<td>M, D</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>N</td>
<td>191–202</td>
<td>2</td>
<td>Y</td>
<td>2.66</td>
<td>3.18</td>
<td>N</td>
<td>17.21</td>
<td>70.9</td>
<td>0.5</td>
<td>12.0</td>
<td>0</td>
<td>48.54</td>
<td>46.12</td>
<td>P</td>
<td>C</td>
<td>O</td>
<td>M, D</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>N</td>
<td>142–162</td>
<td>2</td>
<td>Y</td>
<td>2.62</td>
<td>2.98</td>
<td>N</td>
<td>18.42</td>
<td>64.7</td>
<td>0</td>
<td>12.5</td>
<td>100</td>
<td>49.71</td>
<td>48.55</td>
<td>P</td>
<td>C</td>
<td>O</td>
<td>M, D</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>N</td>
<td>178–196</td>
<td>2</td>
<td>Y</td>
<td>2.6</td>
<td>3.13</td>
<td>N</td>
<td>18.3</td>
<td>71.9</td>
<td>0</td>
<td>10.6</td>
<td>0</td>
<td>48.28</td>
<td>45.81</td>
<td>P</td>
<td>C</td>
<td>O</td>
<td>M, D</td>
</tr>
<tr>
<td>23</td>
<td>11</td>
<td>N</td>
<td>192–198</td>
<td>108</td>
<td>Y</td>
<td>2.60</td>
<td>2.41</td>
<td>N</td>
<td>13.77</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>54.55</td>
<td>50</td>
<td>V, P C</td>
<td>C</td>
<td>M, D, B</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>11</td>
<td>N</td>
<td>192–196</td>
<td>108</td>
<td>Y</td>
<td>2.56</td>
<td>2.53</td>
<td>N</td>
<td>13.67</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50.00</td>
<td>50</td>
<td>V, P C</td>
<td>C</td>
<td>M, D, B</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>11</td>
<td>N</td>
<td>186–196</td>
<td>108</td>
<td>Y</td>
<td>2.60</td>
<td>2.41</td>
<td>N</td>
<td>14.79</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>54.08</td>
<td>50</td>
<td>V, P C</td>
<td>C</td>
<td>M, D, B</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>11</td>
<td>N</td>
<td>186–192</td>
<td>108</td>
<td>Y</td>
<td>2.57</td>
<td>2.54</td>
<td>N</td>
<td>14.67</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50.00</td>
<td>50</td>
<td>V, P C</td>
<td>C</td>
<td>M, D, B</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>11</td>
<td>N</td>
<td>188–196</td>
<td>108</td>
<td>Y</td>
<td>2.61</td>
<td>2.41</td>
<td>N</td>
<td>15.8</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>54.08</td>
<td>50</td>
<td>V, P C</td>
<td>C</td>
<td>M, D, B</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>11</td>
<td>N</td>
<td>184–190</td>
<td>108</td>
<td>Y</td>
<td>2.57</td>
<td>2.54</td>
<td>N</td>
<td>15.67</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50.00</td>
<td>50</td>
<td>V, P C</td>
<td>C</td>
<td>M, D, B</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>12</td>
<td>N</td>
<td>162–198</td>
<td>84</td>
<td>Y</td>
<td>2.74</td>
<td>3.80</td>
<td>N</td>
<td>12.24</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>50.00</td>
<td>50</td>
<td>V, P C</td>
<td>C</td>
<td>M, D, B</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>12</td>
<td>N</td>
<td>158–206</td>
<td>84</td>
<td>Y</td>
<td>2.86</td>
<td>3.62</td>
<td>N</td>
<td>12.22</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>48.48</td>
<td>50</td>
<td>V, P C</td>
<td>C</td>
<td>M, D, B</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>12</td>
<td>N</td>
<td>80–112</td>
<td>36</td>
<td>Y</td>
<td>2.74</td>
<td>3.59</td>
<td>N</td>
<td>13.96</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>50.00</td>
<td>50</td>
<td>V, C</td>
<td>C</td>
<td>M, D, B</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>12</td>
<td>N</td>
<td>190–278</td>
<td>36</td>
<td>Y</td>
<td>2.76</td>
<td>3.77</td>
<td>N</td>
<td>13.02</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>50.00</td>
<td>50</td>
<td>V, C</td>
<td>C</td>
<td>M, D, B</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>12</td>
<td>N</td>
<td>132–184</td>
<td>24</td>
<td>Y</td>
<td>2.62</td>
<td>3.68</td>
<td>N</td>
<td>14.37</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>51.05</td>
<td>50</td>
<td>V, C</td>
<td>P</td>
<td>M, D</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>12</td>
<td>N</td>
<td>132–196</td>
<td>24</td>
<td>Y</td>
<td>2.60</td>
<td>3.82</td>
<td>N</td>
<td>14.49</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>48.91</td>
<td>50</td>
<td>V, C</td>
<td>P</td>
<td>M, D</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>13</td>
<td>N</td>
<td>166–196</td>
<td>108</td>
<td>Y</td>
<td>2.59</td>
<td>2.54</td>
<td>N</td>
<td>9.61</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>48.98</td>
<td>50</td>
<td>V, P C</td>
<td>C</td>
<td>M, D, B</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>13</td>
<td>N</td>
<td>178–210</td>
<td>108</td>
<td>Y</td>
<td>2.49</td>
<td>2.68</td>
<td>N</td>
<td>9.52</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50.00</td>
<td>50</td>
<td>V, P C</td>
<td>C</td>
<td>M, D, B</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>13</td>
<td>N</td>
<td>169–196</td>
<td>144</td>
<td>Y</td>
<td>2.58</td>
<td>2.54</td>
<td>N</td>
<td>10.57</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>48.98</td>
<td>50</td>
<td>V, P C</td>
<td>C</td>
<td>M, D, B</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Year</td>
<td>Series</td>
<td>Varies</td>
<td>Y/N</td>
<td>R/C</td>
<td>N</td>
<td>C</td>
<td>V</td>
<td>P</td>
<td>M</td>
<td>D</td>
<td>B</td>
<td>PDT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>13</td>
<td>N</td>
<td>193–206</td>
<td>Y</td>
<td>2.51</td>
<td>2.67</td>
<td>N 10.48</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50.00</td>
<td>50</td>
<td>V, P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>13</td>
<td>N</td>
<td>181–196</td>
<td>Y</td>
<td>2.6</td>
<td>2.54</td>
<td>N 11.57</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>48.98</td>
<td>50</td>
<td>V, P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>13</td>
<td>N</td>
<td>192–206</td>
<td>Y</td>
<td>2.52</td>
<td>2.67</td>
<td>N 11.48</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50.00</td>
<td>50</td>
<td>V, P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>13</td>
<td>N</td>
<td>156–160</td>
<td>Y</td>
<td>2.6</td>
<td>2.53</td>
<td>N 13.09</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>48.98</td>
<td>50</td>
<td>V, C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>13</td>
<td>N</td>
<td>172–176</td>
<td>Y</td>
<td>2.52</td>
<td>2.61</td>
<td>N 13.03</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50.00</td>
<td>50</td>
<td>V, C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>13</td>
<td>N</td>
<td>150–156</td>
<td>Y</td>
<td>2.61</td>
<td>2.55</td>
<td>N 14.09</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>48.98</td>
<td>50</td>
<td>V, C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>13</td>
<td>N</td>
<td>160–166</td>
<td>Y</td>
<td>2.53</td>
<td>2.66</td>
<td>N 13.98</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50.00</td>
<td>50</td>
<td>V, C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>13</td>
<td>N</td>
<td>164–190</td>
<td>Y</td>
<td>2.57</td>
<td>2.51</td>
<td>N 15.22</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>48.96</td>
<td>50</td>
<td>V, C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>13</td>
<td>N</td>
<td>168–196</td>
<td>Y</td>
<td>2.52</td>
<td>2.66</td>
<td>N 15.13</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50.00</td>
<td>50</td>
<td>V, C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>13</td>
<td>N</td>
<td>158–186</td>
<td>Y</td>
<td>2.56</td>
<td>2.50</td>
<td>N 16.12</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>48.94</td>
<td>50</td>
<td>V, C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>13</td>
<td>N</td>
<td>168–192</td>
<td>Y</td>
<td>2.56</td>
<td>2.65</td>
<td>N 15.99</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50.00</td>
<td>50</td>
<td>V, C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>13</td>
<td>N</td>
<td>158–182</td>
<td>Y</td>
<td>2.34</td>
<td>2.53</td>
<td>N 17.11</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>47.83</td>
<td>50</td>
<td>V, C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>13</td>
<td>N</td>
<td>90–196</td>
<td>Y</td>
<td>2.48</td>
<td>2.67</td>
<td>N 17.04</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50.00</td>
<td>50</td>
<td>V, C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>13</td>
<td>N</td>
<td>88–112</td>
<td>Y</td>
<td>2.34</td>
<td>2.49</td>
<td>N 17.66</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>42.37</td>
<td>50</td>
<td>V, C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>13</td>
<td>N</td>
<td>106–112</td>
<td>Y</td>
<td>2.17</td>
<td>2.50</td>
<td>N 25.12</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>43.06</td>
<td>50</td>
<td>V, P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>13</td>
<td>N</td>
<td>114–130</td>
<td>Y</td>
<td>2.65</td>
<td>2.05</td>
<td>N 24.85</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50.99</td>
<td>50</td>
<td>V, P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>2</td>
<td>Y</td>
<td>920</td>
<td>N</td>
<td>2.52</td>
<td>2.27</td>
<td>N 3.5</td>
<td>58.5</td>
<td>-</td>
<td>0</td>
<td>6.0</td>
<td>42.32</td>
<td>51.63</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>14</td>
<td>Y</td>
<td>246</td>
<td>Y</td>
<td>3.39</td>
<td>2.96</td>
<td>N 18.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>54.47</td>
<td>49.59</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supplemental Table 3

Source and Effect-Size Characteristics for Models Examining Correlations Between Parents’ Physical Health and PDT

<table>
<thead>
<tr>
<th>Source ID</th>
<th>Sample Size</th>
<th>Peer-reviewed</th>
<th>Sample size</th>
<th># of effect sizes</th>
<th>U.S.</th>
<th>Avg. Fam. size</th>
<th>Avg. age difference</th>
<th>Used beta</th>
<th>Avg. age of child</th>
<th>White (%)</th>
<th>Latinx (%)</th>
<th>Black (%)</th>
<th>Same-sex sibling pairs (%)</th>
<th>Male (%)</th>
<th>Younger target siblings (%)</th>
<th>Variation or perception</th>
<th>Recollected or concurrent</th>
<th>Types of PDT</th>
<th>Child or parent report</th>
<th>PDT from mom, dad, or both</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>11</td>
<td>N</td>
<td>198</td>
<td>36</td>
<td>Y</td>
<td>2.60</td>
<td>2.41</td>
<td>N</td>
<td>13.77</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>54.55</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>M, D, B</td>
<td>M, D, B</td>
<td>M, D, B</td>
</tr>
<tr>
<td>24</td>
<td>11</td>
<td>N</td>
<td>192–196</td>
<td>36</td>
<td>Y</td>
<td>2.56</td>
<td>2.53</td>
<td>N</td>
<td>13.67</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>M</td>
<td>M, D, B</td>
<td>M, D, B</td>
<td>M, D, B</td>
</tr>
<tr>
<td>25</td>
<td>11</td>
<td>N</td>
<td>192–196</td>
<td>36</td>
<td>Y</td>
<td>2.60</td>
<td>2.41</td>
<td>N</td>
<td>14.79</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>54.08</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>M, D, B</td>
<td>M, D, B</td>
<td>M, D, B</td>
</tr>
<tr>
<td>26</td>
<td>11</td>
<td>N</td>
<td>192</td>
<td>36</td>
<td>Y</td>
<td>2.57</td>
<td>2.54</td>
<td>N</td>
<td>14.67</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>C</td>
<td>M, D, B</td>
<td>M, D, B</td>
<td>M, D, B</td>
</tr>
<tr>
<td>27</td>
<td>11</td>
<td>N</td>
<td>194–196</td>
<td>36</td>
<td>Y</td>
<td>2.61</td>
<td>2.41</td>
<td>N</td>
<td>15.80</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>54.08</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>M, D, B</td>
<td>M, D, B</td>
<td>M, D, B</td>
</tr>
<tr>
<td>28</td>
<td>11</td>
<td>N</td>
<td>188–190</td>
<td>36</td>
<td>Y</td>
<td>2.57</td>
<td>2.54</td>
<td>N</td>
<td>15.67</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>M</td>
<td>M, D, B</td>
<td>M, D, B</td>
<td>M, D, B</td>
</tr>
<tr>
<td>37</td>
<td>13</td>
<td>N</td>
<td>195–196</td>
<td>48</td>
<td>Y</td>
<td>2.58</td>
<td>2.54</td>
<td>N</td>
<td>10.57</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>48.98</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>M, D, B</td>
<td>M, D, B</td>
<td>M, D, B</td>
</tr>
<tr>
<td>38</td>
<td>13</td>
<td>N</td>
<td>205–206</td>
<td>48</td>
<td>Y</td>
<td>2.51</td>
<td>2.67</td>
<td>N</td>
<td>10.48</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>M</td>
<td>M, D, B</td>
<td>M, D, B</td>
<td>M, D, B</td>
</tr>
<tr>
<td>39</td>
<td>13</td>
<td>N</td>
<td>195–196</td>
<td>48</td>
<td>Y</td>
<td>2.60</td>
<td>2.54</td>
<td>N</td>
<td>11.57</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>48.98</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>M, D, B</td>
<td>M, D, B</td>
<td>M, D, B</td>
</tr>
<tr>
<td>40</td>
<td>13</td>
<td>N</td>
<td>202–206</td>
<td>48</td>
<td>Y</td>
<td>2.52</td>
<td>2.67</td>
<td>N</td>
<td>11.48</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>M</td>
<td>M, D, B</td>
<td>M, D, B</td>
<td>M, D, B</td>
</tr>
<tr>
<td>45</td>
<td>13</td>
<td>N</td>
<td>168–188</td>
<td>44</td>
<td>Y</td>
<td>2.57</td>
<td>2.51</td>
<td>N</td>
<td>15.22</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>48.96</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>M, D, B</td>
<td>M, D, B</td>
<td>M, D, B</td>
</tr>
<tr>
<td>46</td>
<td>13</td>
<td>N</td>
<td>182–194</td>
<td>44</td>
<td>Y</td>
<td>2.52</td>
<td>2.66</td>
<td>N</td>
<td>15.13</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>M</td>
<td>M, D, B</td>
<td>M, D, B</td>
<td>M, D, B</td>
</tr>
<tr>
<td>57</td>
<td>15</td>
<td>Y</td>
<td>542</td>
<td>3</td>
<td>Y</td>
<td>4.40</td>
<td>-</td>
<td>Y</td>
<td>42.80</td>
<td>69.8</td>
<td>0</td>
<td>30.2</td>
<td>-</td>
<td>50.7</td>
<td>P</td>
<td>-</td>
<td>C</td>
<td>M, D, B</td>
<td>M, D, B</td>
<td>M, D, B</td>
</tr>
<tr>
<td>58</td>
<td>16</td>
<td>N</td>
<td>300–334</td>
<td>18</td>
<td>Y</td>
<td>2.82</td>
<td>2.70</td>
<td>N</td>
<td>15.77</td>
<td>74.2</td>
<td>3.1</td>
<td>20.8</td>
<td>100</td>
<td>42.86</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>M, D, B</td>
<td>M, D, B</td>
<td>M, D, B</td>
</tr>
<tr>
<td>59</td>
<td>16</td>
<td>N</td>
<td>279–316</td>
<td>18</td>
<td>Y</td>
<td>2.78</td>
<td>2.59</td>
<td>N</td>
<td>15.92</td>
<td>67.3</td>
<td>4.8</td>
<td>25.6</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>M, D, B</td>
<td>M, D, B</td>
<td>M, D, B</td>
</tr>
</tbody>
</table>

Supplemental Table 4

Source and Effect-Size Characteristics for Models Examining Correlations Between Parents’ Mental Health and PDT

<table>
<thead>
<tr>
<th>Source ID</th>
<th>Sample ID</th>
<th>Peer-reviewed</th>
<th>Sample size</th>
<th># of effect sizes</th>
<th>U.S. Avg. fam. size</th>
<th>Used beta</th>
<th>Avg. age of child</th>
<th>White (%)</th>
<th>Latinx (%)</th>
<th>Black (%)</th>
<th>Same-sex sibling pairs (%)</th>
<th>Male (%)</th>
<th>Younger target siblings (%)</th>
<th>Variance or perception</th>
<th>Recollected or concurrent</th>
<th>Types of PDT</th>
<th>Child or parent report</th>
<th>PDT from mom, dad, or both</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>5</td>
<td>N</td>
<td>164–170</td>
<td>2</td>
<td>Y</td>
<td>2.65</td>
<td>3.08</td>
<td>N</td>
<td>16.32</td>
<td>64</td>
<td>0</td>
<td>12.8</td>
<td>100</td>
<td>48</td>
<td>48</td>
<td>P, C</td>
<td>O</td>
<td>C, M, D</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>N</td>
<td>196–201</td>
<td>2</td>
<td>Y</td>
<td>2.60</td>
<td>3.16</td>
<td>N</td>
<td>16.25</td>
<td>70.70</td>
<td>0.5</td>
<td>12.5</td>
<td>0</td>
<td>48.29</td>
<td>46.34</td>
<td>P, C</td>
<td>O</td>
<td>C, M, D</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>N</td>
<td>163–170</td>
<td>2</td>
<td>Y</td>
<td>2.74</td>
<td>3.03</td>
<td>N</td>
<td>17.35</td>
<td>64.80</td>
<td>0.5</td>
<td>12.8</td>
<td>100</td>
<td>48.30</td>
<td>48.86</td>
<td>P, C</td>
<td>O</td>
<td>C, M, D</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>N</td>
<td>191–202</td>
<td>2</td>
<td>Y</td>
<td>2.66</td>
<td>3.18</td>
<td>N</td>
<td>17.21</td>
<td>70.90</td>
<td>0.5</td>
<td>12.0</td>
<td>0</td>
<td>48.54</td>
<td>46.12</td>
<td>P, C</td>
<td>O</td>
<td>C, M, D</td>
</tr>
<tr>
<td>23</td>
<td>11</td>
<td>N</td>
<td>198</td>
<td>36</td>
<td>Y</td>
<td>2.60</td>
<td>2.41</td>
<td>N</td>
<td>13.77</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>54.55</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>C, M, D, B</td>
</tr>
<tr>
<td>24</td>
<td>11</td>
<td>N</td>
<td>194–196</td>
<td>36</td>
<td>Y</td>
<td>2.56</td>
<td>2.53</td>
<td>N</td>
<td>13.67</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>C, M, D, B</td>
</tr>
<tr>
<td>25</td>
<td>11</td>
<td>N</td>
<td>194–196</td>
<td>36</td>
<td>Y</td>
<td>2.60</td>
<td>2.41</td>
<td>N</td>
<td>14.79</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>C, M, D, B</td>
</tr>
<tr>
<td>26</td>
<td>11</td>
<td>N</td>
<td>192</td>
<td>36</td>
<td>Y</td>
<td>2.57</td>
<td>2.54</td>
<td>N</td>
<td>14.67</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>C, M, D, B</td>
</tr>
<tr>
<td>27</td>
<td>11</td>
<td>N</td>
<td>194–196</td>
<td>36</td>
<td>Y</td>
<td>2.61</td>
<td>2.41</td>
<td>N</td>
<td>15.8</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>C, M, D, B</td>
</tr>
<tr>
<td>28</td>
<td>11</td>
<td>N</td>
<td>190</td>
<td>36</td>
<td>Y</td>
<td>2.57</td>
<td>2.54</td>
<td>N</td>
<td>15.67</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>C, M, D, B</td>
</tr>
<tr>
<td>29</td>
<td>12</td>
<td>N</td>
<td>183–198</td>
<td>28</td>
<td>Y</td>
<td>2.74</td>
<td>3.80</td>
<td>N</td>
<td>12.24</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>C, M, D, B</td>
</tr>
<tr>
<td>30</td>
<td>12</td>
<td>N</td>
<td>189–206</td>
<td>28</td>
<td>Y</td>
<td>2.86</td>
<td>3.62</td>
<td>N</td>
<td>12.22</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>48.48</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>C, M, D, B</td>
</tr>
<tr>
<td>31</td>
<td>12</td>
<td>N</td>
<td>92–112</td>
<td>12</td>
<td>Y</td>
<td>2.74</td>
<td>3.59</td>
<td>N</td>
<td>13.96</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>V, C</td>
<td>P</td>
<td>C, M, D</td>
</tr>
<tr>
<td>32</td>
<td>12</td>
<td>N</td>
<td>228–278</td>
<td>12</td>
<td>Y</td>
<td>2.76</td>
<td>3.77</td>
<td>N</td>
<td>13.02</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, C</td>
<td>P</td>
<td>C, M, D</td>
</tr>
<tr>
<td>33</td>
<td>12</td>
<td>N</td>
<td>152–184</td>
<td>8</td>
<td>Y</td>
<td>2.62</td>
<td>3.68</td>
<td>N</td>
<td>14.37</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>50</td>
<td>51.05</td>
<td>50</td>
<td>V, C</td>
<td>P</td>
<td>C, M, D</td>
</tr>
<tr>
<td>34</td>
<td>12</td>
<td>N</td>
<td>168–196</td>
<td>8</td>
<td>Y</td>
<td>2.60</td>
<td>3.82</td>
<td>N</td>
<td>14.49</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>48.91</td>
<td>50</td>
<td>V, C</td>
<td>P</td>
<td>C, M, D</td>
</tr>
<tr>
<td>35</td>
<td>13</td>
<td>N</td>
<td>190–196</td>
<td>36</td>
<td>Y</td>
<td>2.59</td>
<td>2.54</td>
<td>N</td>
<td>9.61</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48.98</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>C, M, D, B</td>
</tr>
<tr>
<td>36</td>
<td>13</td>
<td>N</td>
<td>190–210</td>
<td>36</td>
<td>Y</td>
<td>2.49</td>
<td>2.68</td>
<td>N</td>
<td>9.52</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>C, M, D, B</td>
</tr>
<tr>
<td>37</td>
<td>13</td>
<td>N</td>
<td>195–196</td>
<td>48</td>
<td>Y</td>
<td>2.58</td>
<td>2.54</td>
<td>N</td>
<td>10.57</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48.98</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>C, M, D, B</td>
</tr>
<tr>
<td>38</td>
<td>13</td>
<td>N</td>
<td>205–206</td>
<td>48</td>
<td>Y</td>
<td>2.51</td>
<td>2.67</td>
<td>N</td>
<td>10.48</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>C, M, D, B</td>
</tr>
<tr>
<td>39</td>
<td>13</td>
<td>N</td>
<td>195–196</td>
<td>48</td>
<td>Y</td>
<td>2.60</td>
<td>2.54</td>
<td>N</td>
<td>11.57</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48.98</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>C, M, D, B</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>40</td>
<td>13</td>
<td>N</td>
<td>204–206</td>
<td>48</td>
<td>Y</td>
<td>2.52</td>
<td>2.67</td>
<td>N</td>
<td>11.48</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>13</td>
<td>N</td>
<td>170–190</td>
<td>44</td>
<td>Y</td>
<td>2.57</td>
<td>2.51</td>
<td>N</td>
<td>15.22</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>48.96</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
</tr>
<tr>
<td>46</td>
<td>13</td>
<td>N</td>
<td>184–196</td>
<td>44</td>
<td>Y</td>
<td>2.52</td>
<td>2.66</td>
<td>N</td>
<td>15.13</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>13</td>
<td>N</td>
<td>170–184</td>
<td>36</td>
<td>Y</td>
<td>2.56</td>
<td>2.50</td>
<td>N</td>
<td>16.12</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>48.94</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
</tr>
<tr>
<td>48</td>
<td>13</td>
<td>N</td>
<td>178–192</td>
<td>36</td>
<td>Y</td>
<td>2.56</td>
<td>2.65</td>
<td>N</td>
<td>15.99</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>13</td>
<td>N</td>
<td>164–182</td>
<td>36</td>
<td>Y</td>
<td>2.34</td>
<td>2.53</td>
<td>N</td>
<td>17.11</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>47.83</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
</tr>
<tr>
<td>50</td>
<td>13</td>
<td>N</td>
<td>98–196</td>
<td>72</td>
<td>Y</td>
<td>2.48</td>
<td>2.67</td>
<td>N</td>
<td>17.04</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>13</td>
<td>N</td>
<td>96–110</td>
<td>36</td>
<td>Y</td>
<td>2.34</td>
<td>2.49</td>
<td>N</td>
<td>17.66</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>42.37</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
</tr>
<tr>
<td>52</td>
<td>13</td>
<td>N</td>
<td>119–138</td>
<td>16</td>
<td>Y</td>
<td>1.97</td>
<td>2.50</td>
<td>N</td>
<td>25.12</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>43.06</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
</tr>
<tr>
<td>53</td>
<td>13</td>
<td>N</td>
<td>122–143</td>
<td>16</td>
<td>Y</td>
<td>2.00</td>
<td>2.65</td>
<td>N</td>
<td>24.85</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>2</td>
<td>Y</td>
<td>920</td>
<td>4</td>
<td>N</td>
<td>2.52</td>
<td>2.27</td>
<td>N</td>
<td>3.51</td>
<td>58.5</td>
<td>-</td>
<td>6.0</td>
<td>42.32</td>
<td>51.63</td>
<td>V</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>14</td>
<td>Y</td>
<td>246</td>
<td>12</td>
<td>Y</td>
<td>3.39</td>
<td>2.96</td>
<td>Y</td>
<td>18.10</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>54.47</td>
<td>49.59</td>
<td>V</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Supplemental Table 5

Source and Effect-Size Characteristics for Models Examining Correlations Between Parents’ SES and PDT.

