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Problems with Vancouver et al.’s Simulation

Vancouver et al. argued that ∆R2 is problematic for estimating the size of interaction effects based on a
Monte Carlo simulation that sought to estimate “true scores” for Y based on a “conceptual” model for the
pure multiplying/interacting (i.e., joint) effects of X and Z on Y:

Y = XZ (S1)

They then analyzed the data using the following equations:

Y = b0 + b1X + b2Z + e (S2)
Y = b0 + b1X + b2Z + b3XZ + e (S3)

Using S2 and S3 they computed ∆R2 = .01 and concluded that it provided a severe underestimate of the
interaction effect size. However, their simulation equated data that were generated using a cross-product
model (i.e., Y=XZ) with data generated using a pure multiplying model (i.e., Y=X×Z). The cross-product
is not equivalent to the interaction effect (Aiken & West, 1993; Arnold, 1991; Arnold & Evans, 1979; Cohen
et al., 2003). As LeBreton et al. (2013) summarized, “. . . the cross-product term ([XZ]) is a tainted, messy
predictor containing information about three different statistical effects: (a) the main effect of [X], (b) the
main effect of [Z], and (c) the [X×Z] interaction effect” (p. 454). To accurately simulate data that are only a
function of a pure multiplying model, one must isolate the interaction effect and use it to simulate the data.

Correcting and Expanding Vancouver et al.’s Simulation

We corrected and also extended Vancouver et al.’s simulation in several ways. First, we simulated Y in a
manner identical to Vancouver et al., which we denoted Y.XZ to clarify that what they referred to as a pure
multiplying model was actually based on a cross-product model. Next, we simulated three additional versions
of Y based on: (a) pure adding model (Y.ADD), (b) pure multiplying model (Y.XZres), and (c) combined
adding-multiplying model (Y.COMB). To simulate a pure multiplying model, Y.XZres, it was necessary to
sanitize the XZ cross-product of the additive effects of X and Z. This was accomplished by regressing XZ onto
X+Z. The residuals from that analysis are equivalent to the “pure multiplying” effect (i.e., X×Z; LeBreton
et al., 2013):

XZ = b0 + b1(X) + b2(Z) + XZres (S4),

where XZres is equal to the interaction effect (X×Z). Finally, we also verified results using observed data
that were estimated by introducing measurement error. The next section of the supplement summarizes the
steps (and R code) we used in our simulation.
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STEP 1: Compute True Scores for X, Z, and XZ

set.seed(1234) # Allows user to perfectly replicate simulation
n=100000; pop.mn=c(0.500,0.500)
pop.sd=c(0.100,0.100); pop.var = pop.sd^2
data <- data.frame(MASS::mvrnorm(n=n,mu=pop.mn,Sigma=diag(pop.var),empirical=TRUE))
names(data)=c("X", "Z") # Assigned names to the two variables
data$XZ <- data$X*data$Z # Compute the cross-product term

STEP 2: Compute the Interaction Effect By Residualizing the Cross-Product

INTER <- lm(XZ~X+Z, data= data)
data$INTER <- INTER$residuals

STEP 3: Generate Population Values for Y

To generate Y.XZres with distributional characteristics consistent with Vancouver et al.’s Y.XZ, we rescaled
Y.XZres by converting it to a z-score, multiplying the z-score by .10 and adding .50.

data$Y.XZ <- data$XZ
data$Y.ADD <- data$X + data$Z
data$Y.XZres <- data$INTER
data$Y.XZres <- scale(data$INTER)*0.10+0.50
data$Y.COMB <-data$X + data$Z + data$XZ

STEP 4: Compute Observed Scores (x, z, y, xz) and Examine Correlations

Per Vancouver et al., observed scores (x, z, y, xz) were simulated by adding measurement error to the
population true scores. We adjusted the error added to Y.XZres, Y.ADD, and Y.COMB to yield similar
levels of criterion reliability to Vancouver et al.

