Appendix:

Exclusion due to excessive head movement

Prior to all statistical analyses, we evaluated the data quality by manual inspection. Six participants had to be excluded due to technical issues during data acquisition or neurological abnormalities (see paper). Afterwards, Artifact Detection tool (ART toolbox; https://www.nitrc.org/projects/artifact_detect) was used to identify outlier volumes from the global brain activation as a function of time (> 3 z-normalized SD from the mean of the time series) and excessive movement (> 1 mm in any direction). Subjects with outlier scan rates > 15% were eliminated from further analysis. Due to this criterion, one participant was eliminated from further analysis (see above).

Table S1. Current and past Axis I and Axis II psychopathology, nationality and mother tongue.

Comorbid diagnosis	BED	CG
	Frequency	Frequency
Current comorbid affective diagnosis		
Major Depression	3	0
Dysthymia	1	1
Current comorbid anxiety diagnosis		
Panic Disorder	2	0
Panic Disorder with Agoraphobia	2	0
Posttraumatic Stress Disorder	2	0
Generalized Anxiety Disorder	2	0
Past affective diagnosis		
Major Depression	23	6
Past anxiety disorders		
Agoraphobia	1	0
Obsessive Compulsive Disorder	1	0
Posttraumatic Stress Disorder	0	1
Past Eating Disorders		
Anorexia Nervosa	3	0
Bulimia Nervosa	4	0
SKID 2 Diagnosis		
Narcissistic Personality Disorder	0	1
Paranoid Personality Disorder	3	0
Depressive Personality Disorder	2	0
Obsessive-Compulsive Personality Disorder	1	2
Avoidant Personality Disorder	5	0
Nationality		

German	37	20
Hungarian	1	0
Russian	0	1
Ukrainian	0	1
Mother Tongue		
German	37	19
Dutch	0	1
Russian	0	1
Ukrainian	0	1
Hungarian	1	0

Note: BED = binge eating disorder; CG = control group

Table S2.a Peak voxels (MNI coordinates) for EBA (right, left) and FBA (right, left) identified in the CG.

	Right EI	BA		Left EB	SA	Right FBA				Left FBA		
X	у	Z	X	у	Z	X	у	Z	X	У	Z	
52	-68	6	-52	-72	8							
52	-72	8	-48	-68	12	42	-60	-14	-42	-64	-14	
52	-70	4	-46	-82	6	46	-58	-20	-44	-68	-16	
48	-74	12	-42	-76	10	40	-44	-18				
58	-64	4	-52	-70	10	44	-48	-18	-42	-38	-20	
52	-70	2	-44	-86	6	38	-60	-16				
54	-50	20	-50	-78	10	42	-52	-22	-40	-50	-14	
50	-72	24	-44	-76	22	42	-48	-18	-46	-52	-22	
56	-68	2	-50	-72	12	40	-50	-14	-38	-48	-16	
52	-74	2	-54	-68	12	40	-48	-14	-46	-64	-18	
56	-64	4	-50	-70	10	40	-56	-14	-40	-50	-18	
50	-64	14	-48	-74	10							
56	-68	0	-52	-76	2	42	-54	-16	-46	-52	-22	
52	-64	18	-46	-80	6	38	-60	-10	-40	-58	-14	
50	-74	8	-42	-84	10	42	-48	-16	-38	-48	-16	
42	-56	14	-44	-84	12	40	-58	-18	-42	-58	-16	
52	-74	-2	-48	-80	4	40	-30	-26				
50	-72	20	-48	-78	2	40	-56	-12	-40	-46	-22	
40	-56	20	-40	-68	18	46	-50	-20	-44	-46	-20	
56	-66	2	-58	-64	-2	32	-64	-16	-42	-64	-20	
54	-70	-2	-50	-70	10	38	-48	-14	-42	-50	-22	
52	-68	6	-46	-80	12	42	-54	-24	-46	-54	-22	

Note: $CG = control\ group;\ EBA = extrastriate\ body\ area;\ FBA = fusiform\ body\ area$

 $Table\ S2.b\ Peak\ voxels\ (MNI\ coordinates)\ for\ EBA\ (right, left)\ and\ FBA\ (right, left)\ identified\ in$ $the\ BED\ group$