<table>
<thead>
<tr>
<th>Source ID</th>
<th>Sample ID</th>
<th>Peer-reviewed</th>
<th>Sample size</th>
<th># of effect sizes</th>
<th>U.S. Avg. fam. size</th>
<th>Avg. age difference</th>
<th>Used beta</th>
<th>Avg. age of child</th>
<th>White (%)</th>
<th>Latino (%)</th>
<th>Black (%)</th>
<th>Same-sex sibling pairs (%)</th>
<th>Male (%)</th>
<th>Younger target siblings (%)</th>
<th>Variation or perception</th>
<th>Recollected or concurrent</th>
<th>Types of PDT</th>
<th>Child or parent report</th>
<th>PDT from mom, dad, or both</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>172</td>
<td>8</td>
<td>N</td>
<td>2.43</td>
<td>2.20</td>
<td>N</td>
<td>6.30</td>
<td>90.2</td>
<td>-</td>
<td>-</td>
<td>46.51</td>
<td>49.71</td>
<td>50</td>
<td>V</td>
<td>C</td>
<td>P, N, C, P</td>
<td>M, D</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>396</td>
<td>1</td>
<td>N</td>
<td>2.33</td>
<td>2.41</td>
<td>Y</td>
<td>1.37</td>
<td>56.5</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>51</td>
<td>50</td>
<td>V</td>
<td>C</td>
<td>P, P, P</td>
<td>M</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>N</td>
<td>303–308</td>
<td>6</td>
<td>N</td>
<td>2.59</td>
<td>2.71</td>
<td>N</td>
<td>5.28</td>
<td>90.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>50.65</td>
<td>53.25</td>
<td>P</td>
<td>C, P, C, P</td>
<td>M</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>N</td>
<td>322–327</td>
<td>6</td>
<td>N</td>
<td>2.60</td>
<td>2.70</td>
<td>N</td>
<td>5.19</td>
<td>90.1</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>48.32</td>
<td>49.22</td>
<td>P</td>
<td>C</td>
<td>P, C, P</td>
<td>M</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>N</td>
<td>113–115</td>
<td>6</td>
<td>N</td>
<td>2.64</td>
<td>3.81</td>
<td>N</td>
<td>5.4</td>
<td>90.1</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>45.22</td>
<td>50.43</td>
<td>P</td>
<td>C</td>
<td>P, C, D</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>N</td>
<td>107–108</td>
<td>6</td>
<td>N</td>
<td>2.61</td>
<td>2.75</td>
<td>N</td>
<td>5.3</td>
<td>90.1</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>52.78</td>
<td>50</td>
<td>P</td>
<td>C</td>
<td>P, C, P, D</td>
<td>D</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>N</td>
<td>48–58</td>
<td>24</td>
<td>Y</td>
<td>2.62</td>
<td>2.61</td>
<td>N</td>
<td>13.44</td>
<td>88.6</td>
<td>1.3</td>
<td>3.8</td>
<td>100</td>
<td>45.57</td>
<td>50</td>
<td>V</td>
<td>C</td>
<td>P, P, P</td>
<td>C, M, D</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>N</td>
<td>62–68</td>
<td>24</td>
<td>Y</td>
<td>2.53</td>
<td>2.97</td>
<td>N</td>
<td>13.76</td>
<td>83.3</td>
<td>1.5</td>
<td>9.1</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V</td>
<td>C</td>
<td>P, P, P</td>
<td>C, M, D</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>N</td>
<td>169–175</td>
<td>2</td>
<td>Y</td>
<td>2.65</td>
<td>3.08</td>
<td>N</td>
<td>16.32</td>
<td>64</td>
<td>0</td>
<td>12.8</td>
<td>100</td>
<td>48</td>
<td>48</td>
<td>P</td>
<td>C</td>
<td>O, C</td>
<td>M, D</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>N</td>
<td>200–205</td>
<td>2</td>
<td>Y</td>
<td>2.60</td>
<td>3.16</td>
<td>N</td>
<td>16.25</td>
<td>70.7</td>
<td>0.5</td>
<td>12.5</td>
<td>0</td>
<td>48.29</td>
<td>46.34</td>
<td>P</td>
<td>C</td>
<td>O, C</td>
<td>M, D</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>N</td>
<td>169–176</td>
<td>2</td>
<td>Y</td>
<td>2.74</td>
<td>3.03</td>
<td>N</td>
<td>17.35</td>
<td>64.8</td>
<td>0</td>
<td>12.8</td>
<td>100</td>
<td>48.3</td>
<td>48.86</td>
<td>P</td>
<td>C</td>
<td>O, C</td>
<td>M, D</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>N</td>
<td>195–206</td>
<td>2</td>
<td>Y</td>
<td>2.66</td>
<td>3.18</td>
<td>N</td>
<td>17.21</td>
<td>70.9</td>
<td>0.5</td>
<td>12.0</td>
<td>0</td>
<td>48.54</td>
<td>46.12</td>
<td>P</td>
<td>C</td>
<td>O, C</td>
<td>M, D</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>N</td>
<td>152–73</td>
<td>2</td>
<td>Y</td>
<td>2.62</td>
<td>2.98</td>
<td>N</td>
<td>18.42</td>
<td>64.7</td>
<td>0</td>
<td>12.5</td>
<td>100</td>
<td>49.71</td>
<td>48.55</td>
<td>P</td>
<td>C</td>
<td>O, C</td>
<td>M, D</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>N</td>
<td>185–203</td>
<td>2</td>
<td>Y</td>
<td>2.60</td>
<td>3.13</td>
<td>N</td>
<td>18.30</td>
<td>71.9</td>
<td>0</td>
<td>10.6</td>
<td>0</td>
<td>48.28</td>
<td>45.81</td>
<td>P</td>
<td>C</td>
<td>O, C</td>
<td>M, D</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>Y</td>
<td>3762</td>
<td>1</td>
<td>N</td>
<td>2.20</td>
<td>-</td>
<td>N</td>
<td>7.46</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>P</td>
<td>C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>N</td>
<td>138–154</td>
<td>16</td>
<td>Y</td>
<td>3.15</td>
<td>3.79</td>
<td>N</td>
<td>25.31</td>
<td>70.1</td>
<td>10.5</td>
<td>6.5</td>
<td>100</td>
<td>44.2</td>
<td>49.4</td>
<td>P</td>
<td>C</td>
<td>O, P</td>
<td>N, R</td>
</tr>
<tr>
<td>17</td>
<td>7</td>
<td>N</td>
<td>128–140</td>
<td>16</td>
<td>Y</td>
<td>3.14</td>
<td>4.00</td>
<td>N</td>
<td>25.45</td>
<td>72.9</td>
<td>8.6</td>
<td>7.9</td>
<td>0</td>
<td>36.4</td>
<td>50.7</td>
<td>P</td>
<td>C</td>
<td>O, P</td>
<td>N, R</td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>N</td>
<td>808–895</td>
<td>40</td>
<td>Y</td>
<td>3.21</td>
<td>4.11</td>
<td>N</td>
<td>25.36</td>
<td>74.6</td>
<td>5.7</td>
<td>8.8</td>
<td>100</td>
<td>52.07</td>
<td>44.8</td>
<td>P</td>
<td>C</td>
<td>O, P</td>
<td>N, R</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>N</td>
<td>781–855</td>
<td>40</td>
<td>Y</td>
<td>3.17</td>
<td>4.00</td>
<td>N</td>
<td>25.52</td>
<td>74.7</td>
<td>5.5</td>
<td>7.6</td>
<td>0</td>
<td>47.82</td>
<td>46.78</td>
<td>P</td>
<td>C</td>
<td>O, P</td>
<td>N, R</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
<td>Y</td>
<td>157</td>
<td>2</td>
<td>Y</td>
<td>3.34</td>
<td>-</td>
<td>N</td>
<td>23.42</td>
<td>66.0</td>
<td>-</td>
<td>-</td>
<td>33</td>
<td>53</td>
<td>-</td>
<td>V</td>
<td>C</td>
<td>P, R</td>
<td>P, B</td>
</tr>
<tr>
<td>23</td>
<td>11</td>
<td>N</td>
<td>192–198</td>
<td>54</td>
<td>Y</td>
<td>2.60</td>
<td>2.41</td>
<td>N</td>
<td>13.77</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>54.55</td>
<td>50</td>
<td>P</td>
<td>V, P</td>
<td>C, P</td>
<td>N, R</td>
</tr>
<tr>
<td>24</td>
<td>11</td>
<td>N</td>
<td>190–196</td>
<td>54</td>
<td>Y</td>
<td>2.56</td>
<td>2.53</td>
<td>N</td>
<td>13.67</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>P, P, P, P</td>
<td>M, D, B</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>11</td>
<td>N</td>
<td>192–196</td>
<td>54</td>
<td>Y</td>
<td>2.60</td>
<td>2.41</td>
<td>N</td>
<td>14.79</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>54.08</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>11</td>
<td>N</td>
<td>188–192</td>
<td>54</td>
<td>Y</td>
<td>2.57</td>
<td>2.54</td>
<td>N</td>
<td>14.67</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>11</td>
<td>N</td>
<td>190–194</td>
<td>54</td>
<td>Y</td>
<td>2.61</td>
<td>2.41</td>
<td>N</td>
<td>15.80</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>54.08</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>11</td>
<td>N</td>
<td>186–188</td>
<td>54</td>
<td>Y</td>
<td>2.57</td>
<td>2.54</td>
<td>N</td>
<td>15.67</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>12</td>
<td>N</td>
<td>180–198</td>
<td>42</td>
<td>Y</td>
<td>2.74</td>
<td>3.80</td>
<td>N</td>
<td>12.24</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>12</td>
<td>N</td>
<td>187–206</td>
<td>42</td>
<td>Y</td>
<td>2.86</td>
<td>3.62</td>
<td>N</td>
<td>12.22</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>48.48</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>12</td>
<td>N</td>
<td>197–206</td>
<td>12</td>
<td>Y</td>
<td>2.62</td>
<td>3.68</td>
<td>N</td>
<td>14.37</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>12</td>
<td>N</td>
<td>184–188</td>
<td>12</td>
<td>Y</td>
<td>2.60</td>
<td>3.82</td>
<td>N</td>
<td>14.49</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>48.91</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>13</td>
<td>N</td>
<td>188–196</td>
<td>54</td>
<td>Y</td>
<td>2.59</td>
<td>2.54</td>
<td>N</td>
<td>9.61</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>48.98</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>13</td>
<td>N</td>
<td>178–210</td>
<td>54</td>
<td>Y</td>
<td>2.49</td>
<td>2.68</td>
<td>N</td>
<td>9.52</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>13</td>
<td>N</td>
<td>190–196</td>
<td>72</td>
<td>Y</td>
<td>2.58</td>
<td>2.54</td>
<td>N</td>
<td>10.57</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>48.98</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>13</td>
<td>N</td>
<td>170–186</td>
<td>12</td>
<td>Y</td>
<td>2.60</td>
<td>2.54</td>
<td>N</td>
<td>11.57</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>48.98</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>13</td>
<td>N</td>
<td>184–196</td>
<td>12</td>
<td>Y</td>
<td>2.52</td>
<td>2.67</td>
<td>N</td>
<td>11.48</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>13</td>
<td>N</td>
<td>174–190</td>
<td>66</td>
<td>Y</td>
<td>2.57</td>
<td>2.51</td>
<td>N</td>
<td>15.22</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>48.96</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>13</td>
<td>N</td>
<td>178–196</td>
<td>66</td>
<td>Y</td>
<td>2.52</td>
<td>2.66</td>
<td>N</td>
<td>15.13</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>13</td>
<td>N</td>
<td>170–186</td>
<td>54</td>
<td>Y</td>
<td>2.56</td>
<td>2.50</td>
<td>N</td>
<td>16.12</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>48.94</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>13</td>
<td>N</td>
<td>162–180</td>
<td>54</td>
<td>Y</td>
<td>2.34</td>
<td>2.53</td>
<td>N</td>
<td>17.11</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>47.83</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>13</td>
<td>N</td>
<td>100–190</td>
<td>108</td>
<td>Y</td>
<td>2.48</td>
<td>2.67</td>
<td>N</td>
<td>17.04</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>13</td>
<td>N</td>
<td>96–113</td>
<td>54</td>
<td>Y</td>
<td>2.34</td>
<td>2.49</td>
<td>N</td>
<td>17.66</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>42.37</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>13</td>
<td>N</td>
<td>120–126</td>
<td>8</td>
<td>Y</td>
<td>1.97</td>
<td>2.50</td>
<td>N</td>
<td>25.12</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>43.06</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>13</td>
<td>N</td>
<td>122–133</td>
<td>8</td>
<td>Y</td>
<td>2.00</td>
<td>2.65</td>
<td>N</td>
<td>24.85</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>99</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>2</td>
<td>Y</td>
<td>920</td>
<td>4</td>
<td>N</td>
<td>2.52</td>
<td>2.27</td>
<td>N</td>
<td>3.51</td>
<td>58.5</td>
<td>-</td>
<td>6.0</td>
<td>42.32</td>
<td>51.63</td>
<td>-</td>
<td>V</td>
<td>C</td>
<td>O, P, N, R</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>55</td>
<td>14</td>
<td>Y</td>
<td>246</td>
<td>4</td>
<td>Y</td>
<td>3.39</td>
<td>2.96</td>
<td>Y</td>
<td>-</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>54.47</td>
<td>49.59</td>
<td>50</td>
<td>V</td>
<td>C</td>
<td>P, N</td>
<td>C</td>
</tr>
<tr>
<td>56</td>
<td>14</td>
<td>Y</td>
<td>243</td>
<td>8</td>
<td>Y</td>
<td>3.72</td>
<td>2.93</td>
<td>N</td>
<td>14.24</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>-</td>
<td>50</td>
<td>50</td>
<td>P</td>
<td>C</td>
<td>P, N</td>
<td>P</td>
</tr>
<tr>
<td>57</td>
<td>15</td>
<td>Y</td>
<td>542</td>
<td>3</td>
<td>Y</td>
<td>4.40</td>
<td>-</td>
<td>Y</td>
<td>42.80</td>
<td>69.8</td>
<td>0</td>
<td>30.2</td>
<td>-</td>
<td>50.70</td>
<td>-</td>
<td>P</td>
<td>C</td>
<td>P, R</td>
<td>P</td>
</tr>
<tr>
<td>58</td>
<td>16</td>
<td>N</td>
<td>285–332</td>
<td>12</td>
<td>Y</td>
<td>2.82</td>
<td>2.70</td>
<td>N</td>
<td>15.77</td>
<td>74.2</td>
<td>3.1</td>
<td>20.8</td>
<td>100</td>
<td>42.86</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N</td>
<td>C</td>
</tr>
<tr>
<td>59</td>
<td>16</td>
<td>N</td>
<td>273–316</td>
<td>12</td>
<td>Y</td>
<td>2.78</td>
<td>2.59</td>
<td>N</td>
<td>15.92</td>
<td>67.3</td>
<td>4.8</td>
<td>25.6</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N</td>
<td>C</td>
</tr>
</tbody>
</table>

Supplemental Table 6

Source and Effect-Size Characteristics for Models Examining Correlations Between Parents’ Employment Status and PDT

<table>
<thead>
<tr>
<th>Source ID</th>
<th>Sample ID</th>
<th>Peer-reviewed</th>
<th>Sample size</th>
<th># of effect sizes</th>
<th>U.S. Avg. fam. size</th>
<th>Avg. age difference</th>
<th>Used beta</th>
<th>Avg. age of child</th>
<th>White (%)</th>
<th>Latinx (%)</th>
<th>Black (%)</th>
<th>Same-sex sibling pairs (%)</th>
<th>Male (%)</th>
<th>Younger target siblings (%)</th>
<th>Variation or perception</th>
<th>Recollected or concurrent</th>
<th>Types of PDT</th>
<th>Child or parent report</th>
<th>PDT from mom, dad, or both</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>N</td>
<td>303–308</td>
<td>4</td>
<td>N</td>
<td>2.59</td>
<td>2.71</td>
<td>N</td>
<td>5.28</td>
<td>-</td>
<td>90.1</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>P</td>
<td>C</td>
<td>P, C</td>
<td>P</td>
<td>M</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>N</td>
<td>322–327</td>
<td>4</td>
<td>N</td>
<td>2.60</td>
<td>2.70</td>
<td>N</td>
<td>5.19</td>
<td>-</td>
<td>90.1</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>48.32</td>
<td>49.22</td>
<td>P</td>
<td>C</td>
<td>P, C</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>N</td>
<td>113–115</td>
<td>4</td>
<td>N</td>
<td>2.64</td>
<td>3.81</td>
<td>N</td>
<td>5.40</td>
<td>-</td>
<td>90.1</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>45.22</td>
<td>50.43</td>
<td>P</td>
<td>C</td>
<td>P, C</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>N</td>
<td>107–108</td>
<td>4</td>
<td>N</td>
<td>2.61</td>
<td>2.75</td>
<td>N</td>
<td>5.30</td>
<td>-</td>
<td>90.1</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>52.78</td>
<td>50</td>
<td>P</td>
<td>C</td>
<td>P, C</td>
</tr>
<tr>
<td>57</td>
<td>15</td>
<td>Y</td>
<td>542</td>
<td>3</td>
<td>Y</td>
<td>4.40</td>
<td>-</td>
<td>Y</td>
<td>42.80</td>
<td>69.8</td>
<td>30.2</td>
<td>-</td>
<td>50</td>
<td>50</td>
<td>50.70</td>
<td>-</td>
<td>-</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>58</td>
<td>16</td>
<td>N</td>
<td>300–336</td>
<td>6</td>
<td>Y</td>
<td>2.82</td>
<td>2.70</td>
<td>N</td>
<td>15.77</td>
<td>74.2</td>
<td>3.1</td>
<td>100</td>
<td>100</td>
<td>42.86</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N</td>
<td>C</td>
</tr>
<tr>
<td>59</td>
<td>16</td>
<td>N</td>
<td>316</td>
<td>3</td>
<td>Y</td>
<td>2.78</td>
<td>2.59</td>
<td>N</td>
<td>15.92</td>
<td>67.3</td>
<td>4.8</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>V, P</td>
<td>C</td>
<td>O, P, N</td>
<td>C</td>
</tr>
</tbody>
</table>

Supplemental Table 7

Source and Effect-Size Characteristics for Models Examining Correlations Between Parents’ Marital Status and PDT

<table>
<thead>
<tr>
<th>Source ID</th>
<th>Sample ID</th>
<th>Peer-reviewed</th>
<th>Sample size</th>
<th>Sample/Source characteristics</th>
<th>Effect-size characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td># of effect sizes</td>
<td>U.S.</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>N</td>
<td>307–308</td>
<td>2</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>N</td>
<td>326–327</td>
<td>2</td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>N</td>
<td>115</td>
<td>2</td>
<td>N</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>N</td>
<td>108</td>
<td>2</td>
<td>N</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>N</td>
<td>138–154</td>
<td>16</td>
<td>Y</td>
</tr>
<tr>
<td>17</td>
<td>7</td>
<td>N</td>
<td>128–140</td>
<td>16</td>
<td>Y</td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>N</td>
<td>808–895</td>
<td>20</td>
<td>Y</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>N</td>
<td>781–855</td>
<td>20</td>
<td>Y</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>N</td>
<td>47–49</td>
<td>20</td>
<td>Y</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>N</td>
<td>54–55</td>
<td>20</td>
<td>Y</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
<td>Y</td>
<td>157</td>
<td>2</td>
<td>Y</td>
</tr>
<tr>
<td>57</td>
<td>15</td>
<td>Y</td>
<td>542</td>
<td>3</td>
<td>Y</td>
</tr>
<tr>
<td>58</td>
<td>16</td>
<td>N</td>
<td>300–336</td>
<td>6</td>
<td>Y</td>
</tr>
<tr>
<td>59</td>
<td>16</td>
<td>N</td>
<td>279–316</td>
<td>6</td>
<td>Y</td>
</tr>
</tbody>
</table>

Supplemental Table 8

Summary of Descriptive Statistics for Moderators for Models Examining Parents’ Stress, Parents’ Physical Health, and Parents’ Mental Health as Correlated With PDT