data$x <- data$X + rnorm(1000, 0.00, 0.05)
data$z <- data$Z + rnorm(1000, 0.00, 0.05)
data$xz <- data$x*data$z
data$y.xz <- data$Y.XZ + rnorm(1000, 0.00, 0.05)
data$y.add <- data$Y.ADD + rnorm(1000, 0.00, 0.10)
data$y.xzres <- data$Y.XZres + rnorm(1000, 0.00, 0.07)
data$y.comb <- data$Y.COMB + rnorm(1000, 0.00, 0.15)
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## X Z XZ INTER Y.XZ Y.ADD Y.XZr Y.COM x z xz
## X 1.00
## Z 0.00 1.00
## XZ 0.70 0.70 1.00
## INTER 0.00 0.00 0.14 1.00
## Y.XZ 0.70 0.70 1.00 0.14 1.00
## Y.ADD 0.71 0.71 0.99 0.00 0.99 1.00
## Y.XZres 0.00 0.00 0.14 1.00 0.14 0.00 1.00
## Y.COMB 0.71 0.71 1.00 0.05 1.00 1.00 0.05 1.00
## x 0.90 0.00 0.63 0.00 0.63 0.64 0.00 0.64 1.00
## z 0.00 0.89 0.63 0.00 0.63 0.63 0.00 0.63 0.00 1.00
## xz 0.63 0.63 0.90 0.13 0.90 0.89 0.13 0.89 0.69 0.70 1.00
## y.xz 0.58 0.59 0.84 0.12 0.84 0.83 0.12 0.83 0.54 0.53 0.76
## y.add 0.57 0.57 0.80 0.00 0.80 0.81 0.00 0.81 0.52 0.51 0.73
## y.xzres 0.00 0.00 0.11 0.82 0.11 0.00 0.82 0.04 0.00 0.01 0.11
## y.comb 0.58 0.58 0.82 0.04 0.82 0.82 0.04 0.82 0.52 0.53 0.74
## y.xz y.add y.xzr y.cmb
## y.xz 1.00
## y.add 0.65 1.00
## y.xzres 0.09 0.01 1.00
## y.comb 0.68 0.66 0.03 1.00

True-Score Correlations
Our simulation reproduced the relationships reported in Vancouver et al:

• X and Z were orthogonal.
• Y.XZ had strong bivariate (non-joint) correlations with X and Z.
• XZ had strong bivariate correlations with its components, X and Z.
• Y.XZ had a perfect correlation with the cross-product, XZ.

Our simulation clarified the problems with the Vancouver et al. simulation:

• Y.XZ was correlated .99 with Y.ADD (i.e., the pure adding model), suggesting Vancouver et al.’s
cross-product model was driven almost entirely by the additive (i.e., non-joint) effects of X and Z.

Our simulation correctly generated scores for Y based on the pure multiplying model:

• Y.XZres was correlated .14 with the cross-product and was uncorrelated with X and Z. This suggests
that Y.XZres is driven solely by the multiplying effect of X and Z.

Observed-Score Correlations
The observed score correlations were consistent with the construct score correlations, but were attenuated due
to measurement error. The correlations between observed scores and true scores were equal to the reliability
index. If we square those correlations, we obtain estimates of the reliability coefficients for our variables: rxx
= 0.81, rzz = 0.8, ryy.add = 0.66, ryy.xzres = 0.67, ryy.comb = 0.67, ryy.xz = 0.7.
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STEP 5: Conduct Test of Moderated Multiple Regression

Moderated multiple regression (MMR) is a two-step test. The interaction effect is estimated as the difference
in R2 values obtained after estimating S2 and S3 (i.e., ∆R2). The null hypothesis significance test for ∆R2 is
identical to that for b3. If the null hypothesis is rejected, then S2 is rejected and S3 is retained as the correct
model. The functional form of the interaction is determined by graphing simple slopes. If the interaction
effect is non-significant, then S3 is rejected and S2 is retained.1