	Right El	ВА		Left EB	BA		Right FI	BA		Left FBA		
X	у	Z	X	у	Z	X	y	Z	X	У	Z	
54	-62	2	-50	-72	10	38	-48	-14				
44	-62	10	-52	-76	10	44	-56	-22	-42	-66	-14	
52	-72	10	-44	-82	18	42	-50	-16	-42	-52	-12	
44	-74	0	-46	-78	10	38	-54	-14	-38	-52	-12	
42	-72	8	-46	-60	4	44	-50	-22				
42	-72	-2	-36	-66	20	42	-60	-14				
52	-70	2	-42	-70	10	38	-50	-18				
50	-74	6	-52	-72	2	44	-48	-16	-38	-56	-14	
56	-62	16	-46	-80	12	38	-62	-18	-42	-48	-22	
54	-58	10	-50	-76	8	36	-50	-18	-38	-46	-18	
54	-64	8	-50	-72	8	40	-52	-16	-40	-56	-10	
48	-80	0	-42	-76	4	40	-52	-16	-40	-58	-14	
46	-66	14	-52	-72	12	44	-46	-16	-44	-52	-16	
54	-62	8	-46	-66	6	40	-58	-12	-40	-70	-16	
56	-62	-2	-52	-76	2	42	-48	-18	-44	-48	-20	
56	-64	4	-56	-66	10	40	-52	-24	-38	-44	-22	
56	-64	0	-50	-66	6	38	-52	-22	-38	-44	-20	
52	-72	10	-54	-68	6	44	-46	-16	-38	-44	-20	
42	-56	10	-42	-82	24	46	-58	-18	-46	-56	-16	
50	-74	14	-46	-78	20	42	-52	-16	-46	-54	-18	
46	-78	16	-48	-80	4	36	-46	-20	-38	-46	-20	
50	-60	10	-48	-68	10	42	-48	-12	-44	-46	-20	

52	-70	-2	-56	-66	-2	40	-48	-20	-38	-48	-18
56	-62	2	-52	-72	20	42	-60	-20	-46	-52	-22
54	-66	0	-52	-74	6				-42	-36	-20
54	-62	10	-44	-72	16	46	-50	-20	-44	-50	-20
48	-62	6	-56	-70	6	34	-38	-26	-38	-36	-24
54	-70	-2	-50	-72	8	44	-46	-16	-44	-60	-18
58	-62	16	-52	-76	14	44	-48	-20	-44	-60	-18
42	-66	14	-50	-72	8	44	-40	-16	-40	-54	-18
54	-70	12	-46	-78	24	36	-64	-12	-44	-48	-24
52	-70	4	-46	-76	8						
44	-54	12	-48	-62	14	44	-54	-18	-42	-50	-14
48	-70	6	-44	-76	4	42	-46	-14	-42	-52	-20
48	-68	6	-48	-78	2	40	-62	-14	-42	-68	-14
46	-70	8	-48	-80	8	46	-50	-20	-40	-58	-12
56	-62	8	-48	-76	18	42	-48	-12	-38	-52	-14
54	-64	12	-54	-64	12	44	-46	-24	-46	-52	-22

Note: BED = binge eating disorder; EBA = extrastriate body area; FBA = fusiform body area

Table S3. F-Values for the relevant terms of our estimated models.

			Hypothesis 1/	Hypothesis 3
			Hypothesis 2	
		LMM0		
	Condition	Group	Condition ×	Condition \times group
			group	\times body
				dissatisfaction
Right EBA	F(2,105.59) =	F(1,58.01)=	F(2,105.59) =	
	152.14,	0.16,	1.01,	
	p < .001,	p = .687	p = .369	
	$\eta^2 = .74$,			
	[0.68, 0.79]			
Left EBA	F(2,108.73)=	F(1,58) =	F(2,108.73) =	
	110.07	0.03,	0.35,	
	p < .001,	p = .874	p = .703	
	$\eta^2 = .67$,			
	[0.59, 0.73]			
Right FBA	F(2,99.89) =	F(1,54) =	F(2,99.89) =	
	102.25,		1.25,	
	p < .001,	p = .965	p = .289	
	$\eta^2 = .67,$			
	[0.59, 0.73]			
Left FBA	F(2,242.69) =	F(2,46.68)=	F(2,242.69) =	
	75.85,	2.05,	5.71,	
	p < .001,	p = .159	p = .004,	