<table>
<thead>
<tr>
<th></th>
<th>Stress (N = 2,918 participants)</th>
<th>Physical health (N = 1,990 participants)</th>
<th>Mental health (N = 2,746 participants)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion or M (SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 4 (sample)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>.71</td>
<td>1.00</td>
<td>.83</td>
</tr>
<tr>
<td>Level 3 (source)</td>
<td>N = 40</td>
<td>N = 15</td>
<td>N = 33</td>
</tr>
<tr>
<td>Family size</td>
<td>2.57 (.21)</td>
<td>2.72 (.47)</td>
<td>2.58 (.23)</td>
</tr>
<tr>
<td>Caucasian (%)</td>
<td>76.44 (37.84)</td>
<td>94.09 (12.31)</td>
<td>73.60 (40.68)</td>
</tr>
<tr>
<td>Male (%)</td>
<td>49.51 (2.19)</td>
<td>50.21 (2.78)</td>
<td>49.53 (2.40)</td>
</tr>
<tr>
<td>Younger than sibling (%)</td>
<td>49.15 (2.93)</td>
<td>50.00 (.00)</td>
<td>49.67 (.97)</td>
</tr>
<tr>
<td>Siblings same sex (%)</td>
<td>51.08 (48.71)</td>
<td>50.00 (51.89)</td>
<td>51.42 (49.22)</td>
</tr>
<tr>
<td>Age spacing</td>
<td>2.81 (.45)</td>
<td>2.54 (.10)</td>
<td>2.84 (.47)</td>
</tr>
<tr>
<td>Child age</td>
<td>14.45 (3.95)</td>
<td>15.82 (7.71)</td>
<td>14.57 (3.98)</td>
</tr>
<tr>
<td>Peer-reviewed article</td>
<td>.01</td>
<td>.01</td>
<td>.02</td>
</tr>
<tr>
<td>Level 2 (effect size)</td>
<td>N = 2,780</td>
<td>N = 535</td>
<td>N = 936</td>
</tr>
<tr>
<td>Parent reported on</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mom PDT</td>
<td>.45</td>
<td>.46</td>
<td>.46</td>
</tr>
<tr>
<td>Dad PDT</td>
<td>.45</td>
<td>.45</td>
<td>.45</td>
</tr>
<tr>
<td>Both parents PDT</td>
<td>.09</td>
<td>.09</td>
<td>.09</td>
</tr>
<tr>
<td>PDT reporter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child(ren)</td>
<td>.81</td>
<td>.81</td>
<td>.82</td>
</tr>
<tr>
<td>Parent(s)</td>
<td>.19</td>
<td>.19</td>
<td>.18</td>
</tr>
<tr>
<td>Measurement type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference score-based measure</td>
<td>.58</td>
<td>.57</td>
<td>.57</td>
</tr>
<tr>
<td>Perception-based measure</td>
<td>.42</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td>Domain of PDT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall PDT</td>
<td>.02</td>
<td>.05</td>
<td>.03</td>
</tr>
<tr>
<td>Positive interactions PDT</td>
<td>.45</td>
<td>.43</td>
<td>.45</td>
</tr>
<tr>
<td>Negative interactions PDT</td>
<td>.27</td>
<td>.29</td>
<td>.26</td>
</tr>
<tr>
<td>Resource PDT</td>
<td>.18</td>
<td>.15</td>
<td>.18</td>
</tr>
<tr>
<td>Control PDT</td>
<td>.09</td>
<td>.07</td>
<td>.09</td>
</tr>
<tr>
<td>Effect-size type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivariate correlation</td>
<td>1.00</td>
<td>.99</td>
<td>1.00</td>
</tr>
<tr>
<td>Standardized semipartial correlation</td>
<td>.00</td>
<td>.01</td>
<td>.00</td>
</tr>
<tr>
<td>Sample size</td>
<td>201.78 (120.69)</td>
<td>236.00 (96.19)</td>
<td>210.58 (131.16)</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>

Note. PDT = parental differential treatment.
Supplemental Table 9

Summary of Descriptive Statistics for Moderators for Models Examining Parents’ SES, Parents’ Employment Status, and Parents’ Marital Status as Correlated With PDT

<table>
<thead>
<tr>
<th></th>
<th>SES (N = 11,166 participants)</th>
<th>Employment status (N = 2,015 participants)</th>
<th>Marital status (N = 4,706 participants)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion or M (SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 4 (sample)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>N = 16</td>
<td>N = 4</td>
<td>N = 8</td>
</tr>
<tr>
<td></td>
<td>.69</td>
<td>.50</td>
<td>.75</td>
</tr>
<tr>
<td>Level 3 (source)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family size</td>
<td>N = 53</td>
<td>N = 7</td>
<td>N = 14</td>
</tr>
<tr>
<td></td>
<td>2.69 (.39)</td>
<td>2.92 (.66)</td>
<td>3.14 (.53)</td>
</tr>
<tr>
<td>Caucasian (%)</td>
<td>73.37 (34.47)</td>
<td>81.67 (10.71)</td>
<td>78.89 (9.61)</td>
</tr>
<tr>
<td>Male (%)</td>
<td>48.65 (4.46)</td>
<td>48.65 (3.48)</td>
<td>45.56 (7.38)</td>
</tr>
<tr>
<td>Younger than sibling (%)</td>
<td>49.54 (1.88)</td>
<td>50.00 (1.82)</td>
<td>49.21 (2.44)</td>
</tr>
<tr>
<td>Siblings same sex (%)</td>
<td>50.54 (48.49)</td>
<td>50.00 (54.77)</td>
<td>48.77 (48.25)</td>
</tr>
<tr>
<td>Age spacing</td>
<td>2.91 (.53)</td>
<td>2.81 (.45)</td>
<td>3.59 (.74)</td>
</tr>
<tr>
<td>Child age</td>
<td>14.85 (7.05)</td>
<td>13.67 (13.78)</td>
<td>24.19 (18.26)</td>
</tr>
<tr>
<td>Peer-reviewed article</td>
<td>.02</td>
<td>.11</td>
<td>.04</td>
</tr>
<tr>
<td>Level 2 (effect size)</td>
<td>N = 1,587</td>
<td>N = 28</td>
<td>N = 137</td>
</tr>
<tr>
<td>Parent reported on</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mom PDT</td>
<td>.46</td>
<td>.61</td>
<td>.50</td>
</tr>
<tr>
<td>Dad PDT</td>
<td>.45</td>
<td>.39</td>
<td>.48</td>
</tr>
<tr>
<td>Both parents PDT</td>
<td>.08</td>
<td>.00</td>
<td>.01</td>
</tr>
<tr>
<td>PDT reporter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child(ren)</td>
<td>.82</td>
<td>.32</td>
<td>.91</td>
</tr>
<tr>
<td>Parent(s)</td>
<td>.18</td>
<td>.68</td>
<td>.09</td>
</tr>
<tr>
<td>Measurement type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference score-based measure</td>
<td>.53</td>
<td>.21</td>
<td>.07</td>
</tr>
<tr>
<td>Perception-based measure</td>
<td>.47</td>
<td>.79</td>
<td>.93</td>
</tr>
<tr>
<td>Domain of PDT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall PDT</td>
<td>.04</td>
<td>.11</td>
<td>.26</td>
</tr>
<tr>
<td>Positive interactions PDT</td>
<td>.43</td>
<td>.43</td>
<td>.22</td>
</tr>
<tr>
<td>Negative interactions PDT</td>
<td>.26</td>
<td>.11</td>
<td>.32</td>
</tr>
<tr>
<td>Resource PDT</td>
<td>.18</td>
<td>.07</td>
<td>.17</td>
</tr>
<tr>
<td>Control PDT</td>
<td>.09</td>
<td>.29</td>
<td>.03</td>
</tr>
<tr>
<td>Effect-size type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivariate correlation</td>
<td>.99</td>
<td>.89</td>
<td>.98</td>
</tr>
<tr>
<td>Standardized semipartial correlation</td>
<td>.01</td>
<td>.11</td>
<td>.02</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Sample size</td>
<td>306.02 (515.89)</td>
<td>292.71 (148.75)</td>
<td>311.21 (274.94)</td>
</tr>
</tbody>
</table>

Note. PDT = parental differential treatment. SES = socioeconomic status.
Measurement Types Examples

The first type of approach is labeled perception-based measures (PBM). In PBM, researchers ask the individual participant to make a comparison of the PDT (e.g., Kowal & Kramer, 1997; Suitor et al., 2016). For example, the researcher may ask a child how much time their mother spends with them as compared to a sibling. The second type of approach is termed difference score-based methods (DSBM). In DSBM, researchers assess PDT by collecting separate reports of parenting toward each child and then calculate difference scores or a difference from the family-wide average of parenting (e.g., Meunier et al., 2013; Shanahan et al., 2008). For example, a father may report on how affectionate he is toward his firstborn, and then later in the study, he may report on how affectionate he is toward his second-born child. Researchers would then create a difference score to assess the level of PDT.
Analysis Code

NOTE: DataID is the variable for each unique sample ID. ArticleID is the variable for each unique source ID. ESNum is the variable for each unique effect size ID.

Functions used in the code

withold <- function (data, expr) {
call <- match.call()
analyses <- as.list(seq_len(data$m))
for (i in seq_along(analyses)) {
 data.i <- complete(data, i)
analyses[[i]] <- eval(expr = substitute(expr), envir = data.i, enclos = parent.frame())
 if (is.expression(analyses[[i]]))
 analyses[[i]] <- eval(expr = analyses[[i]], envir = data.i, enclos = parent.frame())
}
object <- list(call = call, call1 = data$call, nmis = data$nmis, analyses = analyses)
oldClass(object) <- c("mira", "matrix")
object
}

MetaModelsDescriptiveData <- function(x) {
 xData<-x %>% distinct(DataID, .keep_all = T) #keeping only one line per data set ID
 myvarsData <- c("ArticleID", "DataID", "AgeDif", "USA", "SampleSize") #creating vector with needed variables
 xData <- xData[myvarsData] #keeping only needed variables
 xData$USA[xData$USA<0] <- NA
 xData$SampleSize[xData$DataID == 82] <- 761
 xData$SampleSize[xData$DataID == 83] <- 363
 xData$SampleSize[xData$DataID == 84] <- 335
 xData$SampleSize[xData$DataID == 85] <- 600
 xData$SampleSize[xData$DataID == 86] <- 223
 xData$SampleSize[xData$DataID == 87] <- 650
 xData$SampleSize[xData$DataID == 88] <- 491
 xData$SampleSize[xData$DataID == 89] <- 293
 xData$SampleSize[xData$DataID == 90] <- 1750
 xData$SampleSize[xData$DataID == 49] <- 406
 xData$SampleSize[xData$DataID == 93] <- 274
 #retrieve stats for data set level variables
 TotalParticipants<-sum(xData$SampleSize)
 USAPec <- round(sum(xData$USA)/length(xData$USA),2)
 USATotal<- length(xData$USA[xData$USA==1])
 EuropeTotal<- length(xData$USA[xData$USA==0])
}
#removing duplicates for Article level variables
xArticle<-x %>% distinct(ArticleID, .keep_all = T) #keeping only one line per data set ID
myvarsArticle <- c("ArticleID", "DataID", "SibAge", "AgeDif", "FamSize", "WhitePerc", "GCSamePerc", "MalePerc", "RelBirthYoungPerc", "SampleSize") #creating vector with needed variables
xArticle <- xArticle[myvarsArticle] #keeping only needed variables
xArticle$SibAge[xArticle$SibAge<0] <- NA
xArticle$AgeDif[xArticle$AgeDif<0] <- NA
xArticle$FamSize[xArticle$FamSize<0] <- NA
xArticle$WhitePerc[xArticle$WhitePerc<0] <- NA
xArticle$GCSamePerc[xArticle$GCSamePerc<0] <- NA
xArticle$MalePerc[xArticle$MalePerc<0] <- NA
xArticle$RelBirthYoungPerc[xArticle$RelBirthYoungPerc<0] <- NA
xArticle$WhitePerc[xArticle$WhitePerc>10] <- NA
xArticle$GCSamePerc[xArticle$GCSamePerc<10] <- NA
xArticle$MalePerc[xArticle$MalePerc>10] <- NA
xArticle$RelBirthYoungPerc[xArticle$RelBirthYoungPerc>10] <- NA
xArticle$WhitePerc <- xArticle$WhitePerc*10
xArticle$GCSamePerc <- xArticle$GCSamePerc*10
xArticle$MalePerc <- xArticle$MalePerc*10
xArticle$RelBirthYoungPerc <- xArticle$RelBirthYoungPerc*10
#retrieve stats for article level variables
ChildAgeMean<-round(mean(xArticle$SibAge, na.rm = T),2)
ChildAgeSD<-round(sd(xArticle$SibAge, na.rm = T),2)
AgeDifMean<-round(mean(xArticle$AgeDif, na.rm = T),2)
AgeDifSD<-round(sd(xArticle$AgeDif, na.rm = T),2)
FamSizeMean<-round(mean(xArticle$FamSize, na.rm = T),2)
FamSizeSD<-round(sd(xArticle$FamSize, na.rm = T),2)
WhitePercMean<-round(mean(xArticle$WhitePerc, na.rm = T),2)
WhitePercSD<-round(sd(xArticle$WhitePerc, na.rm = T),2)
GCSamePercMean<-round(mean(xArticle$GCSamePerc, na.rm = T),2)
GCSamePercSD<-round(sd(xArticle$GCSamePerc, na.rm = T),2)
MalePercMean<-round(mean(xArticle$MalePerc, na.rm = T),2)
MalePercSD<-round(sd(xArticle$MalePerc, na.rm = T),2)
RelBirthYoungPercMean<-round(mean(xArticle$RelBirthYoungPerc, na.rm = T),2)
RelBirthYoungPercSD<-round(sd(xArticle$RelBirthYoungPerc, na.rm = T),2)
SampleSizeMean<-round(mean(xArticle$SampleSize, na.rm = T),2)
SampleSizeSD<-round(sd(xArticle$SampleSize, na.rm = T),2)
#tidy up data for effect size level variables
#creating vector with needed variables
xALL <- x[myvarsALL] #keeping only needed variables
xALL$PeerRev[xALL$PeerRev<0] <- NA
xALL$UsedBeta[xALL$UsedBeta<0] <- NA
xALL$OverallPDT[xALL$OverallPDT<0] <- NA
xALL$PosPDT[xALL$PosPDT<0] <- NA
xALL$NegPDT[xALL$NegPDT<0] <- NA
xALL$ResourcePDT[xALL$ResourcePDT<0] <- NA
xALL$ControlPDT[xALL$ControlPDT<0] <- NA
xALL$ChildPDTReport[xALL$ChildPDTReport<0] <- NA
xALL$MomPDT[xALL$MomPDT<0] <- NA
xALL$DadPDT[xALL$DadPDT<0] <- NA
xALL$BothParsPDT[xALL$BothParsPDT<0] <- NA
xALL$Variation[xALL$Variation<0] <- NA
xALL$Recollected[xALL$Recollected<0] <- NA
xALL$PeerRev[xALL$PeerRev>1] <- NA
xALL$UsedBeta[xALL$UsedBeta>1] <- NA
xALL$OverallPDT[xALL$OverallPDT>1] <- NA
xALL$PosPDT[xALL$PosPDT>1] <- NA
xALL$NegPDT[xALL$NegPDT>1] <- NA
xALL$ResourcePDT[xALL$ResourcePDT>1] <- NA
xALL$ControlPDT[xALL$ControlPDT>1] <- NA
xALL$ChildPDTReport[xALL$ChildPDTReport>1] <- NA
xALL$MomPDT[xALL$MomPDT>1] <- NA
xALL$DadPDT[xALL$DadPDT>1] <- NA
xALL$BothParsPDT[xALL$BothParsPDT>1] <- NA
xALL$Variation[xALL$Variation>1] <- NA
xALL$Recollected[xALL$Recollected>1] <- NA

#retrieve stats for effect size level variables
PeerReviewedPec <- round(sum(xALL$PeerRev)/length(xALL$PeerRev),2)
UsedBetaPec <- round(sum(xALL$UsedBeta)/length(xALL$UsedBeta),2)
OverallPDTPec <- round(sum(xALL$OverallPDT)/length(xALL$OverallPDT),2)
PosPDTPec <- round(sum(xALL$PosPDT)/length(xALL$PosPDT),2)
NegPDTPec <- round(sum(xALL$NegPDT)/length(xALL$NegPDT),2)
ResourcePDTPec <- round(sum(xALL$ResourcePDT)/length(xALL$ResourcePDT),2)
ControlPDTPec <- round(sum(xALL$ControlPDT)/length(xALL$ControlPDT),2)
ChildPDTReportPec <- round(sum(xALL$ChildPDTReport)/length(xALL$ChildPDTReport),2)
MomPDTPec <- round(sum(xALL$MomPDT)/length(xALL$MomPDT),2)
DadPDTPec <- round(sum(xALL$DadPDT)/length(xALL$DadPDT),2)
BothParsPDTPec <- round(sum(xALL$BothParsPDT)/length(xALL$BothParsPDT),2)
VariationPec <- round(sum(xALL$Variation)/length(xALL$Variation),2)
RecollectedPec <- round(sum(xALL$Recollected)/length(xALL$Recollected),2)
PeerReviewedTotal<- length(xALL$PeerRev[xALL$PeerRev==1])
NotPeerReviewedTotal<- length(xALL$PeerRev[xALL$PeerRev==0])
VariationTotal<- length(xALL$Variation[xALL$Variation==1])
PerceptionTotal<- length(xALL$Variation[xALL$Variation==0])
DadPDTTotal<- length(xALL$DadPDT[xALL$DadPDT==1])
MomPDTTotal<- length(xALL$MomPDT[xALL$MomPDT==1])
BothParsPDTTotal<- length(xALL$BothParsPDT[xALL$BothParsPDT==1])
RecollectedTotal<- length(xALL$Recollected[xALL$Recollected==1])
ConcurrentTotal<- length(xALL$Recollected[xALL$Recollected==0])
ChildPDTReportTotal<- length(xALL$ChildPDTReport[xALL$ChildPDTReport==1])
ParentPDTReportTotal<- length(xALL$ChildPDTReport[xALL$ChildPDTReport==0])
UsedBetaTotal<- length(xALL$UsedBeta[xALL$UsedBeta==1])
UsedCorrTotal<- length(xALL$UsedBeta[xALL$UsedBeta==0])
OverallPDTotal<- length(xALL$OverallPDT[xALL$OverallPDT==1])
PosPDTTotal<- length(xALL$PosPDT[xALL$PosPDT==1])
NegPDTTotal<- length(xALL$NegPDT[xALL$NegPDT==1])
ResourcePDTTotal<- length(xALL$ResourcePDT[xALL$ResourcePDT==1])
ControlPDTTotal<- length(xALL$ControlPDT[xALL$ControlPDT==1])

DO.NOT.INCLUDE.THE.REST.IN.THE.TABLE <- ""

LEVEL.FOUR.VARIABLES <- ""
LEVEL.TWO.VARIABLES <- ""
LEVEL.ONE.VARIABLES <- ""

#create factors for statistics and names and bind together
Numbers<- c(LEVEL.FOUR.VARIABLES,
 USAPec,
 LEVEL.TWO.VARIABLES,
 AgeDifMean, AgeDifSD,
 FamSizeMean, FamSizeSD,
 WhitePercMean, WhitePercSD,
 GCSamePercMean, GCSamePercSD,
 MalePercMean, MalePercSD,
 RelBirthYoungPercMean, RelBirthYoungPercSD,
 SampleSizeMean, SampleSizeSD,
 ChildAgeMean, ChildAgeSD,
 PeerReviewedPec,
 LEVEL.TWO.VARIABLES,
 UsedBetaPec,
 OverallPDTPec, PosPDTPec, NegPDTPec, ResourcePDTPec, ControlPDTPec,
 ChildPDTReportPec,
 MomPDTPec, DadPDTPec, BothParsPDTPec,
 VariationPec,
 RecollectedPec,
 TotalParticipants,
 DO.NOT.INCLUDE.THE.REST.IN.THE.TABLE,
 USATotal, EuropeTotal,
 PeerReviewedTotal, NotPeerReviewedTotal,
 VariationTotal, PerceptionTotal,
 DadPDTTotal, MomPDTTotal, BothParsPDTTotal,
 RecollectedTotal, ConcurrentTotal,
 ChildPDTReportTotal, ParentPDTReportTotal,
 UsedBetaTotal, UsedCorrTotal,
 OverallPDTTotal, PosPDTTotal, NegPDTTotal, ResourcePDTTotal, ControlPDTTotal)

Variables <- c("Level Four Variables",
 "Proportion USA",
 "Level Three Variables",
 "Age Spacing Mean", "Age Spacing SD",
 "Family Size Mean", "Family Size SD",
 "% White Mean", "% White SD",
 "% Same Sex Mean", "% Same Sex SD",
 "% Male Mean", "% Male SD",
 "% Younger Mean", "% Younger SD",
 "Sample Size Mean", "Sample Size SD",
"Child Age Mean", "Child Age SD",
"Proportion Peer Reviewed",
"Level Two Variables",
"Proportion Used Beta",
"Proportion Child PDT Report",
"Proportion Mom PDT", "Proportion Dad PDT", "Proportion Both Parents PDT",
"Proportion Variation",
"Proportion Recollected",
"Total # of Participants",
"DO NOT INCLUDE THE REST IN THE TABLE",
"Number USA", "Number Europe",
"Number Peer Reviewed", "Number Not Peer Reviewed",
"Number Variation", "Number Perception",
"Number Dad PDT", "Number Mom PDT", "Number Both Pars PDT",
"RereclectedTotal", "ConcurrentTotal",
"Number Child Report", "Number Parent Report",
"Number Used Beta", "Number Used Correlation",
"Number Overall PDT", "Number Positive PDT", "Number Negative PDT", "Number Resource PDT", "Number Control PDT")

ToDisplay <- cbind (Variables, Numbers)
#export to a csv file with the name of the original data frame in the file name
fname <- sprintf("Findings/Descriptive Stats/%s Descriptive Stats.csv",deparse(substitute(x)))
write.csv(ToDisplay, file = fname)
#return the values and end the function
return(ToDisplay)}

MetaVarCompsModel1 <- function(objectM1){

 #prepare the object for extraction
 objectM1 <- getfit(objectM1)

 #Retrieve the Level2 Sigma2
 M1L2Sigma2 <- objectM1[["sigma2"]][1]

 #Retrieve the Level3 Sigma2
 M1L3Sigma2 <- objectM1[["sigma2"]][2]

 #Retrieve the Level3 Sigma2
 M1L4Sigma2 <- objectM1[["sigma2"]][3]

 #calculate total variance
 M1TotsVar <- sum(M1L2Sigma2,M1L3Sigma2,M1L4Sigma2)

 #ICC for level 2
 M1L2ICC <- M1L2Sigma2/M1TotsVar
ICC for level 3
M1L3ICC <- M1L3Sigma2/M1TotsVar

ICC for level 3
M1L4ICC <- M1L4Sigma2/M1TotsVar

#setting which values to report
ValuesM1 <- c(M1L2ICC,
 M1L3ICC,
 M1L4ICC
)
NamesM1 <- c("Level 2 ICC - Model 1",
 "Level 3 ICC - Model 1",
 "Level 4 ICC - Model 1"
)
ToDisplayM1 <- rbind(NamesM1, ValuesM1)

#return the values and end the function
return(ToDisplayM1)

MetaVarCompsModel2 <- function(object){

 #prepare the object for extraction
 object <- getfit(object)

 #Retrieve the Q
 QList <- rep(NA,50) # an empty list to put the info in
 for (i in 1:50){QList[i] <- object[[i]]"QE"} # a loop to retrieve the info from each model
 QListCreated <- print(unlist(QList)) #prints the info for each model as a vector instead of a list
 Q <- round(mean(QListCreated),5) #creates the mean for the info