We denoted results based on population data using uppercase letters and sample data using lowercase letters.
Labels for each set of results first identified the true data generating mechanism used to compute Y/y (e.g.,
Y.XZ, Y.ADD, Y.XZres, Y.COMB, y.xz, y.add, y.xzres, y.comb) before indicating the regression model used
to predict Y/y as either additive (.ADD/.add) or combined (.COMB/.comb). For example, Y.ADD.ADD
denotes: a) population values are being tested, b) the data-generating function for Y was pure adding (i.e.,
Y = X + Z) and, c) the results are based on the additive predictor model (i.e., X+Z).

# Testing Models Using True Scores (Constructs)
Y.ADD.ADD <- lm(Y.ADD~X+Z, data=data) # Step 1 of MMR
Y.ADD.COMB <- lm(Y.ADD~X+Z+XZ, data=data) # Step 2 of MMR
Y.XZres.ADD <- lm(Y.XZres~X+Z, data=data) # Step 1 of MMR
Y.XZres.COMB <- lm(Y.XZres~X+Z+XZ, data=data) # Step 2 of MMR
Y.COMB.ADD <- lm(Y.COMB~X+Z, data=data) # Step 1 of MMR
Y.COMB.COMB <- lm(Y.COMB~X+Z+XZ, data=data) # Step 2 of MMR
Y.XZ.ADD <- lm(Y.XZ~X+Z, data=data) # Step 1 of MMR
Y.XZ.COMB <- lm(Y.XZ~X+Z+XZ, data=data) # Step 2 of MMR

# Testing Models Using Observed Scores
y.add.add <- lm(y.add~x+z, data=data)
y.add.comb <- lm(y.add~x+z+xz, data=data)
y.xzres.add <- lm(y.xzres~x+z, data=data)
y.xzres.comb <- lm(y.xzres~x+z+xz, data=data)
y.comb.add <- lm(y.comb~x+z, data=data)
y.comb.comb <- lm(y.comb~x+z+xz, data=data)
y.xz.add <- lm(y.xz~x+z, data=data)
y.xz.comb <- lm(y.xz~x+z+xz, data=data)

STEP 6: Prepare the Data for Graphing

In this step, we prepared the data necessary to graph the models from Step 5. This will help to visually
depict whether MMR yielded results consistent with the data-generating functions for Y. First, we estimated
means and SDs for X, Z, x, and z. We used those values to estimate high and low values of X, Z, x, and z.
Then we added scores for the cross-product terms. Finally, we estimated predicted values for the different
versions of Y/y.

1Code for generating output based on observed scores is included in rmarkdown file, but results not included in pdf.
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STEP 7: Results of Simulation

Data Generating Function for Y = Pure Adding Model

When the data generating function for Y was based on a pure adding model, MMR correctly rejects the
interaction and correctly partitions R2 across lower-order (R2 = 1.00) and interaction (R2 = 0.00) effects.
Graphing the results of this model reveals a strong additive effect for X, which is consistent with the data
generating function.

##
## =====================================
## Y.ADD
## ----------------------------
## Step 1 Step 2
## (1) (2)
## -------------------------------------
## Constant -0.000*** -0.000***
## (0.000) (0.000)
## X 1.000*** 1.000***
## (0.000) (0.000)
## Z 1.000*** 1.000***
## (0.000) (0.000)
## XZ -0.000
## (0.000)
## -------------------------------------
## R2 1.000 1.000
## =====================================
## Note: *p<0.1; **p<0.05; ***p<0.01
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Data Generating Function for Y = Pure Multiplying Model

When the data generating function for Y was the pure multiplying model, MMR correctly detects the presence
of an interaction and correctly partitions R2 across lower-order (R2 = .00) and interaction (R2 = 1.00) effects.
The assignment of the entire R2 to the multiplicative effect is consistent with the disordinal interaction effect
used to generate the data.