 #Retrieve the Q's p-value
 QPList <- rep(NA,50) # an empty list to put the info in
 for (i in 1:50){QPList[i] <- object[[i]]"QEp"} # a loop to retrieve the info from each model
 QpListCreated <- print(unlist(QPList)) #prints the info for each model as a vector instead of a list
 Qp <- round(mean(QpListCreated),4) #creates the mean for the info

 #Retrieve the F for omnibus test of moderators
 FList <- rep(NA,50) # an empty list to put the info in
 for (i in 1:50){FList[i] <- object[[i]]"QM"} # a loop to retrieve the info from each model
 FListCreated <- print(unlist(FList)) #prints the info for each model as a vector instead of a list
 FforMods <- round(mean(FListCreated),5) #creates the mean for the info

 #Retrieve the F's p-value
 FPList <- rep(NA,50) # an empty list to put the info in
 for (i in 1:50){FPList[i] <- object[[i]]"QMp"} # a loop to retrieve the info from each model
 FpListCreated <- print(unlist(FPList)) #prints the info for each model as a vector instead of a list
 Fp <- round(mean(FpListCreated),4) #creates the mean for the info

}
FforModsp <- round(mean(FpListCreated), 4) # creates the mean for the info

Retrieve the Level2 Sigma2
L2Sig2List <- rep(NA, 50) # an empty list to put the info in
for (i in 1:50) {L2Sig2List[i] <- object[[i]]$"sigma2"[1]} # a loop to retrieve the info from each model
L2Sig2ListCreated <- print(unlist(L2Sig2List)) # prints the info for each model as a vector instead of a list
L2Sigma2 <- mean(L2Sig2ListCreated) # creates the mean for the info

Retrieve the Level3 Sigma2
L3Sig2List <- rep(NA, 50) # an empty list to put the info in
for (i in 1:50) {L3Sig2List[i] <- object[[i]]$"sigma2"[2]} # a loop to retrieve the info from each model
L3Sig2ListCreated <- print(unlist(L3Sig2List)) # prints the info for each model as a vector instead of a list
L3Sigma2 <- mean(L3Sig2ListCreated) # creates the mean for the info

Retrieve the Level4 Sigma2
L4Sig2List <- rep(NA, 50) # an empty list to put the info in
for (i in 1:50) {L4Sig2List[i] <- object[[i]]$"sigma2"[3]} # a loop to retrieve the info from each model
L4Sig2ListCreated <- print(unlist(L4Sig2List)) # prints the info for each model as a vector instead of a list
L4Sigma2 <- mean(L4Sig2ListCreated) # creates the mean for the info

Calculate total variance
TotalVar <- sum(L2Sigma2, L3Sigma2, L4Sigma2)

ICC for level 2
L2ICC <- L2Sigma2/TotalVar

ICC for level 3
L3ICC <- L3Sigma2/TotalVar

ICC for level 4
L4ICC <- L4Sigma2/TotalVar

Setting which values to report
ValuesM2 <- c(Q,
 Qp,
 FforMods,
 FforModsp,
 L2Sigma2,
 L2ICC,
 L3Sigma2,
 L3ICC,
 L4Sigma2,
 L4ICC)

NamesM2 <- c("Q - Model 2",
 "p-value for Q - Model 2",
 "F value for omnibus test of moderators - Model 2",
 "p-value for F value - Model 2",
 "F for Modsp")
"Level 2 Sigma2 - Model 2",
"Level 2 ICC - Model 2",
"Level 3 Sigma2 - Model 2",
"Level 3 ICC - Model 2",
"Level 4 Sigma2 - Model 2",
"Level 4 ICC - Model 2"
)
ToDisplayM2 <- rbind(NamesM2, ValuesM2)
#return the values and end the function
return(ToDisplayM2)
}

MetaVarCompsModel2LevelVarianceTest <- function(FullModel, RestrictedModelLevel2, RestrictedModelLevel3, RestrictedModelLevel4){
create an empty list for each level
LRTListL2 <- as.list(rep(NA,50)) # an empty list to put the info in
LRTPValueListL2 <- as.list(rep(NA,50)) # an empty list to put the info in
LRTListL3 <- as.list(rep(NA,50)) # an empty list to put the info in
LRTPValueListL3 <- as.list(rep(NA,50)) # an empty list to put the info in
LRTListL4 <- as.list(rep(NA,50)) # an empty list to put the info in
LRTPValueListL4 <- as.list(rep(NA,50)) # an empty list to put the info in

run the loop for each level
for (i in 1:50){
 LRTListL2[[i]] <- anova(FullModel["analyses"][[i]], RestrictedModelLevel2["analyses"][[i]])[["LRT"]]
 # this runs each test and saves the LRT value in a list
 LRTPValueListL2[[i]] <- anova(FullModel["analyses"][[i]], RestrictedModelLevel2["analyses"][[i]])[["pval"]]
 # this runs each test and saves the pvalue in a list
 LRTListL3[[i]] <- anova(FullModel["analyses"][[i]], RestrictedModelLevel3["analyses"][[i]])[["LRT"]]
 # this runs each test and saves the LRT value in a list
 LRTPValueListL3[[i]] <- anova(FullModel["analyses"][[i]], RestrictedModelLevel3["analyses"][[i]])[["pval"]]
 # this runs each test and saves the pvalue in a list
 LRTListL4[[i]] <- anova(FullModel["analyses"][[i]], RestrictedModelLevel4["analyses"][[i]])[["LRT"]]
 # this runs each test and saves the LRT value in a list
 LRTPValueListL4[[i]] <- anova(FullModel["analyses"][[i]], RestrictedModelLevel4["analyses"][[i]])[["pval"]]
 # this runs each test and saves the pvalue in a list
}

take each list and turn it into a vector so we can pool the LRT and p-value info
LRTListCreatedL2 <- print(unlist(LRTListL2)) # prints the info for each model as a vector instead of a list
LRTModel2L2 <- round(mean(LRTListCreatedL2),5) # creates the mean for the info
LRTPValueListCreatedL2 <- print(unlist(LRTPValueListL2)) # prints the info for each model as a vector instead of a list
LRTPValueModel2L2 <- round(mean(LRTPValueListCreatedL2),5) # creates the mean for the info

LRTPValueListCreatedL3 <- print(unlist(LRTPValueListL3)) # prints the info for each model as a vector instead of a list
LRTPValueModel2L3 <- round(mean(LRTPValueListCreatedL3),5) # creates the mean for the info

LRTPValueListCreatedL4 <- print(unlist(LRTPValueListL4)) # prints the info for each model as a vector instead of a list
LRTPValueModel2L4 <- round(mean(LRTPValueListCreatedL4),5) # creates the mean for the info

setting which values to report
ValuesM2VarComps <- c(
 LRTModel2L2,
 LRTPValueModel2L2,
 LRTModel2L3,
 LRTPValueModel2L3,
 LRTModel2L4,
 LRTPValueModel2L4
)
NamesM2VarComps <- c(
 "LRT for Model 2 - Level 2",
 "LRT P Value for Model 2 - Level 2",
 "LRT for Model 2 - Level 3",
 "LRT P Value for Model 2 - Level 3",
 "LRT for Model 2 - Level 4",
 "LRT P Value for Model 2 - Level 4"
)
ToDisplayM2VarComps <- rbind(NamesM2VarComps, ValuesM2VarComps)

return the values and end the function
return(ToDisplayM2VarComps)
Four-level multilevel meta-models testing links between Stress and absolute PDT

SET THE WORKING DIRECTORY
setwd("")

ACTIVATE ALL NEEDED PACKAGES AND CREATE THE withold() FUNCTION AND THE MetaModelsDescriptiveData() FUNCTION
ACTIVATE ALL NEEDED PACKAGES AND CREATE THE withold() FUNCTION AND THE MetaModelsDescriptiveData() FUNCTION
ACTIVATE ALL NEEDED PACKAGES AND CREATE THE withold() FUNCTION AND THE MetaModelsDescriptiveData() FUNCTION
for info on withold(), see https://www.metafor-project.org/doku.php/tips:multiple_imputation_with_mice_and_metafor for more details
I created the MetaModelsDescriptiveData(), MetaVarCompsModel1(), MetaVarCompsModel2(), and MetaVarCompsModel2LevelVarianceTest() functions - more notes are available in the original file "Meta Analysis Functions.R"
library(metafor)
library(PcAux)
library(mice)
library(psych)
library(tidyverse)
library(car)

IMPORT THE ENTIRE META DATA FRAME
WholeMeta <- read.csv(file = "Programs and Data/FinalCleanPDTMeta.csv", header = T)
SUBSET A NEW DATA FRAME THAT HAS ONLY CASES WITH ABSOLUTE PDT AND Stress

```r
Meta1 <- subset(x = WholeMeta, subset = MagnitudeDirectional == 0 & Outcome == 63)
```

CREATE A SUBSET WITH ONLY THE NEEDED VARIABLES AND EXPORT THE DESCRIPTIVE STATS

```r
Meta2 <- Meta1[, c("ESNum","SampleSize","Correlation","ArticleID","PeerRev","USA","DataID","FamSize","AgeDif","UsedBeta","OverallPDT","PosPDT","NegPDT","EvalPDT","ResourcePDT","FairPDT","ControlPDT","ChildPDTReport","ParentPDTReport","MomPDT","DadPDT","BothParsPDT","Variation","Perception","Recollected","Age","WhitePerc","GCSamePerc","MalePerc","RelBirthYoungPerc")]
```

```r
MetaModelsDescriptiveData(Meta2) # this saves the descriptive stats for the non-imputed model
```

CREATE A NEW DATA FRAME WITH CENTERED VERSIONS OF ALL CONTINUOUS VARIABLES

```r
Meta3 <- Meta2
attach(Meta3)
Meta3$FamSizeC <- FamSize-mean(FamSize, na.rm = T)
Meta3$AgeDifC <- AgeDif-mean(AgeDif, na.rm = T)
Meta3$AgeC <- Age-mean(Age, na.rm = T)
Meta3$WhitePercC <- WhitePerc-mean(WhitePerc, na.rm = T)
Meta3$GCSamePercC <- GCSamePerc-mean(GCSamePerc, na.rm = T)
Meta3$MalePercC <- MalePerc-mean(MalePerc, na.rm = T)
Meta3$RelBirthYoungPercC <- RelBirthYoungPerc-mean(RelBirthYoungPerc, na.rm = T)
detach(Meta3)
```

```r
DropVars <- names(Meta3) %in% c("AgeDif","FamSize","Age","WhitePerc","GCSamePerc","MalePerc","RelBirthYoungPerc")
Meta3 <- Meta3[!DropVars]
```

```r
DropVars <- Meta3 %in% c("AgeDif","FamSize","Age","WhitePerc","GCSamePerc","MalePerc","RelBirthYoungPerc")
```
#SET THE EFFECT SIZES

#Do this before the PCAs, it doesn't like doing it on an imputed data frame, so do it first
Meta4 <- escalc(measure = "ZCOR", ri = Correlation,
 ni = SampleSize, data = Meta3, vtype = "LS", append = TRUE)

#CREATE THE PCAS BASED ON VARIABLES IN Meta3 THAT HAVE NO MISSING VALUES

MetaNOMISS <- Meta4[, which(colMeans(is.na(Meta4)) == .00)] #creating data frame with only variables with no missing values

names(MetaNOMISS)#I run this to get the names and then sort those into the type of variable below

Prepare the data by first sorting out what types of variables I have - continuous variables are left off the code but listed below
myNoms <- c("PeerRev", "USA","UsedBeta", "OverallPDT", "PosPDT", "NegPDT",
 "ParentPDTReport", "MomPDT", "DadPDT", "BothPDT", "Variation", "Perception",
 "Recollected")
myIds <- c("ESNum", "ArticleID", "DataID")
#myOrds <- c() #none this time

#Continuous - "SampleSize", "Correlation", "FamSizeC", "AgeDifC", "AgeC", "WhitePercC",
 "GCSamePercC", "MalePercC", "yi", "vi"

#Create data frame for creating PCAs - prep data step
ReadyForPCA <- prepData(rawData = MetaNOMISS,
 nomVars = myNoms,
 ordVars = NULL, # make sure to update this if there are ordinal variables
 idVars = myIds,
 moderators = NULL,
 verbose = 2L,
 nProcess = 4,
 simMode = F)

#the prepData code required a yes or no to continue, this tells it to continue

Create principal component auxiliary variables:
PCAOut <- createPcAux(pcAuxData = ReadyForPCA,
 nComps = c(0.5,0.5),
 maxPolyPow = 3L,
 doImputation = FALSE,
 interactType = 1)

y #the createPcAux code required a yes or no to continue, this tells it to continue

Merge the PC auxiliaries with the original data:
Meta5 <- mergePcAux(pcAuxData = PCAOut, rawData = Meta4) #use this data for imputation

CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES
CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES
CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES

Meta5$FamSizeH <- Meta5$FamSizeC - sd(Meta5$FamSizeC, na.rm = T)
Meta5$FamSizeL <- Meta5$FamSizeC + sd(Meta5$FamSizeC, na.rm = T)
Meta5$AgeDifH <- Meta5$AgeDifC - sd(Meta5$AgeDifC, na.rm = T)
Meta5$AgeDifL <- Meta5$AgeDifC + sd(Meta5$AgeDifC, na.rm = T)
Meta5$AgeH <- Meta5$AgeC - sd(Meta5$AgeC, na.rm = T)
Meta5$AgeL <- Meta5$AgeC + sd(Meta5$AgeC, na.rm = T)
Meta5$WhitePercH <- Meta5$WhitePercC - sd(Meta5$WhitePercC, na.rm = T)
Meta5$WhitePercL <- Meta5$WhitePercC + sd(Meta5$WhitePercC, na.rm = T)
Meta5$GCSamePercH <- Meta5$GCSamePercC - sd(Meta5$GCSamePercC, na.rm = T)
Meta5$GCSamePercL <- Meta5$GCSamePercC + sd(Meta5$GCSamePercC, na.rm = T)
Meta5$MalePercH <- Meta5$MalePercC - sd(Meta5$MalePercC, na.rm = T)
Meta5$MalePercL <- Meta5$MalePercC + sd(Meta5$MalePercC, na.rm = T)
Meta5$RelBirthYoungPercH <- Meta5$RelBirthYoungPercC - sd(Meta5$RelBirthYoungPercC, na.rm = T)
Meta5$RelBirthYoungPercL <- Meta5$RelBirthYoungPercC + sd(Meta5$RelBirthYoungPercC, na.rm = T)
Meta5$NonPeerRev <- 1 #creating a variable where non-peer reviewed (mostly raw data) is coded as 1,
and peer reviewed as zero
Meta5$NonPeerRev[Meta5$PeerRev == 1] <- 0
Meta5$Concurrent <- 1 # creating a variable where concurrent PDT is 1, recollected is zero
Meta5$Concurrent[Meta5$Recollected == 1] <- 0

#measurement type X reporter interactions
Meta5$DSBMXCR <- Meta5$Variation*Meta5$ChildPDTReport
Meta5$DSBMXPR <- Meta5$Variation*Meta5$ParentPDTReport
Meta5$PBMXCR <- Meta5$Perception*Meta5$ChildPDTReport
Meta5$PBMXPR <- Meta5$Perception*Meta5$ParentPDTReport

#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
Only run this the first time, and then comment it out after the test run
#Meta5 <- Meta5[sample(nrow(Meta5), 20),]

PREPPING THE PREDICTION MATRIX FOR THE MICE MODEL - THIS TELLS IT WHICH VARIABLES TO USE AS PREDICTORS AND WHICH TO IMPUTE
PREPPING THE PREDICTION MATRIX FOR THE MICE MODEL - THIS TELLS IT WHICH VARIABLES TO USE AS PREDICTORS AND WHICH TO IMPUTE
PREPPING THE PREDICTION MATRIX FOR THE MICE MODEL - THIS TELLS IT WHICH VARIABLES TO USE AS PREDICTORS AND WHICH TO IMPUTE
predMatrix <- make.predictorMatrix(Meta5)
changing the matrix so that only the PCAs are used as auxiliary variables for imputing
######re-do this every time to make sure column numbers match
predMatrix[,c(1:32, 44:63)] <- 0 # A value of 1 in this matrix indicates that the corresponding column variable is used to predict the corresponding row variable
only the PCAs should have 1s, and they should go down all the rows
predMatrix # verify - always verify this, it will mess everything up if it is wrong - only PCAs should have 1s
checking the imputation method for each variable - it only really matters for the variables with missing data
if a nominal variable is set to pmm, change it from numeric to factor so that it will use logistic reg
impMethod <- make.method(Meta5)
impMethod

IMPUTE THE DATA
IMPUTE THE DATA
IMPUTE THE DATA
imp <- mice(Meta5, print=FALSE, m=50, predictorMatrix=predMatrix, method=impMethod, seed=1234)

RUN AND EXPORT THE ANALYSIS - MODEL 1
RUN AND EXPORT THE ANALYSIS - MODEL 1
RUN AND EXPORT THE ANALYSIS - MODEL 1
this runs the analysis
Model1 <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE, data=Meta5)
this summarizes the analysis
summary(Model1, digits=3, transf=transf.ztor)
this saves the analysis
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Model 1.txt")
RE_model <- Model1
RE_model
sink(NULL)

this calculates the ICCs
M1ICCs <- MetaVarCompsModel1(Model1)
this saves the ICCs
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Model 1 ICCs.txt")
RE_model <- M1ICCs
RE_model
sink(NULL)

#CHECK FAIL SAFE NUMBER FOR MODEL 1
#CHECK FAIL SAFE NUMBER FOR MODEL 1
#CHECK FAIL SAFE NUMBER FOR MODEL 1
#no need to use the imputed data set here because there are no imputed values on the effect size
FailSafe <- fsn(Meta5$yi, Meta5$vi,type="Rosenthal", alpha=.05, digits = 4)
FailSafe
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Fail Safe Number.txt")
RE_model <- FailSafe
RE_model
sink(NULL)

#CHECK FOR SIGNIFICANT WITHIN SOURCE VARIATION - LEVEL 2
#CHECK FOR SIGNIFICANT WITHIN SOURCE VARIATION - LEVEL 2
#CHECK FOR SIGNIFICANT WITHIN SOURCE VARIATION - LEVEL 2
#Build a model without within-source variance
NoLevel2Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
sigma2=c(0,NA,NA), tdist=TRUE, data=Meta5)
Perform a likelihood-ratio-test to determine the significance of the within-source variance
WithinSource <- anova(Model1, NoLevel2Var)
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Within Source Variance.txt")
RE_model <- WithinSource
RE_model
sink(NULL)

#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 3
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 3
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 3
#Build a model without between-source variance
NoLevel3Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
sigma2=c(NA,0,NA), tdist=TRUE, data=Meta5)
Perform a likelihood-ratio-test to determine the significance of the between-source variance
BetweenSource <- anova(Model1, NoLevel3Var)
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Between Source Variance.txt")
RE_model <- BetweenSource
RE_model
sink(NULL)

#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 4
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 4
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 4
Build a model without between-sample variance

NoLevel4Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
 sigma2=c(NA,NA, 0), tdist=TRUE, data=Meta5)

Perform a likelihood-ratio-test to determine the significance of the between-sample variance

BetweenSample <- anova(Model1, NoLevel4Var)
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Between Sample Variance.txt")
RE_model <- BetweenSample
RE_model
sink(NULL)

RUNNING META REGRESSION - MODEL 2

check frequencies of all nominal variables
sapply(Meta5[,c(5,6,8:23)], table)
table(Meta5$Variation, Meta5$ChildPDTReport)

No UsedBeta, 0 and 2780
No Recollected, 0 and 2780

this runs the analysis by imputation (50 of them)
Model2 <- withold(imp, rma.mv(yi, vi,
 mods = ~ USA+ #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT + ResourcePDT + ControlPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

this summarizes and pools the analysis
Model2Pooled <- summary(pool(Model2))
Model2Pooled[-1] <- round(Model2Pooled[-1], digits=4)
Model2Pooled$LowerBound <- Model2Pooled$estimate - (Model2Pooled$std.error*2)
Model2Pooled$UpperBound <- Model2Pooled$estimate + (Model2Pooled$std.error*2)
Model2Pooled

this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Model 2.txt")
RE_model <- Model2Pooled
RE_model
sink(NULL)

retrieve the variance components for Model 2
DidWork <- MetaVarCompsModel2(Model2)
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Model 2 - variance components.txt")
RE_model <- DidWork
#test the significance of the variance components in Model 2 - this is done using the function below. The function takes the model for each imputation, and constrains the variance at that level to be zero and then tests model fit against the unrestricted(full) model, it then pools the needed stats across all 50 imputations

for the MetaVarCompsModel2LevelVarianceTest function, the needed arguments are (unrestricted model, model with no level 2 variance, model with no level 3 variance, model with no level 4 variance)

Model2NoLevel2Var <- withhold(imp, rma.mv(yi, vi,
 mods = ~ USA+ #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC +
 AgeDifC + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT +
 ResourcePDT + ControlPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),sigma2=c(0,NA, NA),
 tdist=TRUE))

Model2NoLevel3Var <- withhold(imp, rma.mv(yi, vi,
 mods = ~ USA+ #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC +
 AgeDifC + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT +
 ResourcePDT + ControlPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),sigma2=c(NA,0, NA),
 tdist=TRUE))

Model2NoLevel4Var <- withhold(imp, rma.mv(yi, vi,
 mods = ~ USA+ #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC +
 AgeDifC + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT +
 ResourcePDT + ControlPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),sigma2=c(NA,NA, 0),
 tdist=TRUE))

M2VarTest <- MetaVarCompsModel2LevelVarianceTest(Model2, Model2NoLevel2Var,
 Model2NoLevel3Var, Model2NoLevel4Var)
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Model 2 - variance components significance tests.txt")
RE_model <- M2VarTest
RE_model
sink(NULL)

#RUNNING META REGRESSION - MODEL 3
#RUNNING META REGRESSION - MODEL 3
#RUNNING META REGRESSION - MODEL 3

#No Model3, there were no parent reported PBM
TESTING SIMPLE SLOPES - DO NOT RE-RUN MODELS THAT THE INFO IS IN MODEL 2 - ONLY THE
INVERSE OF EACH VARIABLE
TESTING SIMPLE SLOPES - DO NOT RE-RUN MODELS THAT THE INFO IS IN MODEL 2 - ONLY THE
INVERSE OF EACH VARIABLE
TESTING SIMPLE SLOPES - DO NOT RE-RUN MODELS THAT THE INFO IS IN MODEL 2 - ONLY THE
INVERSE OF EACH VARIABLE

HIGH PERCENT SIBY
HIGH PERCENT SIBY
HIGH PERCENT SIBY

HIGHSIBY <- withold(imp, rma.mv(yi, vi,
 mods = ~ USA+ #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercH + GCSamePercC +
 AgeDifC + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT +
 ResourcePDT + ControlPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

this summarizes and pools the analysis
HIGHSIBY <- summary(pool(HIGHSIBY))
HIGHSIBY[-1] <- round(HIGHSIBY[-1], digits=4)
HIGHSIBY

this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Simple Slopes - High SibY.txt")
RE_model <- HIGHSIBY
RE_model
sink(NULL)

LOW PERCENT SIBY
LOW PERCENT SIBY
LOW PERCENT SIBY

LOWSIBY <- withold(imp, rma.mv(yi, vi,
 mods = ~ USA+ #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercL + GCSamePercC + AgeDifC
 + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT +
 ResourcePDT + ControlPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

this summarizes and pools the analysis
LOWSIBY <- summary(pool(LOWSIBY))
LOWSIBY[-1] <- round(LOWSIBY[-1], digits=4)
LOWSIBY

#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Simple Slopes - Low SibY.txt")
RE_model <- LOWSIBY
RE_model
sink(NULL)

#HIGH PERCENT SAME SEX
#HIGH PERCENT SAME SEX
#HIGH PERCENT SAME SEX

HIGHSAMESEX <- withold(imp, rma.mv(yi, vi,
 mods = ~ USA + #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercL +
 AgeDifC + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT +
 ResourcePDT + ControlPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
HIGHSAMESEX <- summary(pool(HIGHSAMESEX))
HIGHSAMESEX[-1] <- round(HIGHSAMESEX[-1], digits=4)
HIGHSAMESEX

#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Simple Slopes - High Percent Same Sex")
RE_model <- HIGHSAMESEX
RE_model
sink(NULL)

#LOW PERCENT SAME SEX
#LOW PERCENT SAME SEX
#LOW PERCENT SAME SEX

LOWSAMESEX <- withold(imp, rma.mv(yi, vi,
 mods = ~ USA + #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercL +
 AgeDifC + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT +
 ResourcePDT + ControlPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
LOWSAMESEX <- summary(pool(LOWSAMESEX))
LOWSAMESEX[-1] <- round(LOWSAMESEX[-1], digits=4)
#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Simple Slopes - Low Percent Same Sex")
RE_model <- LOWSAMESEX
RE_model
sink(NULL)

#MOM PDT
#MOM PDT
#MOM PDT

#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Simple Slopes - Mom PDT.txt")
RE_model <- Model2Pooled
RE_model
sink(NULL)

#Dad PDT
#Dad PDT
#Dad PDT

DADPDT <- with(old(imp, rma.mv(yi, vi,
mods = ~ USA+ #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC
+ AgeC + PeerRev + #Level 3
 MomPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT +
ResourcePDT + ControlPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
DADPDT <- summary(pool(DADPDT))
DADPDT[-1] <- round(DADPDT[-1], digits=4)
DADPDT

#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Simple Slopes - Dad PDT.txt")
RE_model <- DADPDT
RE_model
sink(NULL)

#PARENT REPORT
#PARENT REPORT
#PARENT REPORT
#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Simple Slopes - Parent Reported PDT.txt")
RE_model <- Model2Pooled
RE_model
sink(NULL)

#CHILD REPORT
#CHILD REPORT
#CHILD REPORT

CHILDREPORT <- withhold(imp, rma.mv(yi, vi,
 mods = ~ USA+ #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC +
 AgeDifC + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ParentPDTReport + Variation + PosPDT + NegPDT +
 ResourcePDT + ControlPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
CHILDREPORT <- summary(pool(CHILDREPORT))
CHILDREPORT[-1] <- round(CHILDREPORT[-1], digits=4)
CHILDREPORT

#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Simple Slopes - Child Reported PDT.txt")
RE_model <- CHILDREPORT
RE_model
sink(NULL)

#PBM
#PBM
#PBM

#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Simple Slopes - PBM.txt")
RE_model <- Model2Pooled
RE_model
sink(NULL)

#DSBM
#DSBM
DSBM <- withImp(imp, rma.mv(yi, vi,
 mods = ~ USA+ #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Perception + PosPDT + NegPDT + ResourcePDT + ControlPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
DSBM <- summary(pool(DSBM))
DSBM[-1] <- round(DSBM[-1], digits=4)
DSBM

#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/Stress/Stress - Simple Slopes - DSBM.txt")
RE_model <- DSBM
RE_model
sink(NULL)
Activate all needed packages and create the withhold() function and the MetaModelsDescriptiveData() function

for info on withhold(), see https://www.metafor-project.org/doku.php/tips:multiple_imputation_with_mice_and_metafor for more details

I created the MetaModelsDescriptiveData(), MetaVarCompsModel1(), MetaVarCompsModel2(), and MetaVarCompsModel2LevelVarianceTest() functions - more notes are available in the original file "Meta Analysis Functions.R"

library(metafor)
library(PcAux)
library(mice)
library(psych)
library(tidyverse)
library(car)

Import the entire meta data frame

WholeMeta <- read.csv(file = "Programs and Data/FinalCleanPDTMeta.csv", header = T)
#SUBSET A NEW DATA FRAME THAT HAS ONLY CAPhysical Health WITH ABSOLUTE PDT AND Physical Health

```r
Meta1 <- subset(x = WholeMeta, subset = MagnitudeDirectional == 0 & Outcome == 66)
```

#CREATE A SUBSET WITH ONLY THE NEEDED VARIABLES AND EXPORT THE DESCRIPTIVE STATS

```r
Meta2 <- Meta1[, 
  c("ESNum","SampleSize","Correlation","ArticleID","PeerRev","USA","DataID","FamSize","AgeDif", 
    "UsedBeta","OverallPDT","PosPDT","NegPDT","EvalPDT","ResourcePDT","FairPDT","ControlPDT", 
    "ChildPDTReport","ParentPDTReport","MomPDT","DadPDT","Both ParsPDT","Variation","Perception", 
    "Recollected","Age","WhitePerc","GCSamePerc","MalePerc","RelBirthYoungPerc")]

MetaModelsDescriptiveData(Meta2)  # this saves the descriptive stats for the non-imputed model
```

#CREATE A NEW DATA FRAME WITH CENTERED VERSIONS OF ALL CONTINOUS VARIABLES

```r
Meta3 <- Meta2
attach(Meta3)
Meta3$FamSizeC <- FamSize-mean(FamSize, na.rm = T)
Meta3$AgeDifC <- AgeDif-mean(AgeDif, na.rm = T)
Meta3$AgeC <- Age-mean(Age, na.rm = T)
Meta3$WhitePercC <- WhitePerc-mean(WhitePerc, na.rm = T)
Meta3$GCSamePercC <- GCSamePerc-mean(GCSamePerc, na.rm = T)
Meta3$MalePercC <- MalePerc-mean(MalePerc, na.rm = T)
Meta3$RelBirthYoungPercC <- RelBirthYoungPerc-mean(RelBirthYoungPerc, na.rm = T)
detach(Meta3)
```

```r
DropVars <- names(Meta3) %in%
c("AgeDif","FamSize","Age","WhitePerc","GCSamePerc","MalePerc","RelBirthYoungPerc")
Meta3 <- Meta3[!DropVars]
DropVars <- Meta3 %in%
c("AgeDif","FamSize","Age","WhitePerc","GCSamePerc","MalePerc","RelBirthYoungPerc")
```
#SET THE EFFECT SIZES
#SET THE EFFECT SIZES
#SET THE EFFECT SIZES
#Do this before the PCAs, it doesn't like doing it on an imputed data frame, so do it first
Meta4 <- escalc(measure = "ZCOR", ri = Correlation,
ni = SampleSize, data = Meta3, vtype = "LS", append = TRUE)

#CREATE THE PCAS BASED ON VARIABLES IN Meta3 THAT HAVE NO MISSING VALUES
#CREATE THE PCAS BASED ON VARIABLES IN Meta3 THAT HAVE NO MISSING VALUES
#CREATE THE PCAS BASED ON VARIABLES IN Meta3 THAT HAVE NO MISSING VALUES
#re-do this step every time
MetaNOMISS <- Meta4[, which(colMeans(is.na(Meta4)) == .00)] #creating data frame with only variables with no missing values

names(MetaNOMISS) #I run this to get the names and then sort those into the type of variable below

Prepare the data by first sorting out what types of variables I have - continuous variables are left off the code but listed below

myIds <- c("ESNum", "ArticleID", "DataID")

#myOrds <- c() #none this time

#Create data frame for creating PCAs - prep data step
ReadyForPCA <- prepData(rawData = MetaNOMISS,
nomVars = myNoms,
ordVars = NULL, # make sure to update this if there are ordinal variables
idVars = myIds,
moderators = NULL,
verbose = 2L,
nProcess = 4,
simMode = F)

y #the prepData code required a yes or no to continue, this tells it to continue
Create principal component auxiliary variables:
PCAOut <- createPcAux(pcAuxData = ReadyForPCA,
 nComps = c(0.5, 0.5),
 maxPolyPow = 3L,
 doImputation = FALSE,
 interactType = 1)
y #the createPcAux code required a yes or no to continue, this tells it to continue

Merge the PC auxiliaries with the original data:
Meta5 <- mergePcAux(pcAuxData = PCAOut, rawData = Meta4) #use this data for imputation

#CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES
#CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES
#CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES
Meta5$FamSizeH <- Meta5$FamSizeC - sd(Meta5$FamSizeC, na.rm = T)
Meta5$FamSizeL <- Meta5$FamSizeC + sd(Meta5$FamSizeC, na.rm = T)
Meta5$AgeDifH <- Meta5$AgeDifC - sd(Meta5$AgeDifC, na.rm = T)
Meta5$AgeDifL <- Meta5$AgeDifC + sd(Meta5$AgeDifC, na.rm = T)
Meta5$AgeH <- Meta5$AgeC - sd(Meta5$AgeC, na.rm = T)
Meta5$AgeL <- Meta5$AgeC + sd(Meta5$AgeC, na.rm = T)
Meta5$WhitePercH <- Meta5$WhitePercC - sd(Meta5$WhitePercC, na.rm = T)
Meta5$WhitePercL <- Meta5$WhitePercC + sd(Meta5$WhitePercC, na.rm = T)
Meta5$GCSamePercH <- Meta5$GCSamePercC - sd(Meta5$GCSamePercC, na.rm = T)
Meta5$GCSamePercL <- Meta5$GCSamePercC + sd(Meta5$GCSamePercC, na.rm = T)
Meta5$MalePercH <- Meta5$MalePercC - sd(Meta5$MalePercC, na.rm = T)
Meta5$MalePercL <- Meta5$MalePercC + sd(Meta5$MalePercC, na.rm = T)
Meta5$RelBirthYoungPercH <- Meta5$RelBirthYoungPercC - sd(Meta5$RelBirthYoungPercC, na.rm = T)
Meta5$RelBirthYoungPercL <- Meta5$RelBirthYoungPercC + sd(Meta5$RelBirthYoungPercC, na.rm = T)
Meta5$NonPeerRev <- 1 #creating a variable where non-peer reviewed (mostly raw data) is coded as 1, and peer reviewed as zero
Meta5$NonPeerRev[Meta5$PeerRev == 1] <- 0
Meta5$Concurrent <- 1 # creating a variable where concurrent PDT is 1, recollected is zero
Meta5$Concurrent[Meta5$Recollected == 1] <- 0
#measurement type X reporter interactions
Meta5$DSBMXCR <- Meta5$Variation*Meta5$ChildPDTReport
Meta5$DSBMXPR <- Meta5$Variation*Meta5$ParentPDTReport
Meta5$PBMXCR <- Meta5$Perception*Meta5$ChildPDTReport
Meta5$PBMXPR <- Meta5$Perception*Meta5$ParentPDTReport

#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
Only run this the first time, and then comment it out after the test run
Meta5 <- Meta5[sample(nrow(Meta5), 100),]

Prepping the prediction matrix for the MICE model - this tells it which variables to use as predictors and which to impute
Prepping the prediction matrix for the MICE model - this tells it which variables to use as predictors and which to impute
Prepping the prediction matrix for the MICE model - this tells it which variables to use as predictors and which to impute
predMatrix <- make.predictorMatrix(Meta5)

Changing the matrix so that only the PCAs are used as auxiliary variables for imputing
re-do this every time to make sure column numbers match
predMatrix[,c(1:32, 39:58)] <- 0 # A value of 1 in this matrix indicates that the corresponding column variable is used to predict the corresponding row variable
only the PCAs should have 1s, and they should go down all the rows
predMatrix # verify - always verify this, it will mess everything up if it is wrong - only PCAs should have 1s

Checking the imputation method for each variable - it only really matters for the variables with missing data
if a nominal variable is set to pmm, change it from numeric to factor so that it will use logistic reg
impMethod <- make.method(Meta5)

Impute the data
imp <- mice(Meta5, print=FALSE, m=50, predictorMatrix=predMatrix, method=impMethod, seed=1234)

Run and export the analysis - model 1
Run and export the analysis - model 1
Run and export the analysis - model 1
this runs the analysis
Model1 <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE, data=Meta5)

this summarizes the analysis
summary(Model1, digits=3, transf=transf.ztor)

this saves the analysis
sink(file = "Findings/Imputed Data Findings/Physical Health/Physical Health - Model 1.txt")
RE_model <- Model1
RE_model
sink(NULL)

this calculates the ICCs
M1ICCs<- MetaVarCompsModel1(Model1)
this saves the ICCs
sink(file = "Findings/Imputed Data Findings/Physical Health/Physical Health - Model 1 ICCs.txt")
RE_model <- M1ICCs
RE_model
sink(NULL)

#CHECK FAIL SAFE NUMBER FOR MODEL 1
#CHECK FAIL SAFE NUMBER FOR MODEL 1
#CHECK FAIL SAFE NUMBER FOR MODEL 1
#no need to use the imputed data set here because there are no imputed values on the effect size
FailSafe <- fsn(Meta5$yi, Meta5$vi,type="Rosenthal", alpha=.05, digits = 4)
FailSafe
sink(file = "Findings/Imputed Data Findings/Physical Health/Physical Health - Fail Safe Number.txt")
RE_model <- FailSafe
RE_model
sink(NULL)

#CHECK FOR SIGNIFICANT WITHIN SOURCE VARIATION - LEVEL 2
#CHECK FOR SIGNIFICANT WITHIN SOURCE VARIATION - LEVEL 2
#CHECK FOR SIGNIFICANT WITHIN SOURCE VARIATION - LEVEL 2
#Build a model without within-source variance
NoLevel2Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
 sigma2=c(0,NA, NA), tdist=TRUE, data=Meta5)
Perform a likelihood-ratio-test to determine the significance of the within-source variance
WithinSource <- anova(Model1,NoLevel2Var)
sink(file = "Findings/Imputed Data Findings/Physical Health/Physical Health - Within Source Variance.txt")
RE_model <- WithinSource
RE_model
sink(NULL)

#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 3
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 3
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 3
#Build a model without between-source variance
NoLevel3Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
 sigma2=c(NA,0, NA), tdist=TRUE, data=Meta5)
Perform a likelihood-ratio-test to determine the significance of the between-source variance
BetweenSource <- anova(Model1,NoLevel3Var)
sink(file = "Findings/Imputed Data Findings/Physical Health/Physical Health - Between Source Variance.txt")
RE_model <- BetweenSource
RE_model
sink(NULL)

#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 4
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 4
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 4
#Build a model without between-sample variance
NoLevel4Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
 sigma2=c(NA,NA, 0), tdist=TRUE, data=Meta5)
Perform a likelihood-ratio-test to determine the significance of the between-sample variance
BetweenSample<-anova(Model1,NoLevel4Var)
sink(file = "Findings/Imputed Data Findings/Physical Health/Physical Health - Between Sample Variance.txt")
RE_model <- BetweenSample
RE_model
sink(NULL)

#RUNNING META REGRESSION - MODEL 2
#RUNNING META REGRESSION - MODEL 2
#RUNNING META REGRESSION - MODEL 2
#check frequencies of all nominal variables
sapply(Meta5[,c(5,6,8:23)], table)
table(Meta5$Variation, Meta5$ChildPDTReport)

#There is not variation at the sample level, so no USA
#No PeerRev 532 and 3
#No UsedBeta 532 and 3
#No OverallPDT 507 and 28
#PosPDT is the reference group for domain
#No Recollected 0 and 535

#this runs the analysis by imputation (50 of them)
Model2 <- withold(imp, rma.mv(yi, vi, mods = ~
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC
 + AgeC + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + NegPDT + ResourcePDT +
 ControlPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
Model2Pooled <- summary(pool(Model2))
Model2Pooled[-1] <- round(Model2Pooled[-1], digits=4)
Model2Pooled$LowerBound <- Model2Pooled$estimate - (Model2Pooled$std.error*2)
Model2Pooled$UpperBound <- Model2Pooled$estimate + (Model2Pooled$std.error*2)

Model2Pooled

#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/Physical Health/Physical Health - Model 2.txt")
RE_model <- Model2Pooled
RE_model
sink(NULL)

#retrieve the variance components for Model 2
DidWork <- MetaVarCompsModel2(Model2)
sink(file = "Findings/Imputed Data Findings/Physical Health/Physical Health - Model 2 - variance components.txt")
RE_model <- DidWork
RE_model
sink(NULL)

#test the significance of the variance components in Model 2 - this is done using the function below. The function takes the model for each imputation, and constrains the variance at that level to be zero and then tests model fit against the unrestricted(full) model, it then pools the needed stats across all 50 imputations
#for the MetaVarCompsModel2LevelVarianceTest function, the needed arguments are (unrestricted model, model with no level 2 variance, model with no level 3 variance, model with no level 4 variance)
Model2NoLevel2Var <- withhold(imp, rma.mv(yi, vi,
 mods = ~
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC + AgeC + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + NegPDT + ResourcePDT + ControlPDT, #Level 2
tdist=TRUE))
Model2NoLevel3Var <- withhold(imp, rma.mv(yi, vi,
 mods = ~
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC + AgeC + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + NegPDT + ResourcePDT + ControlPDT, #Level 2
tdist=TRUE))
Model2NoLevel4Var <- withhold(imp, rma.mv(yi, vi,
 mods = ~
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC + AgeC + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + NegPDT + ResourcePDT + ControlPDT, #Level 2
random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), sigma2 = c(NA, NA, 0),

tdist = TRUE))
M2VarTest <- MetaVarCompsModel2LevelVarianceTest(Model2, Model2NoLevel2Var, Model2NoLevel3Var, Model2NoLevel4Var)
sink(file = "Findings/Imputed Data Findings/Physical Health/Physical Health - Model 2 - variance components significance tests.txt")
RE_model <- M2VarTest
RE_model
sink(NULL)

#RUNNING META REGRESSION - MODEL 3
#RUNNING META REGRESSION - MODEL 3
#RUNNING META REGRESSION - MODEL 3

#There were not enough in each cell for the interaction, Parent PBM had 3 cases

#TESTING SIMPLE SLOPES - DO NOT RE-RUN MODELS THAT THE INFO IS IN MODEL 2 - ONLY THE INVERSE OF EACH VARIABLE

#POS PDT
#POS PDT
#POS PDT
#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/Physical Health/Physical Health - Simple Slopes - Pos PDT.txt")
RE_model <- Model2Pooled
RE_model
sink(NULL)

#CONTROL PDT
#CONTROL PDT
#CONTROL PDT
#this runs the analysis by imputation (50 of them)
CONTROLPDT <- withhold(imp, rma.mv(yi, vi, mods = ~
FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC + AgeC + #Level 3
\texttt{DadPDT} + \texttt{BothParsPDT} + \texttt{ChildPDTReport} + \texttt{Variation} + \texttt{NegPDT} + \texttt{ResourcePDT} + \texttt{PosPDT}, \texttt{#Level 2}

\texttt{random = list(~ 1 | ESNum, \sim 1 | ArticleID, \sim 1 | DataID), tdist=TRUE})

\#this summarizes and pools the analysis
\texttt{CONTROLPDT <- summary(pool(CONTROLPDT))}
\texttt{CONTROLPDT[-1] <- round(CONTROLPDT[-1], digits=4)}
\texttt{CONTROLPDT}

\#this exports the findings to a text file
\texttt{sink(file = "Findings/Imputed Data Findings/Physical Health/Physical Health - Simple Slopes - Control PDT.txt")}
\texttt{RE_model <- CONTROLPDT}
\texttt{RE_model}
\texttt{sink(NULL)
Four-level multilevel meta models testing links between Mental Health and absolute PDT

#SET THE WORKING DIRECTORY
setwd("")

#ACTIVATE ALL NEEDED PACKAGES AND CREATE THE withold() FUNCTION AND THE MetaModelsDescriptiveData() FUNCTION
#ACTIVATE ALL NEEDED PACKAGES AND CREATE THE withold() FUNCTION AND THE MetaModelsDescriptiveData() FUNCTION
#ACTIVATE ALL NEEDED PACKAGES AND CREATE THE withold() FUNCTION AND THE MetaModelsDescriptiveData() FUNCTION
#for info on withold(), see https://www.metafor-project.org/doku.php/tips:multiple_imputation_with_mice_and_metafor for more details
#I created the MetaModelsDescriptiveData(), MetaVarCompsModel1(), MetaVarCompsModel2(), and MetaVarCompsModel2LevelVarianceTest() functions - more notes are available in the original file "Meta Analysis Functions.R"
library(metafor)
library(PcAux)
library(mice)
library(psych)
library(tidyverse)
library(car)

#IMPORT THE ENTIRE META DATA FRAME
WholeMeta <- read.csv(file = "Programs and Data/FinalCleanPDTMeta.csv", header = T)
Subset a new data frame that has only cases with absolute PDT and mental health

Meta1 <- subset(x = WholeMeta, subset = MagnitudeDirectional == 0 & Outcome == 65)

Create a subset with only the needed variables and export the descriptive stats

Meta2 <- Meta1[, c("ESNum","SampleSize","Correlation","ArticleID","PeerRev","USA","DataID","FamSize","AgeDif", "UsedBeta","OverallPDT","PosPDT","NegPDT","EvalPDT","ResourcePDT","FairPDT","ControlPDT", "ChildPDTReport","ParentPDTReport","MomPDT","DadPDT","BothParsPDT","Variation","Perception", "Recollected","Age","WhitePerc","GCSamePerc","MalePerc","RelBirthYoungPerc")]

MetaModelsDescriptiveData(Meta2) # this saves the descriptive stats for the non-imputed model

We take descriptive stats from this data frame so that it includes missing data and the non-centered versions of continuous variables

Create a new data frame with centered versions of all continuous variables

Meta3 <- Meta2
attach(Meta3)
Meta3$FamSizeC <- FamSize-mean(FamSize, na.rm = T)
Meta3$AgeDifC <- AgeDif-mean(AgeDif, na.rm = T)
Meta3$AgeC <- Age-mean(Age, na.rm = T)
Meta3$WhitePercC <- WhitePerc-mean(WhitePerc, na.rm = T)
Meta3$GCSamePercC <- GCSamePerc-mean(GCSamePerc, na.rm = T)
Meta3$MalePercC <- MalePerc-mean(MalePerc, na.rm = T)
Meta3$RelBirthYoungPercC <- RelBirthYoungPerc-mean(RelBirthYoungPerc, na.rm = T)
detach(Meta3)
DropVars <- names(Meta3) %in% c("AgeDif","FamSize","Age","WhitePerc","GCSamePerc","MalePerc","RelBirthYoungPerc")
Meta3 <- Meta3[!DropVars]
DropVars <- Meta3 %in% c("AgeDif","FamSize","Age","WhitePerc","GCSamePerc","MalePerc","RelBirthYoungPerc")
SET THE EFFECT SIZES
SET THE EFFECT SIZES
SET THE EFFECT SIZES
Do this before the PCAs, it doesn't like doing it on an imputed data frame, so do it first
Meta4 <- escalc(measure = "ZCOR", ri = Correlation, ni = SampleSize, data = Meta3, vtype = "LS", append = TRUE)