##
## =====================================
## Y.XZres
## ----------------------------
## Step 1 Step 2
## (1) (2)
## -------------------------------------
## Constant 0.500*** 3.000***
## (0.002) (0.000)
## X -0.000 -5.001***
## (0.003) (0.000)
## Z -0.000 -4.999***
## (0.003) (0.000)
## XZ 9.998***
## (0.000)
## -------------------------------------
## R2 0.000 1.000
## =====================================
## Note: *p<0.1; **p<0.05; ***p<0.01
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Data Generating Function for Y = Combined Adding-Multiplying Model

When the data generating function for Y was the combined adding-multiplying model, MMR correctly detects
the interaction and partitions R2 across additive (R2 = 0.998) and interactive (R2 = 0.002) effects. The ∆R2

= .002 indicates trivial improvement in prediction. The small increment in R2, coupled with the strong
additive effects, is consistent with the ordinal interaction effect used to generate the data.

##
## =====================================
## Y.COMB
## ----------------------------
## Step 1 Step 2
## (1) (2)
## -------------------------------------
## Constant -0.250*** 0.000***
## (0.0002) (0.000)
## X 1.500*** 1.000***
## (0.0003) (0.000)
## Z 1.500*** 1.000***
## (0.0003) (0.000)
## XZ 1.000***
## (0.000)
## -------------------------------------
## R2 0.998 1.000
## =====================================
## Note: *p<0.1; **p<0.05; ***p<0.01
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Data Generating Function for Y = Cross-Product Model

When the data generating function for Y was the cross-product model, MMR correctly detects the presence of
an interaction and correctly partitions R2 across additive (R2 = .98) and interactive (R2 = .02) effects. The
∆R2 = .02 indicates the interaction provides only a small improvement in prediction. The small increment in
R2, coupled with the strong additive effects, is consistent with the ordinal interaction effect used to generate
the data. And, this interaction is consistent with the ordinal interaction effect simulated by Vancouver et al.

##
## =====================================
## Y.XZ
## ----------------------------
## Step 1 Step 2
## (1) (2)
## -------------------------------------
## Constant -0.250*** -0.000***
## (0.0002) (0.000)
## X 0.500*** 0.000***
## (0.0003) (0.000)
## Z 0.500*** 0.000***
## (0.0003) (0.000)
## XZ 1.000***
## (0.000)
## -------------------------------------
## R2 0.980 1.000
## =====================================
## Note: *p<0.1; **p<0.05; ***p<0.01
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STEP 8: Verify Simulation Results Using Observed Data

In this step, we graphed the models using observed scores. All graphs were consistent with previous findings
based on true scores. Thus, no substantive interpretations are included, only the graphs.

0.0

0.5

1.0

1.5

2.0

0.40 0.45 0.50 0.55 0.60
x

y.
ad

d

z

0.39

0.61

y Scores Simulated Based on Pure Adding Model

0.0

0.5

1.0

1.5

2.0

0.40 0.45 0.50 0.55 0.60
x

y.
xz

re
s z

0.39

0.61

y Scores Simulated Based on Pure Multiplying Model

0.0

0.5

1.0

1.5

2.0

0.40 0.45 0.50 0.55 0.60
x

y.
co

m
b z

0.39

0.61

y Scores Simulated Based on Combined Adding−Multiplying Model

0.0

0.5

1.0

1.5

2.0

0.40 0.45 0.50 0.55 0.60
x

y.
xz

z

0.39

0.61

y Scores Simulated Based on Cross−Product Model

Summary

The results of our simulation serve to verify several important characteristics of MMR:

1) It correctly detects the presence or absence of an interaction effect,
2) It provides an accurate estimate of the magnitude of the interaction effect, and
3) It provides the information necessary to ascertain the functional form of the interaction effect.
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