CREATE THE PCAS BASED ON VARIABLES IN Meta3 THAT HAVE NO MISSING VALUES
CREATE THE PCAS BASED ON VARIABLES IN Meta3 THAT HAVE NO MISSING VALUES
CREATE THE PCAS BASED ON VARIABLES IN Meta3 THAT HAVE NO MISSING VALUES
re-do this step every time

MetaNOMISS <- Meta4[, which(colMeans(is.na(Meta4)) == .00)]# creating data frame with only variables with no missing values

names(MetaNOMISS)# I run this to get the names and then sort those into the type of variable below

Prepare the data by first sorting out what types of variables I have - continuous variables are left off the code but listed below
myIds <- c("ESNum", "ArticleID", "DataID")
#myOrds <- c() # none this time

Continuous -

Create data frame for creating PCAs - prep data step
ReadyForPCA <- prepData(rawData = MetaNOMISS, nomVars = myNoms, ordVars = NULL, # make sure to update this if there are ordinal variables idVars = myIds, moderators = NULL, verbose = 2L, nProcess = 4, simMode = F)

y # the prepData function often needs a yes or no to continue, this tells it to keep going

Create principal component auxiliary variables:
PCAOut <- createPcAux(pcAuxData = ReadyForPCA,
 nComps = c(0.5,0.5),
 maxPolyPow = 3L,
 doImputation = FALSE,
 interactType = 1)
y #the createPcAux function often needs a yes or no to continue, this tells it to keep going

Merge the PC auxiliaries with the original data:
Meta5 <- mergePcAux(pcAuxData = PCAOut, rawData = Meta4) #use this data for imputation

#CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES
#CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES
#CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES
Meta5$FamSizeH <- Meta5$FamSizeC - sd(Meta5$FamSizeC, na.rm = T)
Meta5$FamSizeL <- Meta5$FamSizeC + sd(Meta5$FamSizeC, na.rm = T)
Meta5$AgeDifH <- Meta5$AgeDifC - sd(Meta5$AgeDifC, na.rm = T)
Meta5$AgeDifL <- Meta5$AgeDifC + sd(Meta5$AgeDifC, na.rm = T)
Meta5$AgeH <- Meta5$AgeC - sd(Meta5$AgeC, na.rm = T)
Meta5$AgeL <- Meta5$AgeC + sd(Meta5$AgeC, na.rm = T)
Meta5$WhitePercH <- Meta5$WhitePercC - sd(Meta5$WhitePercC, na.rm = T)
Meta5$WhitePercL <- Meta5$WhitePercC + sd(Meta5$WhitePercC, na.rm = T)
Meta5$GCSamePercH <- Meta5$GCSamePercC - sd(Meta5$GCSamePercC, na.rm = T)
Meta5$GCSamePercL <- Meta5$GCSamePercC + sd(Meta5$GCSamePercC, na.rm = T)
Meta5$MalePercH <- Meta5$MalePercC - sd(Meta5$MalePercC, na.rm = T)
Meta5$MalePercL <- Meta5$MalePercC + sd(Meta5$MalePercC, na.rm = T)
Meta5$RelBirthYoungPercH <- Meta5$RelBirthYoungPercC - sd(Meta5$RelBirthYoungPercC, na.rm = T)
Meta5$RelBirthYoungPercL <- Meta5$RelBirthYoungPercC + sd(Meta5$RelBirthYoungPercC, na.rm = T)
Meta5$NonPeerRev <- 1 #creating a variable where non-peer reviewed (mostly raw data) is coded as 1, and peer reviewed as zero
Meta5$NonPeerRev[Meta5$PeerRev == 1] <- 0
Meta5$Concurrent <- 1 # creating a variable where concurrent PDT is 1, recollected is zero
Meta5$Concurrent[Meta5$Recollected == 1] <- 0
#measurement type X reporter interactions
Meta5$DSBMXCR <- Meta5$Variation*Meta5$ChildPDTReport
Meta5$DSBMXPR <- Meta5$Variation*Meta5$ParentPDTReport
Meta5$PBMXCR <- Meta5$Perception*Meta5$ChildPDTReport
Meta5$PBMXPR <- Meta5$Perception*Meta5$ParentPDTReport

#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
Only run this the first time, and then comment it out after the test run

```
#Meta5 <- Meta5[sample(nrow(Meta5), 100),]
```

PREPPING THE PREDICTION MATRIX FOR THE MICE MODEL - THIS TELLS IT WHICH VARIABLES TO USE AS PREDICTORS AND WHICH TO IMPUTE

```
predMatrix <- make.predictorMatrix(Meta5)
```

```R
#changing the matrix so that only the PCAs are used as auxiliary variables for imputing
predMatrix[,c(1:32, 43:62)] <- 0  #A value of 1 in this matrix indicates that the corresponding column variable is used to predict the corresponding row variable
#only the PCAs should have 1s, and they should go down all the rows
predMatrix #verify - always verify this, it will mess everything up if it is wrong - only PCAs should have 1s
```

```
#checking the imputation method for each variable - it only really matters for the variables with missing data
#if a nominal variable is set to pmm, change it from numeric to factor so that it will use logistic reg
impMethod <- make.method(Meta5)
```

```
#IMPUTE THE DATA
imp <- mice(Meta5, print=FALSE, m=50, predictorMatrix=predMatrix, method=impMethod, seed=1234)
```

```
#RUN AND EXPORT THE ANALYSIS - MODEL 1
Model1 <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE, data=Meta5)
```

```
#this runs the analysis
summary(Model1, digits=3, transf=transf.ztor)
#this saves the analysis
sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Model 1.txt")
RE_model <- Model1
sink(NULL)
```

```
#this calculates the ICCs
M1ICCs <- MetaVarCompsModel1(Model1)
```

```
#this saves the ICCs
```
sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Model 1 ICCs.txt")
RE_model <- M1ICCs
RE_model
sink(NULL)

#CHECK FAIL SAFE NUMBER FOR MODEL 1
#CHECK FAIL SAFE NUMBER FOR MODEL 1
#CHECK FAIL SAFE NUMBER FOR MODEL 1
#no need to use the imputed data set here because there are no imputed values on the effect size
FailSafe <- fsn(Meta5$yi, Meta5$vi, type="Rosenthal", alpha=.05, digits = 4)
FailSafe
sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Fail Safe Number.txt")
RE_model <- FailSafe
RE_model
sink(NULL)

#CHECK FOR SIGNIFICANT WITHIN SOURCE VARIATION - LEVEL 2
#CHECK FOR SIGNIFICANT WITHIN SOURCE VARIATION - LEVEL 2
#CHECK FOR SIGNIFICANT WITHIN SOURCE VARIATION - LEVEL 2
#Build a model without within-source variance
NoLevel2Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
 sigma2=c(0,NA, NA), tdist=TRUE, data=Meta5)
Perform a likelihood-ratio-test to determine the significance of the within-source variance
WithinSource <- anova(Model1, NoLevel2Var)
sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Within Source Variance.txt")
RE_model <- WithinSource
RE_model
sink(NULL)

#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 3
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 3
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 3
#Build a model without between-source variance
NoLevel3Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
 sigma2=c(NA,0, NA), tdist=TRUE, data=Meta5)
Perform a likelihood-ratio-test to determine the significance of the between-source variance
BetweenSource <- anova(Model1, NoLevel3Var)
sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Between Source Variance.txt")
RE_model <- BetweenSource
RE_model
sink(NULL)
Check for significant between source variation - Level 4

Build a model without between-sample variance

```r
NoLevel4Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
  sigma2=c(NA, NA, 0), tdist=TRUE, data=Meta5)
```

Perform a likelihood-ratio-test to determine the significance of the between-sample variance

```r
BetweenSample <- anova(Model1, NoLevel4Var)
sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Between Sample Variance.txt")
RE_model <- BetweenSample
RE_model
sink(NULL)
```

Running meta regression - Model 2

Check frequencies of all nominal variables

```r
sapply(Meta5[,c(5,6,8:23)], table)
```

```r
table(Meta5$Variation, Meta5$ChildPDTReport)
```

This runs the analysis by imputation (50 of them)

```r
Model2 <- withold(imp, rma.mv(yi, vi,
  mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC +
  GCSamePercC + AgeDifC + AgeC + DadPDT +
  BothParsPDT + ChildPDTReport +
  Variation + NegPDT + ResourcePDT + ControlPDT,
  random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))
```

This summarizes and pools the analysis

```r
Model2Pooled <- summary(pool(Model2))
Model2Pooled[-1] <- round(Model2Pooled[-1], digits=4)
Model2Pooled$LowerBound <- Model2Pooled$estimate - (Model2Pooled$std.error*2)
Model2Pooled$UpperBound <- Model2Pooled$estimate + (Model2Pooled$std.error*2)
Model2Pooled
```

This exports the findings to a text file

```r
sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Model 2.txt")
RE_model <- Model2Pooled
RE_model
sink(NULL)
```

Retrieve the variance components for Model 2

```r
DidWork <- MetaVarCompsModel2(Model2)
```
sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Model 2 - variance components.txt")
RE_model <- DidWork
RE_model
sink(NULL)

#test the significance of the variance components in Model 2 - this is done using the function below. The function takes the model for each imputation, and constrains the variance at that level to be zero and then tests model fit against the unrestricted(full) model, it then pools the needed stats across all 50 imputations

#for the MetaVarCompsModel2LevelVarianceTest function, the needed arguments are (unrestricted model, model with no level 2 variance, model with no level 3 variance, model with no level 4 variance)
Model2NoLevel2Var <- withold(imp, rma.mv(yi, vi,
 mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC +
 GCSamePercC + AgeDifC + AgeC + DadPDT +
 BothParsPDT + ChildPDTReport +
 Variation + NegPDT + ResourcePDT + ControlPDT,
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),sigma2=c(0, NA, NA),
 tdist=TRUE))
Model2NoLevel3Var <- withold(imp, rma.mv(yi, vi,
 mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC +
 GCSamePercC + AgeDifC + AgeC + DadPDT +
 BothParsPDT + ChildPDTReport +
 Variation + NegPDT + ResourcePDT + ControlPDT,
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),sigma2=c(NA,0, NA),
 tdist=TRUE))
Model2NoLevel4Var <- withold(imp, rma.mv(yi, vi,
 mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC +
 GCSamePercC + AgeDifC + AgeC + DadPDT +
 BothParsPDT + ChildPDTReport +
 Variation + NegPDT + ResourcePDT + ControlPDT,
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),sigma2=c(NA,NA, 0),
 tdist=TRUE))
M2VarTest <- MetaVarCompsModel2LevelVarianceTest(Model2, Model2NoLevel2Var, Model2NoLevel3Var, Model2NoLevel4Var)
sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Model 2 - variance components significance tests.txt")
RE_model <- M2VarTest
RE_model
sink(NULL)

#RUNNING META REGRESSION - MODEL 3
#RUNNING META REGRESSION - MODEL 3
#RUNNING META REGRESSION - MODEL 3
#this runs the analysis by imputation (50 of them)
Model3 <- withold(imp, rma.mv(yi, vi,
 mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC +
 GCSamePercC + AgeDifC + AgeC + DadPDT +
 BothParsPDT + ChildPDTReport +
 Variation + NegPDT + ResourcePDT + ControlPDT + Variation:ChildPDTReport,
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
Model3Pooled <- summary(pool(Model3))
Model3Pooled[-1] <- round(Model3Pooled[-1], digits=4)
Model3Pooled$LowerBound <- Model3Pooled$estimate - (Model3Pooled$std.error*2)
Model3Pooled$UpperBound <- Model3Pooled$estimate + (Model3Pooled$std.error*2)
Model3Pooled

#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Model 3.txt")
RE_model <- Model3Pooled
RE_model
sink(NULL)

#test the significance of the variance components in Model 3 - this is done using the function below. The
#function takes the model for each imputation, and constrains the variance at that level to be zero and
#then tests model fit against the unrestricted(full) model, it then pools the needed stats across all 50
#imputations
#for the MetaVarCompsModel3LevelVarianceTest function, the needed arguments are (unrestricted
#model, model with no level 2 variance, model with no level 3 variance, model with no level 4 variance)
Model3NoLevel2Var <- withold(imp, rma.mv(yi, vi,
 mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC +
 GCSamePercC + AgeDifC + AgeC + DadPDT +
 BothParsPDT + ChildPDTReport +
 Variation + NegPDT + ResourcePDT + ControlPDT + Variation:ChildPDTReport,
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

Model3NoLevel3Var <- withold(imp, rma.mv(yi, vi,
 mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC +
 GCSamePercC + AgeDifC + AgeC + DadPDT +
 BothParsPDT + ChildPDTReport +
 Variation + NegPDT + ResourcePDT + ControlPDT +
 sigma2=c(0,NA, NA), tdist=TRUE))

Model3NoLevel4Var <- withold(imp, rma.mv(yi, vi,
 mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC +
 GCSamePercC + AgeDifC + AgeC + DadPDT +
 BothParsPDT + ChildPDTReport +
 Variation + NegPDT + ResourcePDT + ControlPDT +
 sigma2=c(NA,0, NA), tdist=TRUE))
BothParsPDT + ChildPDTReport +
Variation + NegPDT + ResourcePDT + ControlPDT +
Variation:ChildPDTReport,
random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))
M3VarTest <- MetaVarCompsModel2LevelVarianceTest(Model3, Model3NoLevel2Var,
Model3NoLevel3Var, Model3NoLevel4Var)
sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Model 3 - variance
components significance tests.txt")
RE_model <- M3VarTest
RE_model
sink(NULL)

TESTING SIMPLE SLOPES - DO NOT RE-RUN MODELS THAT THE INFO IS IN MODEL 2 - ONLY THE
INVERSE OF EACH VARIABLE
TESTING SIMPLE SLOPES - DO NOT RE-RUN MODELS THAT THE INFO IS IN MODEL 2 - ONLY THE
INVERSE OF EACH VARIABLE
TESTING SIMPLE SLOPES - DO NOT RE-RUN MODELS THAT THE INFO IS IN MODEL 2 - ONLY THE
INVERSE OF EACH VARIABLE

HIGH PERCENTAGE SAME SEX
HIGH PERCENTAGE SAME SEX
HIGH PERCENTAGE SAME SEX
GCHigh <- withhold(imp, rma.mv(yi, vi,
mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC +
GCSamePercH + AgeDifC + AgeC + DadPDT +
BothParsPDT + ChildPDTReport +
Variation + NegPDT + ResourcePDT + ControlPDT,
random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))
#this summarizes and pools the analysis
GCHigh <- summary(pool(GCHigh))
GCHigh[-1] <- round(GCHigh[-1], digits=4)
GCHigh

sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Simple Slopes - Same Sex
Percent High.txt")
RE_model <- GCHigh
RE_model
sink(NULL)

LOW PERCENTAGE SAME SEX
LOW PERCENTAGE SAME SEX
LOW PERCENTAGE SAME SEX
LOW PERCENTAGE SAME SEX
GCLow <- withhold(imp, rma.mv(yi, vi,
mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC +
GCSamePercH + AgeDifC + AgeC + DadPDT +
BothParsPDT + ChildPDTReport +
Variation + NegPDT + ResourcePDT + ControlPDT,
GCSamePercL + AgeDifC + AgeC + DadPDT + BothParsPDT + ChildPDTReport + Variation + NegPDT + ResourcePDT + ControlPDT,
random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
GCLow <- summary(pool(GCLow))
GCLow[-1] <- round(GCLow[-1], digits=4)
GCLow

sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Simple Slopes - Same Sex Percent Low.txt")
RE_model <- GCLow
RE_model
sink(NULL)

#HIGH AGE SPACING
#HIGH AGE SPACING
#HIGH AGE SPACING
AgeDifHigh <- withhold(imp, rma.mv(yi, vi,
mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifH + AgeC + DadPDT + BothParsPDT + ChildPDTReport + Variation + NegPDT + ResourcePDT + ControlPDT,
random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
AgeDifHigh <- summary(pool(AgeDifHigh))
AgeDifHigh[-1] <- round(AgeDifHigh[-1], digits=4)
AgeDifHigh

sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Simple Slopes - Age Spacing High.txt")
RE_model <- AgeDifHigh
RE_model
sink(NULL)

#LOW AGE SPACING
#LOW AGE SPACING
#LOW AGE SPACING
AgeDifLow <- withhold(imp, rma.mv(yi, vi,
mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifL + AgeC + DadPDT + BothParsPDT + ChildPDTReport + Variation + NegPDT + ResourcePDT + ControlPDT,
random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
AgeDifLow <- summary(pool(AgeDifLow))
AgeDifLow[-1] <- round(AgeDifLow[-1], digits=4)
AgeDifLow

sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Simple Slopes - Age Spacing
Low.txt")
RE_model <- AgeDifLow
RE_model
sink(NULL)

#PDT FROM MOM
#PDT FROM MOM
#PDT FROM MOM
sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Simple Slopes - PDT from
Mom.txt")
RE_model <- Model2Pooled
RE_model
sink(NULL)

#PDT FROM DAD
#PDT FROM DAD
#PDT FROM DAD
PDTDad <- withold(imp, rma.mv(yi, vi,
mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC +
GCSamePercC + AgeDifC + AgeC + MomPDT +
BothParsPDT + ChildPDTReport +
Variation + NegPDT + ResourcePDT + ControlPDT,
random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
PDTDad <- summary(pool(PDTDad))
PDTDad[-1] <- round(PDTDad[-1], digits=4)
PDTDad

sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Simple Slopes - PDT from
Dad.txt")
RE_model <- PDTDad
RE_model
sink(NULL)
PDT FROM BOTH PARENTS
PDTBoth <- withold(imp, rma.mv(yi, vi, mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC + AgeC + DadPDT + MomPDT + ChildPDTReport + Variation + NegPDT + ResourcePDT + ControlPDT, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
PDTBoth <- summary(pool(PDTBoth))
PDTBoth[-1] <- round(PDTBoth[-1], digits=4)
PDTBoth

sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Simple Slopes - PDT from Both Parents.txt")
RE_model <- PDTBoth
sink(NULL)

POS PDT
POS PDT
POS PDT
sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Simple Slopes - Pos PDT.txt")
RE_model <- Model2Pooled
sink(NULL)

NEG PDT
NEG PDT
NEG PDT
sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Simple Slopes - Neg PDT.txt")
RE_model <- withold(imp, rma.mv(yi, vi, mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC + AgeC + BothParsPDT + ChildPDTReport + Variation + PosPDT + ResourcePDT + ControlPDT, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
PDTNeg <- summary(pool(PDTNeg))
PDTNeg[-1] <- round(PDTNeg[-1], digits=4)
PDTNeg

sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Simple Slopes - Neg PDT.txt")
RE_model <- PDTNeg
RE_model
sink(NULL)

#RESOURCE PDT
#RESOURCE PDT
#RESOURCE PDT
PDTResource <- withold(imp, rma.mv(yi, vi,
 mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC +
 GCSamePercC + AgeDifC + AgeC + DadPDT +
 BothParsPDT + ChildPDTReport +
 Variation + NegPDT + PosPDT + ControlPDT,
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
PDTResource <- summary(pool(PDTResource))
PDTResource[-1] <- round(PDTResource[-1], digits=4)
PDTResource

sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Simple Slopes - Resource PDT.txt")
RE_model <- PDTResource
RE_model
sink(NULL)

#CONTROL PDT
#CONTROL PDT
#CONTROL PDT
PDTControl <- withold(imp, rma.mv(yi, vi,
 mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC +
 GCSamePercC + AgeDifC + AgeC + DadPDT +
 BothParsPDT + ChildPDTReport +
 Variation + NegPDT + ResourcePDT + PosPDT,
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
PDTControl <- summary(pool(PDTControl))
PDTControl[-1] <- round(PDTControl[-1], digits=4)
PDTControl

sink(file = "Findings/Imputed Data Findings/Mental Health/Mental Health - Simple Slopes - Control PDT.txt")
RE_model <- PDTControl
RE_model
sink(NULL)
Four-level multilevel meta models
testing links between SES and absolute PDT

#ACTIVTE ALL NEEDED PACKAGES AND CREATE THE withhold() FUNCTION AND THE MetaModelsDescriptiveData() FUNCTION
#ACTIVTE ALL NEEDED PACKAGES AND CREATE THE withhold() FUNCTION AND THE MetaModelsDescriptiveData() FUNCTION
#ACTIVTE ALL NEEDED PACKAGES AND CREATE THE withhold() FUNCTION AND THE MetaModelsDescriptiveData() FUNCTION
#for info on withhold(), see https://www.metafor-project.org/doku.php/tips:multiple_imputation_with_mice_and_metafor for more details
#I created the MetaModelsDescriptiveData(), MetaVarCompsModel1(), MetaVarCompsModel2(), and MetaVarCompsModel2LevelVarianceTest() functions - more notes are available in the original file "Meta Analysis Functions.R"

library(metafor)
library(PcAux)
library(mice)
library(psych)
library(tidyverse)
library(car)

#IMPORT THE ENTIRE META DATA FRAME
WholeMeta <- read.csv(file = "Programs and Data/FinalCleanPDTMeta.csv", header = T)
#SUBSET A NEW DATA FRAME THAT HAS ONLY CASES WITH ABSOLUTE PDT AND SES
Meta1 <- subset(x = WholeMeta, subset = MagnitudeDirectional == 0 & Outcome == 17)

#CREATE A SUBSET WITH ONLY THE NEEDED VARIABLES AND EXPORT THE DESCRIPTIVE STATS
Meta2 <- Meta1[, c("ESNum","SampleSize","Correlation","ArticleID","PeerRev","USA","DataID","FamSize","AgeDif","UsedBeta","OverallPDT","PosPDT","NegPDT","EvalPDT","ResourcePDT","FairPDT","ControlPDT","ChildPDTReport","ParentPDTReport","MomPDT","DadPDT","BothParsPDT","Variation","Perception","Recollected","Age","WhitePerc","GCSamePerc","MalePerc","RelBirthYoungPerc")]

MetaModelsDescriptiveData(Meta2) # this saves the descriptive stats for the non-imputed model

#CREATE A NEW DATA FRAME WITH CENTERED VERSIONS OF ALL CONTINUOUS VARIABLES
Meta3 <- Meta2
attach(Meta3)
Meta3$FamSizeC <- FamSize-mean(FamSize, na.rm = T)
Meta3$AgeDifC <- AgeDif-mean(AgeDif, na.rm = T)
Meta3$AgeC <- Age-mean(Age, na.rm = T)
Meta3$WhitePercC <- WhitePerc-mean(WhitePerc, na.rm = T)
Meta3$GCSamePercC <- GCSamePerc-mean(GCSamePerc, na.rm = T)
Meta3$MalePercC <- MalePerc-mean(MalePerc, na.rm = T)
Meta3$RelBirthYoungPercC <- RelBirthYoungPerc-mean(RelBirthYoungPerc, na.rm = T)
detach(Meta3)

DropVars <- names(Meta3) %in% c("AgeDif","FamSize","Age","WhitePerc","GCSamePerc","MalePerc","RelBirthYoungPerc")
Meta3 <- Meta3[!DropVars]
DropVars <- Meta3 %in% c("AgeDif","FamSize","Age","WhitePerc","GCSamePerc","MalePerc","RelBirthYoungPerc")
#SET THE EFFECT SIZES

#Do this before the PCAs, it doesn't like doing it on an imputed data frame, so do it first

```
Meta4 <- escalc(measure = "ZCOR", ri = Correlation, ni = SampleSize, data = Meta3, vtype = "LS", append = TRUE)
```

#CREATE THE PCAS BASED ON VARIABLES IN Meta3 THAT HAVE NO MISSING VALUES

#re-do this step every time

```
MetaNOMISS <- Meta4[, which(colMeans(is.na(Meta4)) == .00)]#creating data frame with only variables with no missing values
```

names(MetaNOMISS)#I run this to get the names and then sort those into the type of variable below

Prepare the data by first sorting out what types of variables I have - continuous variables are left off the code but listed below

```
myNoms   <- c("PeerRev"  ,       "USA" ,  "UsedBeta"  ,      "OverallPDT"  ,    "PosPDT" ,         "NegPDT"   ,
            "MomPDT"     ,     "DadPDT"     ,     "BothParsPDT",     "Variation"      ,"Perception"  ,    "Recollected")
```

```
myIds    <- c("ESNum", "ArticleID", "DataID")
```

```
#myOrds   <- c() #none this time
```

```
#Continuous - "SampleSize"      "Correlation"    "FamSizeC"        "yi"              "vi"
```

#Create data frame for creating PCAs - prep data step

```
ReadyForPCA <- prepData(rawData = MetaNOMISS, nomVars = myNoms, ordVars = NULL, # make sure to update this if there are ordinal variables idVars = myIds, moderators = NULL, verbose = 2L, nProcess = 4, simMode = F)
```

y #the prepData function often needs a yes or no to continue, this tells it to keep going

Create principal component auxiliary variables:

```
PCAOut <- createPcAux(pcAuxData = ReadyForPCA, nComps = c(0.5,0.5), maxPolyPow = 3L,)
```
dolImputation = FALSE,
interactType = 1)
y #the createPcAux function often needs a yes or no to continue, this tells it to keep going

Merge the PC auxiliaries with the original data:
Meta5 <- mergePcAux(pcAuxData = PCAOut, rawData = Meta4) #use this data for imputation

#CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
#AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES
#CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
#AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES
#CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
#AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES
Meta5$FamSizeH <- Meta5$FamSizeC - sd(Meta5$FamSizeC, na.rm = T)
Meta5$FamSizeL <- Meta5$FamSizeC + sd(Meta5$FamSizeC, na.rm = T)
Meta5$AgeDifH <- Meta5$AgeDifC - sd(Meta5$AgeDifC, na.rm = T)
Meta5$AgeDifL <- Meta5$AgeDifC + sd(Meta5$AgeDifC, na.rm = T)
Meta5$AgeH <- Meta5$AgeC - sd(Meta5$AgeC, na.rm = T)
Meta5$AgeL <- Meta5$AgeC + sd(Meta5$AgeC, na.rm = T)
Meta5$WhitePercH <- Meta5$WhitePercC - sd(Meta5$WhitePercC, na.rm = T)
Meta5$WhitePercL <- Meta5$WhitePercC + sd(Meta5$WhitePercC, na.rm = T)
Meta5$GCSamePercH <- Meta5$GCSamePercC - sd(Meta5$GCSamePercC, na.rm = T)
Meta5$GCSamePercL <- Meta5$GCSamePercC + sd(Meta5$GCSamePercC, na.rm = T)
Meta5$MalePercH <- Meta5$MalePercC - sd(Meta5$MalePercC, na.rm = T)
Meta5$MalePercL <- Meta5$MalePercC + sd(Meta5$MalePercC, na.rm = T)
Meta5$RelBirthYoungPercH <- Meta5$RelBirthYoungPercC - sd(Meta5$RelBirthYoungPercC, na.rm = T)
Meta5$RelBirthYoungPercL <- Meta5$RelBirthYoungPercC + sd(Meta5$RelBirthYoungPercC, na.rm = T)
Meta5$NonPeerRev <- 1 #creating a variable where non-peer reviewed (mostly raw data) is coded as 1, and peer reviewed as zero
Meta5$NonPeerRev[Meta5$PeerRev == 1] <- 0
Meta5$Concurrent <- 1 # creating a variable where concurrent PDT is 1, recollected is zero
Meta5$Concurrent[Meta5$Recollected == 1] <- 0
#measurement type X reporter interactions
Meta5$DSBMXCR <- Meta5$Variation*Meta5$ChildPDTReport
Meta5$DSBMXPR <- Meta5$Variation*Meta5$ParentPDTReport
Meta5$PBMXCR <- Meta5$Perception*Meta5$ChildPDTReport
Meta5$PBMXPR <- Meta5$Perception*Meta5$ParentPDTReport

#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
#Only run this the first time, and then comment it out after the test run
#Meta5 <- Meta5[sample(nrow(Meta5), 100),]
PREPPING THE PREDICTION MATRIX FOR THE MICE MODEL - THIS TELLS IT WHICH VARIABLES TO USE AS PREDICTORS AND WHICH TO IMPUTE

predMatrix <- make.predictorMatrix(Meta5)
changing the matrix so that only the PCAs are used as auxiliary variables for imputing
re-do this every time to make sure column numbers match
predMatrix[,c(1:32, 42:61)] <- 0 # A value of 1 in this matrix indicates that the corresponding column variable is used to predict the corresponding row variable
only the PCAs should have 1s, and they should go down all the rows
predMatrix # verify - always verify this, it will mess everything up if it is wrong - only PCAs should have 1s
checking the imputation method for each variable - it only really matters for the variables with missing data
if a nominal variable is set to pmm, change it from numeric to factor so that it will use logistic reg
impMethod <- make.method(Meta5)
impMethod

IMPUTE THE DATA

imp <- mice(Meta5, print=FALSE, m=50, predictorMatrix=predMatrix, method=impMethod, seed=1234)

RUN AND EXPORT THE ANALYSIS - MODEL 1

Model1 <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE, data=Meta5)
this runs the analysis
summary(Model1, digits=3, transf=transf.ztor)
this saves the analysis
sink(file = "Findings/Imputed Data Findings/SES/SES - Model 1.txt")
RE_model <- Model1
RE_model
sink(NULL)
this calculates the ICCs
M1ICCs <- MetaVarCompsModel1(Model1)
this saves the ICCs
sink(file = "Findings/Imputed Data Findings/SES/SES - Model 1 ICCs.txt")
RE_model <- M1ICCs
RE_model
sink(NULL)

#CHECK FAIL SAFE NUMBER FOR MODEL 1
#CHECK FAIL SAFE NUMBER FOR MODEL 1
#CHECK FAIL SAFE NUMBER FOR MODEL 1
#no need to use the imputed data set here because there are no imputed values on the effect size
FailSafe <- fsn(Meta5$yi, Meta5$vi, type = "Rosenthal", alpha = .05, digits = 4)
FailSafe
sink(file = "Findings/Imputed Data Findings/SES/SES - Fail Safe Number.txt")
RE_model <- FailSafe
RE_model
sink(NULL)

#CHECK FOR SIGNIFICANT WITHIN SOURCE VARIATION - LEVEL 2
#CHECK FOR SIGNIFICANT WITHIN SOURCE VARIATION - LEVEL 2
#CHECK FOR SIGNIFICANT WITHIN SOURCE VARIATION - LEVEL 2
#Build a model without within-source variance
NoLevel2Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
sigma2 = c(0, NA, NA), tdist = TRUE, data = Meta5)
Perform a likelihood-ratio-test to determine the significance of the within-source variance
WithinSource <- anova(Model1, NoLevel2Var)
sink(file = "Findings/Imputed Data Findings/SES/SES - Within Source Variance.txt")
RE_model <- WithinSource
RE_model
sink(NULL)

#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 3
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 3
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 3
#Build a model without between-source variance
NoLevel3Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
sigma2 = c(NA, 0, NA), tdist = TRUE, data = Meta5)
Perform a likelihood-ratio-test to determine the significance of the between-source variance
BetweenSource <- anova(Model1, NoLevel3Var)
sink(file = "Findings/Imputed Data Findings/SES/SES - Between Source Variance.txt")
RE_model <- BetweenSource
RE_model
sink(NULL)

#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 4
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 4
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 4
#Build a model without between-sample variance
NoLevel4Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
sigma2=c(NA,NA, 0), tdist=TRUE, data=Meta5)

Perform a likelihood-ratio-test to determine the significance of the between-sample variance
BetweenSample<-anova(Model1, NoLevel4Var)
sink(file = "Findings/Imputed Data Findings/SES/SES - Between Sample Variance.txt")
RE_model <- BetweenSample
RE_model
sink(NULL)

#RUNNING META REGRESSION - MODEL 2
#RUNNING META REGRESSION - MODEL 2
#RUNNING META REGRESSION - MODEL 2
#check frequencies of all nominal variables
sapply(Meta5[,c(5,6,8:23)], table)
table(Meta5$Variation, Meta5$ChildPDTReport)

#No Recollected
#No UsedBeta

#this runs the analysis by imputation (50 of them)
Model2 <- withold(imp, rma.mv(yi, vi,
 mods = ~ USA+ #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC
 + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT +
 ResourcePDT + ControlPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
Model2Pooled <- summary(pool(Model2))
Model2Pooled$[-1] <- round(Model2Pooled$[-1], digits=4)
Model2Pooled$LowerBound <- Model2Pooled$estimate - (Model2Pooled$std.error*2)
Model2Pooled$UpperBound <- Model2Pooled$estimate + (Model2Pooled$std.error*2)
Model2Pooled

#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/SES/SES - Model 2.txt")
RE_model <- Model2Pooled
RE_model
sink(NULL)

#retrieve the variance components for Model 2
DidWork <- MetaVarCompsModel2(Model2)
sink(file = "Findings/Imputed Data Findings/SES/SES - Model 2 - variance components.txt")
RE_model <- DidWork
#test the significance of the variance components in Model 2 - this is done using the function below. The function takes the model for each imputation, and constrains the variance at that level to be zero and then tests model fit against the unrestricted(full) model, it then pools the needed stats across all 50 imputations

for the MetaVarCompsModel2LevelVarianceTest function, the needed arguments are (unrestricted model, model with no level 2 variance, model with no level 3 variance, model with no level 4 variance)

Model2NoLevel2Var <- withold(imp, rma.mv(yi, vi,
 mods = ~ USA+ # Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC +
 AgeDifC + AgeC + PeerRev + # Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT +
 ResourcePDT + ControlPDT, # Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), sigma2=c(0, NA, NA),
 tdist=TRUE))

Model2NoLevel3Var <- withold(imp, rma.mv(yi, vi,
 mods = ~ USA+ # Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC +
 AgeDifC + AgeC + PeerRev + # Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT +
 ResourcePDT + ControlPDT, # Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), sigma2=c(NA, 0, NA),
 tdist=TRUE))

Model2NoLevel4Var <- withold(imp, rma.mv(yi, vi,
 mods = ~ USA+ # Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC +
 AgeDifC + AgeC + PeerRev + # Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT +
 ResourcePDT + ControlPDT, # Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), sigma2=c(NA, NA, 0),
 tdist=TRUE))

M2VarTest <- MetaVarCompsModel2LevelVarianceTest(Model2, Model2NoLevel2Var,
 Model2NoLevel3Var, Model2NoLevel4Var)
sink(file = "Findings/Imputed Data Findings/SES/SES - Model 2 - variance components significance tests.txt")
RE_model <- M2VarTest
RE_model
#this runs the analysis by imputation (50 of them)
Model3 <- withold(imp, rma.mv(yi, vi,
 mods = ~ USA+ #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC
 + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT + ResourcePDT + ControlPDT +
 Variation:ChildPDTReport, #Interactions
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
Model3Pooled <- summary(pool(Model3))
Model3Pooled[-1] <- round(Model3Pooled[-1], digits=4)
Model3Pooled$LowerBound <- Model3Pooled$estimate - (Model3Pooled$std.error*2)
Model3Pooled$UpperBound <- Model3Pooled$estimate + (Model3Pooled$std.error*2)
Model3Pooled

#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/SES/SES - Model 3.txt")
RE_model <- Model3Pooled
RE_model
sink(NULL)

#retrieve the variance components for Model 3
DidWork3 <- MetaVarCompsModel2(Model3)
sink(file = "Findings/Imputed Data Findings/SES/SES - Model 3 - variance components.txt")
RE_model <- DidWork3
RE_model
sink(NULL)

#test the significance of the variance components in Model 3 - this is done using the function below. The function takes the model for each imputation, and constrains the variance at that level to be zero and then tests model fit against the unrestricted(full) model, it then pools the needed stats across all 50 imputations
#for the MetaVarCompsModel3LevelVarianceTest function, the needed arguments are (unrestricted model, model with no level 2 variance, model with no level 3 variance, model with no level 4 variance)
Model3NoLevel2Var <- withold(imp, rma.mv(yi, vi,
 mods = ~ USA+ #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT + ResourcePDT + ControlPDT, #Level 2
 Variation:ChildPDTReport, #Interactions
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))
Model3NoLevel3Var <- withold(imp, rma.mv(yi, vi,
mods = ~ USA+ #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC +
 AgeDifC + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT +
 ResourcePDT + ControlPDT, #Level 2
 Variation:ChildPDTReport, #Interactions
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), sigma2=c(NA,0, NA),
 tdist=TRUE))
Model3NoLevel4Var <- withhold(imp, rma.mv(yi, vi,
 mods = ~ USA+ #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC +
 AgeDifC + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT +
 ResourcePDT + ControlPDT, #Level 2
 Variation:ChildPDTReport, #Interactions
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), sigma2=c(NA,NA, 0),
 tdist=TRUE))
M3VarTest <- MetaVarCompsModel2LevelVarianceTest(Model3, Model3NoLevel2Var,
 Model3NoLevel3Var, Model3NoLevel4Var)
sink(file = "Findings/Imputed Data Findings/SES/SES - Model 3 - variance components significance
tests.txt")
RE_model <- M3VarTest
RE_model
sink(NULL)

TESTING SIMPLE SLOPES - DO NOT RE-RUN MODELS THAT THE INFO IS IN MODEL 2 - ONLY THE
INVERSE OF EACH VARIABLE
TESTING SIMPLE SLOPES - DO NOT RE-RUN MODELS THAT THE INFO IS IN MODEL 2 - ONLY THE
INVERSE OF EACH VARIABLE
TESTING SIMPLE SLOPES - DO NOT RE-RUN MODELS THAT THE INFO IS IN MODEL 2 - ONLY THE
INVERSE OF EACH VARIABLE

LARGE FAMILIES
LARGE FAMILIES
LARGE FAMILIES

#this runs the analysis by imputation (50 of them)
LFAMS <- withhold(imp, rma.mv(yi, vi,
 mods = ~ USA + #Level 4
 FamSizeH + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC
 + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT +
 ResourcePDT + ControlPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))
#this summarizes and pools the analysis
LFAMS <- summary(pool(LFAMS))
LFAMS[-1] <- round(LFAMS[-1], digits=4)
LFAMS

#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/SES/SES - Simple Slopes - Large Families.txt")
RE_model <- LFAMS
RE_model
sink(NULL)

#SMALL FAMILIES
#SMALL FAMILIES
#SMALL FAMILIES

#this runs the analysis by imputation (50 of them)
SFAMS <- withold(imp, rma.mv(yi, vi,
 mods = ~ USA + #Level 4
 FamSizeL + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC +
 AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT +
 ResourcePDT + ControlPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
SFAMS <- summary(pool(SFAMS))
SFAMS[-1] <- round(SFAMS[-1], digits=4)
SFAMS

#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/SES/SES - Simple Slopes - Small Families.txt")
RE_model <- SFAMS
RE_model
sink(NULL)

#HIGH PERCENT SIBY
#HIGH PERCENT SIBY
#HIGH PERCENT SIBY

#this runs the analysis by imputation (50 of them)
SIBYHIGH <- withold(imp, rma.mv(yi, vi,
 mods = ~ USA + #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercH + GCSamePercC +
 AgeDifC + AgeC + PeerRev + #Level 3
DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT + ResourcePDT + ControlPDT, #Level 2
random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
SIBYHIGH <- summary(pool(SIBYHIGH))
SIBYHIGH[-1] <- round(SIBYHIGH[-1], digits=4)
SIBYHIGH

#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/SES/SES - Simple Slopes - High SibY Percent.txt")
RE_model <- SIBYHIGH
RE_model
sink(NULL)

#LOW PERCENT SIBY
#LOW PERCENT SIBY
#LOW PERCENT SIBY

#this runs the analysis by imputation (50 of them)
SIBYLOW <- withhold(imp, rma.mv(yi, vi,
 mods = ~ USA + #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercL + GCSamePercC + AgeDifC + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + NegPDT + ResourcePDT + ControlPDT, #Level 2
random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
SIBYLOW <- summary(pool(SIBYLOW))
SIBYLOW[-1] <- round(SIBYLOW[-1], digits=4)
SIBYLOW

#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/SES/SES - Simple Slopes - Low SibY Percent.txt")
RE_model <- SIBYLOW
RE_model
sink(NULL)

#NEG PDT
#NEG PDT
#NEG PDT

#this runs the analysis by imputation (50 of them)
NEGPDT <- withhold(imp, rma.mv(yi, vi,
mods = ~ USA + #Level 4
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC
 + AgeC + PeerRev + #Level 3
 DadPDT + BothParsPDT + ChildPDTReport + Variation + PosPDT + OverallPDT +
 ResourcePDT + ControlPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

this summarizes and pools the analysis
NEGPDT <- summary(pool(NEGPDT))
NEGPDT[-1] <- round(NEGPDT[-1], digits=4)
NEGPDT

this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/SES/SES - Simple Slopes - Neg PDT.txt")
RE_model <- NEGPDT
RE_model
sink(NULL)
SET THE WORKING DIRECTORY

```r
setwd("")
```

ACTIVATE ALL NEEDED PACKAGES AND CREATE THE withold() FUNCTION AND THE MetaModelsDescriptiveData() FUNCTION

```r
library(metafor)
library(PcAux)
library(mice)
library(psych)
library(tidyverse)
library(car)
```

IMPORT THE ENTIRE META DATA FRAME

```r
WholeMeta <- read.csv(file = "Programs and Data/FinalCleanPDTMeta.csv", header = T)
```
Meta1 <- subset(x = WholeMeta, subset = MagnitudeDirectional == 0 & Outcome == 13)

MetaModelsDescriptiveData(Meta2) # this saves the descriptive stats for the non-imputed model
we take descriptive stats from this data frame so that it includes missing data and the non-centered versions of continuous variables

Meta3 <- Meta2
attach(Meta3)
Meta3$FamSizeC <- FamSize - mean(FamSize, na.rm = T)
Meta3$AgeDifC <- AgeDif - mean(AgeDif, na.rm = T)
Meta3$AgeC <- Age - mean(Age, na.rm = T)
Meta3$WhitePercC <- WhitePerc - mean(WhitePerc, na.rm = T)
Meta3$GCSamePercC <- GCSamePerc - mean(GCSamePerc, na.rm = T)
Meta3$MalePercC <- MalePerc - mean(MalePerc, na.rm = T)
Meta3$RelBirthYoungPercC <- RelBirthYoungPerc - mean(RelBirthYoungPerc, na.rm = T)
detach(Meta3)

DropVars <- names(Meta3) %in% c("AgeDif", "FamSize", "Age", "WhitePerc", "GCSamePerc", "MalePerc", "RelBirthYoungPerc")
Meta3 <- Meta3[!DropVars]
DropVars <- Meta3 %in% c("AgeDif", "FamSize", "Age", "WhitePerc", "GCSamePerc", "MalePerc", "RelBirthYoungPerc")
SET THE EFFECT SIZES
SET THE EFFECT SIZES
SET THE EFFECT SIZES
Do this before the PCAs, it doesn't like doing it on an imputed data frame, so do it first
Meta4 <- escalc(measure = "ZCOR", ri = Correlation,
 ni = SampleSize, data = Meta3, vtype = "LS", append = TRUE)

CREATE THE PCAS BASED ON VARIABLES IN Meta3 THAT HAVE NO MISSING VALUES
CREATE THE PCAS BASED ON VARIABLES IN Meta3 THAT HAVE NO MISSING VALUES
CREATE THE PCAS BASED ON VARIABLES IN Meta3 THAT HAVE NO MISSING VALUES
re-do this step every time
MetaNOMISS <- Meta4[, which(colMeans(is.na(Meta4)) == .00)] # creating data frame with only variables with no missing values

names(MetaNOMISS) # I run this to get the names and then sort those into the type of variable below

Prepare the data by first sorting out what types of variables I have - continuous variables are left off the code but listed below
myIds <- c("ESNum", "ArticleID", "DataID")
#myOrds <- c() # none this time
Continuous - "SampleSize" "Correlation" "FamSizeC" "AgeC" "WhitePercC" "MalePercC" "yi" "vi"

Create data frame for creating PCAs - prep data step
ReadyForPCA <- prepData(rawData = MetaNOMISS,
 nomVars = myNoms,
 ordVars = NULL, # make sure to update this if there are ordinal variables
 idVars = myIds,
 moderators = NULL,
 verbose = 2L,
 nProcess = 4,
 simMode = F)

Create principal component auxiliary variables:
PCAOut <- createPcAux(pcAuxData = ReadyForPCA,
nComps = c(0.5, 0.5),

the prepData function often needs a yes or no to continue, this tells it to keep going

Create principal component auxiliary variables:
PCAOut <- createPcAux(pcAuxData = ReadyForPCA,
nComps = c(0.5, 0.5),
maxPolyPow = 3L,
dolmputation = FALSE,
interactType = 1)
y #the createPcAux function often needs a yes or no to continue, this tells it to keep going

Merge the PC auxiliaries with the original data:
Meta5 <- mergePcAux(pcauxData = PCAOut, rawdata = Meta4) #use this data for imputation

#CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES
#CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES
#CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES
Meta5$FamSizeH <- Meta5$FamSizeC - sd(Meta5$FamSizeC, na.rm = T)
Meta5$FamSizeL <- Meta5$FamSizeC + sd(Meta5$FamSizeC, na.rm = T)
Meta5$AgeDifH <- Meta5$AgeDifC - sd(Meta5$AgeDifC, na.rm = T)
Meta5$AgeDifL <- Meta5$AgeDifC + sd(Meta5$AgeDifC, na.rm = T)
Meta5$AgeH <- Meta5$AgeC - sd(Meta5$AgeC, na.rm = T)
Meta5$AgeL <- Meta5$AgeC + sd(Meta5$AgeC, na.rm = T)
Meta5$WhitePercH <- Meta5$WhitePercC - sd(Meta5$WhitePercC, na.rm = T)
Meta5$WhitePercL <- Meta5$WhitePercC + sd(Meta5$WhitePercC, na.rm = T)
Meta5$GCSamePercH <- Meta5$GCSamePercC - sd(Meta5$GCSamePercC, na.rm = T)
Meta5$GCSamePercL <- Meta5$GCSamePercC + sd(Meta5$GCSamePercC, na.rm = T)
Meta5$MalePercH <- Meta5$MalePercC - sd(Meta5$MalePercC, na.rm = T)
Meta5$MalePercL <- Meta5$MalePercC + sd(Meta5$MalePercC, na.rm = T)
Meta5$RelBirthYoungPercH <- Meta5$RelBirthYoungPercC - sd(Meta5$RelBirthYoungPercC, na.rm = T)
Meta5$RelBirthYoungPercL <- Meta5$RelBirthYoungPercC + sd(Meta5$RelBirthYoungPercC, na.rm = T)
Meta5$NonPeerRev <- 1 #creating a variable where non-peer reviewed (mostly raw data) is coded as 1,
and peer reviewed as zero
Meta5$NonPeerRev[Meta5$PeerRev == 1] <- 0
Meta5$Concurrent <- 1 # creating a variable where concurrent PDT is 1, recollected is zero
Meta5$Concurrent[Meta5$Recollected == 1] <- 0
#measurement type X reporter interactions
Meta5$DSBMXCR <- Meta5$Variation*Meta5$ChildPDTReport
Meta5$DSBMXPR <- Meta5$Variation*Meta5$ParentPDTReport
Meta5$PBMXCR <- Meta5$Perception*Meta5$ChildPDTReport
Meta5$PBMXPR <- Meta5$Perception*Meta5$ParentPDTReport

#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
#Only run this the first time, and then comment it out after the test run
#Meta5 <- Meta5[sample(nrow(Meta5), 100),]
PREPPING THE PREDICTION MATRIX FOR THE MICE MODEL - THIS TELLS IT WHICH VARIABLES TO USE AS PREDICTORS AND WHICH TO IMPUTE

```r
predMatrix <- make.predictorMatrix(Meta5)
```

changing the matrix so that only the PCAs are used as auxiliary variables for imputing

```r
### re-do this every time to make sure column numbers match
predMatrix[,c(1:32, 36:55)] <- 0  # A value of 1 in this matrix indicates that the corresponding column variable is used to predict the corresponding row variable
# only the PCAs should have 1s, and they should go down all the rows
predMatrix # verify - always verify this, it will mess everything up if it is wrong - only PCAs should have 1s
```

checking the imputation method for each variable - it only really matters for the variables with missing data

if a nominal variable is set to pmm, change it from numeric to factor so that it will use logistic reg
```
impMethod <- make.method(Meta5)
```

IMPUTE THE DATA

```r
imp <- mice(Meta5, print=FALSE, m=50, predictorMatrix=predMatrix, method=impMethod, seed=1234)
```

RUN AND EXPORT THE ANALYSIS - MODEL 1

```r
Model1 <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE, data=Meta5)
```

this runs the analysis

```r
summary(Model1, digits=3, transf=transf.ztor)
```

this saves the analysis

```r
sink(file = "Findings/Imputed Data Findings/Employment Status/Employment Status - Model 1.txt")
RE_model <- Model1
RE_model
```

this calculates the ICCs

```r
M1ICCs <- MetaVarCompsModel1(Model1)
```

this saves the ICCs

```r
sink(file = "Findings/Imputed Data Findings/Employment Status/Employment Status - Model 1 ICCs.txt")
RE_model <- M1ICCs
```
```r
RE_model
sink(NULL)

#send text message
Sys.setenv(TWILIO_SID = "AC7ef37e5096b51b23bb6e95c9d469b0e9")
Sys.setenv(TWILIO_TOKEN = "0b5fa8428303e87734b385f79c5d0a31")
my_message <- tw_send_message(
  to = +18148765027,
  from = +14322781092,
  body = paste("Employment Status Model 1 finished"))

#CHECK FAIL SAFE NUMBER FOR MODEL 1
#CHECK FAIL SAFE NUMBER FOR MODEL 1
#CHECK FAIL SAFE NUMBER FOR MODEL 1
#no need to use the imputed data set here because there are no imputed values on the effect size
FailSafe <- fsn(Meta5$yi, Meta5$vi, type="Rosenthal", alpha=.05, digits = 4)
FailSafe
sink(file = "Findings/Imputed Data Findings/Employment Status/Employment Status - Fail Safe Number.txt")
RE_model <- FailSafe
RE_model
sink(NULL)

#send text message
Sys.setenv(TWILIO_SID = "AC7ef37e5096b51b23bb6e95c9d469b0e9")
Sys.setenv(TWILIO_TOKEN = "0b5fa8428303e87734b385f79c5d0a31")
my_message <- tw_send_message(
  to = +18148765027,
  from = +14322781092,
  body = paste("Employment Status Fail Safe Number finished"))

#CHECK FOR SIGNIFICANT WITHIN SOURCE VARIATION - LEVEL 2
#CHECK FOR SIGNIFICANT WITHIN SOURCE VARIATION - LEVEL 2
#CHECK FOR SIGNIFICANT WITHIN SOURCE VARIATION - LEVEL 2
#Build a model without within-source variance
NoLevel2Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
  sigma2=c(0,NA,NA), tdist=TRUE, data=Meta5)
# Perform a likelihood-ratio-test to determine the significance of the within-source variance
WithinSource <- anova(Model1, NoLevel2Var)
sink(file = "Findings/Imputed Data Findings/Employment Status/Employment Status - Within Source Variance.txt")
RE_model <- WithinSource
RE_model
sink(NULL)
```
#send text message
Sys.setenv(TWILIO_SID = "AC7ef37e5096b51b23bb6e95c9d469b0e9")
Sys.setenv(TWILIO_TOKEN = "0b5fa8428303e87734b385f79c5d0a31")
my_message <- tw_send_message(
 to = +18148765027,
 from = +14322781092,
 body = paste("Employment Status Level 2 Variation finished"))

#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 3
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 3
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 3
#Build a model without between-source variance
NoLevel3Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
 sigma2=c(NA,0, NA), tdist=TRUE, data=Meta5)
Perform a likelihood-ratio-test to determine the significance of the between-source variance
BetweenSource<-anova(Model1,NoLevel3Var)
sink(file = "Findings/Imputed Data Findings/Employment Status/Employment Status - Between Source Variance.txt")
RE_model <- BetweenSource
sink(NULL)

#send text message
Sys.setenv(TWILIO_SID = "AC7ef37e5096b51b23bb6e95c9d469b0e9")
Sys.setenv(TWILIO_TOKEN = "0b5fa8428303e87734b385f79c5d0a31")
my_message <- tw_send_message(
 to = +18148765027,
 from = +14322781092,
 body = paste("Employment Status Level 3 Variation finished"))

#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 4
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 4
#CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 4
#Build a model without between-sample variance
NoLevel4Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
 sigma2=c(NA,NA, 0), tdist=TRUE, data=Meta5)
Perform a likelihood-ratio-test to determine the significance of the between-sample variance
BetweenSample<-anova(Model1,NoLevel4Var)
sink(file = "Findings/Imputed Data Findings/Employment Status/Employment Status - Between Sample Variance.txt")
RE_model <- BetweenSample
sink(NULL)
#send text message
Sys.setenv(TWILIO_SID = "AC7ef37e5096b51b23bb6e95c9d469b0e9")
Sys.setenv(TWILIO_TOKEN = "0b5fa8428303e87734b385f79c5d0a31")
my_message <- tw_send_message(
 to = +18148765027,
 from = +14322781092,
 body = paste("Employment Status Level 4 Variation finished"))

#NO OTHER MODELS - THERE WAS NOT SIGNIFICANT VARIATION AROUND THE INTERCEPT
#NO OTHER MODELS - THERE WAS NOT SIGNIFICANT VARIATION AROUND THE INTERCEPT
#NO OTHER MODELS - THERE WAS NOT SIGNIFICANT VARIATION AROUND THE INTERCEPT
SET THE WORKING DIRECTORY
ACTIVATE ALL NEEDED PACKAGES AND CREATE THE `withold()` FUNCTION AND THE `MetaModelsDescriptiveData()` FUNCTION
ACTIVATE ALL NEEDED PACKAGES AND CREATE THE `withold()` FUNCTION AND THE `MetaModelsDescriptiveData()` FUNCTION
ACTIVATE ALL NEEDED PACKAGES AND CREATE THE `withold()` FUNCTION AND THE `MetaModelsDescriptiveData()` FUNCTION
IMPORT THE ENTIRE META DATA FRAME

```r
setwd("C:/Users/18148/Box/alexjensen/Research/Working Papers/META - PDT as outcome")
```

```r
library(metafor)
library(PcAux)
library(mice)
library(psych)
library(tidyverse)
library(car)
```

```r
WholeMeta <- read.csv(file = "Programs and Data/FinalCleanPDTMeta.csv", header = T)
```
#SUBSET A NEW DATA FRAME THAT HAS ONLY CASES WITH ABSOLUTE PDT AND Marital Status

Meta1 <- subset(x = WholeMeta, subset = MagnitudeDirectional == 0 & Outcome == 14)

#CREATE A SUBSET WITH ONLY THE NEEDED VARIABLES AND EXPORT THE DESCRIPTIVE STATS

MetaModelsDescriptiveData(Meta2) # this saves the descriptive stats for the non-imputed model

Meta3 <- Meta2
attache(Meta3)

FamSizeC <- FamSize - mean(FamSize, na.rm = T)
AgeDifC <- AgeDif - mean(AgeDif, na.rm = T)
AgeC <- Age - mean(Age, na.rm = T)
WhitePercC <- WhitePerc - mean(WhitePerc, na.rm = T)
GCSamePercC <- GCSamePerc - mean(GCSamePerc, na.rm = T)
MalePercC <- MalePerc - mean(MalePerc, na.rm = T)
RelBirthYoungPercC <- RelBirthYoungPerc - mean(RelBirthYoungPerc, na.rm = T)
detache(Meta3)

DropVars <- names(Meta3) %in% c("AgeDif", "FamSize", "Age", "WhitePerc", "GCSamePerc", "MalePerc", "RelBirthYoungPerc")

Meta3 <- Meta3[!DropVars]

DropVars <- Meta3 %in% c("AgeDif", "FamSize", "Age", "WhitePerc", "GCSamePerc", "MalePerc", "RelBirthYoungPerc")

#SET THE EFFECT SIZES

#SET THE EFFECT SIZES
Do this before the PCAs, it doesn't like doing it on an imputed data frame, so do it first

Meta4 <- escalc(measure = "ZCOR", ri = Correlation,
 ni = SampleSize, data = Meta3, vtype = "LS", append = TRUE)

#CREATE THE PCAS BASED ON VARIABLES IN Meta3 THAT HAVE NO MISSING VALUES
#CREATE THE PCAS BASED ON VARIABLES IN Meta3 THAT HAVE NO MISSING VALUES
#CREATE THE PCAS BASED ON VARIABLES IN Meta3 THAT HAVE NO MISSING VALUES
#re-do this step every time

MetaNOMISS <- Meta4[, which(colMeans(is.na(Meta4)) == .00)]#creating data frame with only variables with no missing values

names(MetaNOMISS)#I run this to get the names and then sort those into the type of variable below

Prepare the data by first sorting out what types of variables I have - continuous variables are left off the code but listed below
myNoms <- c("PeerRev","USA","UsedBeta","OverallPDT","PosPDT","NegPDT","EvalPDT","ResourcePDT","FairPDT","ControlPDT","ChildPDTReport","ParentPDTReport","MomPDT","DadPDT","BothParsPDT","Variation","Perception","Recollected")
myIds <- c("ESNum","ArticleID","DataID")
#myOrds <- c() #none this time

#Continuous - "SampleSize" "Correlation" "FamSizeC","AgeC","WhitePercC","MalePercC","yi","vi"

Create data frame for creating PCAs - prep data step
ReadyForPCA <- prepData(rawData = MetaNOMISS,
 nomVars = myNoms,
 ordVars = NULL, # make sure to update this if there are ordinal variables
 idVars = myIds,
 moderators = NULL,
 verbose = 2L,
 nProcess = 4,
 simMode = F)

Create principal component auxiliary variables:
PCAOout <- createPcAux(pcAuxData = ReadyForPCA,
 nComps = c(0.5,0.5),
 maxPolyPow = 3L,
 doImputation = FALSE,
 interactType = 1)
Merge the PC auxiliaries with the original data:
Meta5 <- mergePcAux(pcAuxData = PCAOut, rawData = Meta4) #use this data for imputation

#CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES
#CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES
#CREATING INTERACTION TERMS, HIGH AND LOW OF MODERATORS AND REVERSING DUMMY CODES
AS NEEDED - ALL FOR INTERACTIONS AND SIMPLE SLOPES
Meta5$FamSizeH <- Meta5$FamSizeC - sd(Meta5$FamSizeC, na.rm = T)
Meta5$FamSizeL <- Meta5$FamSizeC + sd(Meta5$FamSizeC, na.rm = T)
Meta5$AgeDifH <- Meta5$AgeDifC - sd(Meta5$AgeDifC, na.rm = T)
Meta5$AgeDifL <- Meta5$AgeDifC + sd(Meta5$AgeDifC, na.rm = T)
Meta5$AgeH <- Meta5$AgeC - sd(Meta5$AgeC, na.rm = T)
Meta5$AgeL <- Meta5$AgeC + sd(Meta5$AgeC, na.rm = T)
Meta5$WhitePercH <- Meta5$WhitePercC - sd(Meta5$WhitePercC, na.rm = T)
Meta5$WhitePercL <- Meta5$WhitePercC + sd(Meta5$WhitePercC, na.rm = T)
Meta5$GCSamePercH <- Meta5$GCSamePercC - sd(Meta5$GCSamePercC, na.rm = T)
Meta5$GCSamePercL <- Meta5$GCSamePercC + sd(Meta5$GCSamePercC, na.rm = T)
Meta5$MalePercH <- Meta5$MalePercC - sd(Meta5$MalePercC, na.rm = T)
Meta5$MalePercL <- Meta5$MalePercC + sd(Meta5$MalePercC, na.rm = T)
Meta5$RelBirthYoungPercH <- Meta5$RelBirthYoungPercC - sd(Meta5$RelBirthYoungPercC, na.rm = T)
Meta5$RelBirthYoungPercL <- Meta5$RelBirthYoungPercC + sd(Meta5$RelBirthYoungPercC, na.rm = T)
Meta5$NonPeerRev <- 1 #creating a variable where non-peer reviewed (mostly raw data) is coded as 1,
and peer reviewed as zero
Meta5$NonPeerRev[Meta5$PeerRev == 1] <- 0
Meta5$Concurrent <- 1 # creating a variable where concurrent PDT is 1, recollected is zero
Meta5$Concurrent[Meta5$Recollected == 1] <- 0
#measurement type X reporter interactions
Meta5$DSBMXCR <- Meta5$Variation*Meta5$ChildPDTReport
Meta5$DSBMXPR <- Meta5$Variation*Meta5$ParentPDTReport
Meta5$PBMXCR <- Meta5$Perception*Meta5$ChildPDTReport
Meta5$PBMXPR <- Meta5$Perception*Meta5$ParentPDTReport

#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
#DRAW SMALL RANDOM SAMPLE OF THE DATA TO TEST RUN THE ANALYSIS AND MAKE SURE IT WORKS
Only run this the first time, and then comment it out after the test run
Meta5 <- Meta5[sample(nrow(Meta5), 100),]

#PREPPING THE PREDICTION MATRIX FOR THE MICE MODEL - THIS TELLS IT WHICH VARIABLES TO USE
AS PREDICTORS AND WHICH TO IMPUTE
PREPPING THE PREDICTION MATRIX FOR THE MICE MODEL - THIS TELLS IT WHICH VARIABLES TO USE AS PREDICTORS AND WHICH TO IMPUTE

predMatrix <- make.predictorMatrix(Meta5)

#changing the matrix so that only the PCAs are used as auxiliary variables for imputing
predMatrix[,c(1:32, 37:56)] <- 0

only the PCAs should have 1s, and they should go down all the rows

#verify - always verify this, it will mess everything up if it is wrong - only PCAs should have 1s

checking the imputation method for each variable - it only really matters for the variables with missing data

if a nominal variable is set to pmm, change it from numeric to factor so that it will use logistic reg

impMethod <- make.method(Meta5)

IMPUTE THE DATA

imp <- mice(Meta5, print=FALSE, m=50, predictorMatrix=predMatrix, method=impMethod, seed=1234)

RUN AND EXPORT THE ANALYSIS - MODEL 1

Model1 <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE, data=Meta5)

this runs the analysis

summary(Model1, digits=3, transf=transf.ztor)

this saves the analysis

sink(file = "Findings/Imputed Data Findings/Marital Status/Marital Status - Model 1.txt")

RE_model <- Model1

RE_model

sink(NULL)

this calculates the ICCs

M1ICCs<- MetaVarCompsModel1(Model1)

this saves the ICCs

sink(file = "Findings/Imputed Data Findings/Marital Status/Marital Status - Model 1 ICCs.txt")

RE_model <- M1ICCs

RE_model

sink(NULL)
CHECK FAIL SAFE NUMBER FOR MODEL 1

no need to use the imputed data set here because there are no imputed values on the effect size

```r
FailSafe <- fsn(Meta5$yi, Meta5$vi, type = "Rosenthal", alpha = .05, digits = 4)
FailSafe
```

```r
sink(file = "Findings/Imputed Data Findings/Marital Status/Marital Status - Fail Safe Number.txt")
RE_model <- FailSafe
RE_model
sink(NULL)
```

CHECK FOR SIGNIFICANT WITHIN SOURCE VARIATION - LEVEL 2

```r
NoLevel2Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
                      sigma2 = c(0, NA, NA), tdist = TRUE, data = Meta5)

# Perform a likelihood-ratio-test to determine the significance of the within-source variance

WithinSource <- anova(Model1, NoLevel2Var)
sink(file = "Findings/Imputed Data Findings/Marital Status/Marital Status - Within Source Variance.txt")
RE_model <- WithinSource
RE_model
sink(NULL)
```

CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 3

```r
NoLevel3Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
                      sigma2 = c(NA, 0, NA), tdist = TRUE, data = Meta5)

# Perform a likelihood-ratio-test to determine the significance of the between-source variance

BetweenSource <- anova(Model1, NoLevel3Var)
sink(file = "Findings/Imputed Data Findings/Marital Status/Marital Status - Between Source Variance.txt")
RE_model <- BetweenSource
RE_model
sink(NULL)
```

CHECK FOR SIGNIFICANT BETWEEN SOURCE VARIATION - LEVEL 4

```r
NoLevel4Var <- rma.mv(yi, vi, random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),
                      sigma2 = c(NA, NA, 0), tdist = TRUE, data = Meta5)

# Perform a likelihood-ratio-test to determine the significance of the between-sample variance
```

```r
```
BetweenSample<-anova(Model1, NoLevel4Var)
sink(file = "Findings/Imputed Data Findings/Marital Status/Marital Status - Between Sample Variance.txt")
RE_model <- BetweenSample
RE_model
sink(NULL)

#RUNNING META REGRESSION - MODEL 2
#RUNNING META REGRESSION - MODEL 2
#RUNNING META REGRESSION - MODEL 2
#check frequencies of all nominal variables
sapply(Meta5[,c(5,6,8:23)], table)

#There was not enough between sample variation - no need to test USA
#Not enough on UsedBeta 134 and 3
#Not enough on ResourcePDT 114 and 23
#Not enough on ControlPDT 133 and 4
#Not enough on ChilPDTReport 124 and 13
#Not enough on BothParsPDT 135 and 2
#Not enough on Variation 127 and 10
#Not enough on Recollected 121 and 16

#OverallPDT is the reference group for domain

#this runs the analysis by imputation (50 of them)
Model2 <- withhold(imp, rma.mv(yi, vi,
mods = ~
FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC + AgeC + PeerRev + #Level 3
DadPDT + PosPDT + NegPDT, #Level 2
random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
Model2Pooled <- summary(pool(Model2))
Model2Pooled[-1] <- round(Model2Pooled[-1], digits=4)
Model2Pooled$LowerBound <- Model2Pooled$estimate - (Model2Pooled$std.error*2)
Model2Pooled$UpperBound <- Model2Pooled$estimate + (Model2Pooled$std.error*2)
Model2Pooled

#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/Marital Status/Marital Status - Model 2.txt")
RE_model <- Model2Pooled
RE_model
sink(NULL)
#retrieve the variance components for Model 2
DidWork <- MetaVarCompsModel2(Model2)
sink(file = "Findings/Imputed Data Findings/Marital Status/Marital Status - Model 2 - variance components.txt")
RE_model <- DidWork
RE_model
sink(NULL)

#test the significance of the variance components in Model 2 - this is done using the function below. The function takes the model for each imputation, and constrains the variance at that level to be zero and then tests model fit against the unrestricted(full) model, it then pools the needed stats across all 50 imputations
#for the MetaVarCompsModel2LevelVarianceTest function, the needed arguments are (unrestricted model, model with no level 2 variance, model with no level 3 variance, model with no level 4 variance)
Model2NoLevel2Var <- withold(imp, rma.mv(yi, vi,
 mods = ~
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC + AgeC + PeerRev + #Level 3
 DadPDT + PosPDT + NegPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),sigma2=c(0,NA, NA),
 tdist=TRUE))
Model2NoLevel3Var <- withold(imp, rma.mv(yi, vi,
 mods = ~
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC + AgeC + PeerRev + #Level 3
 DadPDT + PosPDT + NegPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),sigma2=c(NA,0, NA),
 tdist=TRUE))
Model2NoLevel4Var <- withold(imp, rma.mv(yi, vi,
 mods = ~
 FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC + AgeC + PeerRev + #Level 3
 DadPDT + PosPDT + NegPDT, #Level 2
 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID),sigma2=c(NA,NA, 0),
 tdist=TRUE))
M2VarTest <- MetaVarCompsModel2LevelVarianceTest(Model2, Model2NoLevel2Var,
 Model2NoLevel3Var, Model2NoLevel4Var)
sink(file = "Findings/Imputed Data Findings/Marital Status/Marital Status - Model 2 - variance components significance tests.txt")
RE_model <- M2VarTest
RE_model
sink(NULL)

#RUNNING META REGRESSION - MODEL 3
#RUNNING META REGRESSION - MODEL 3
#RUNNING META REGRESSION - MODEL 3

#No need to test model 3, there were not enough cases on ChildPDTReport and Variation

#TESTING SIMPLE SLOPES - DO NOT RE-RUN MODELS THAT THE INFO IS IN MODEL 2 - ONLY THE INVERSE OF EACH VARIABLE
#TESTING SIMPLE SLOPES - DO NOT RE-RUN MODELS THAT THE INFO IS IN MODEL 2 - ONLY THE INVERSE OF EACH VARIABLE
#TESTING SIMPLE SLOPES - DO NOT RE-RUN MODELS THAT THE INFO IS IN MODEL 2 - ONLY THE INVERSE OF EACH VARIABLE

#NegPDT
#NegPDT
#NegPDT

NegPDT <- withhold(imp, rma.mv(yi, vi, mods = ~ FamSizeC + WhitePercC + MalePercC + RelBirthYoungPercC + GCSamePercC + AgeDifC + AgeC + PeerRev + #Level 3 DadPDT + PosPDT + OverallPDT, #Level 2 random = list(~ 1 | ESNum, ~ 1 | ArticleID, ~ 1 | DataID), tdist=TRUE))

#this summarizes and pools the analysis
NegPDT <- summary(pool(NegPDT))
NegPDT[-1] <- round(NegPDT[-1], digits=4)
NegPDT

#this exports the findings to a text file
sink(file = "Findings/Imputed Data Findings/Marital Status/Marital Status - Simple Slopes - Neg PDT.txt")
RE_model <- NegPDT
RE_model
sink(NULL)