	$\eta^2 = .38$,		$\eta^2 = .05$,	
	[0.31, 0.45]		[0.01, 0.09]	
Right amygdala	F(2,115.37) =	F(1,62.57) =	F(2,115.37) =	F(2,112.49) =
	2.16,	2.30,	0.38,	0.06,
	p = .120	p = .134	p = .686	p = .847
Left amygdala	F(2,419.91) =	F(1, 58.06) =	F(2,419.91) =	F(2, 405.94) =
	0.54,	0.89,	0.76,	0.46,
	p = .584	p = .349	p = .471	p = .632
Right insula	F(2,134.63) =	<i>F</i> (1, 57.99) =	F(2, 134.63) =	F(2, 125.19) =
	7.03,	0.70,	0.08,	0.30,
	p = .001,	p = .405	p = .927	p = .738
	$\eta^2 = .09$,			
	[0.03, 0.17]			
Left insula	F(2, 476.58) =	F(1, 58.04) =	F(2, 476.58) =	F(2, 438.67) =
	2.52,	0.03,	0.04	0.57
	p = .082	p = .900	p = .964	p = .569
Ventromedial	F(2,668.67) =	F(1,58.01) =	F(2,668.67) =	F(2,718.68) =
prefrontal cortex	8.49,	1.94,	0.11	0.63
	p < .001,	p = .288	p = .895	p = .533
	$\eta^2 = .02$,			
	[0.01, 0.05]			

Note: Type III Analysis of Variance Table with Satterthwaite's method (using the anova() command on the estimated model). Note that lower-level terms (main effects and two-way interactions) of the model including the condition × group × body dissatisfaction interaction are not reported in Table S3.

Reference levels for our dummy variables were group: CG (control group), condition: diffeomorphic

stimuli (= control stimuli), such that the intercept is the model prediction for the diffeomorphic stimuli condition in the CG. All parameter estimates are interpreted as comparisons to this specific pairing of factor levels. Most analyses were performed over all participants (BED [binge eating disorder] N = 38, CG N = 22). Analyses in the right FBA (fusiform body area; BED n = 36, CG n = 20) and left FBA (BED N = 33, CG N = 17) were performed over a subsample, $\eta^2 = Partial Eta Squared$, CI = 90% confidence interval, EBA (extrastriate body area), body dissatisfaction was assessed via the body shape questionnaire, Hypothesis 1: Compared to the control group, individuals with BED show aberrant activity in the EBA and FBA especially during exposure to images of their own body (this translates to a two-way interaction between condition and group for these areas), Hypothesis 2: Compared to the control group, individuals with BED show aversion-related increased activity in limbic areas (amygdala, insula, vmPFC) especially during exposure to images of their own body (this translates to a two-way interaction between condition and group for these areas), Hypothesis 3: The higher the dissatisfaction (as assessed by questionnaires, BSQ), the stronger the aversive response associated with limbic activity, whereby this correlation is expected to be stronger for the BED group (this translates to a three-way interaction between body dissatisfaction, condition, and group for the limbic areas).

Exploratory associations between left FBA activity and severity of eating pathology and depression

To quantify the associations between neural activity in the left FBA and severity of eating pathology and depression, as assessed by the EDEQ (subscales), BSQ, and BDI-II, we computed two difference scores: (1) left FBA response during the processing of the own body stimuli minus left FBA response during the processing of the control stimuli ("own body difference score"), and (2) left FBA response during the processing of the other body stimuli minus left FBA response during the processing of the control stimuli ("other body difference score"). We included the respective self-report measure as fixed effect, random intercepts for participants, as well as by-participants random slopes for the condition factor. The best model fit to the data was selected depending on the Akaike (AIC) and Bayesian information criteria (BIC). Both showed that the model including EDEQ shape concern (LMM shape concern) had the best fit of the models tested (see Table S3.1 in the supplementary materials). The results indicate that EDEQ shape concern was positively related to left FBA activity (t(48.05) = 3.61, p $< .001, \eta^2 = .21, [0.07, 0.37]$). Thus, higher levels of shape concern were associated with higher responses in the left FBA towards body images (in reference to control images). We further tested whether adding one of the other self-report measures (as a fixed effect) to LMM shape concern would significantly improve our model fit by conducting model comparison using a likelihood-ratio test. The model comparisons indicated that LMM shape concern was not significantly improved by adding another self-report measure (see supplementary materials).

We then repeated this analysis for the BED and the CG separately. The model including EDEQ restraint (*LMM restraint*) had the best fit of the models tested for the BED group (see Table S3.2). However, EDEQ restraint was not significantly related to left FBA activity (t(31.13) = -1.16, p = .255). In the CG, the model including the BDI-II (*LMM BDI-II*) had the best fit of the models tested (see Table S3.3). The results indicate a positive association between BDI-II in the CG at trend level (t(236) = 2.59, p = .01, $\eta^2 = .03$, [0.00, 0.07]). Thus, higher self-reported depressiveness in the control group was associated with higher left FBA activity in response to body stimuli (in reference to control stimuli). Model comparisons indicated that the model fit of neither *LMM restraint* nor *LMM BDI-II* was improved by adding another self-report measure.

Table S3.1 AIC and BIC criteria for the different models, along with likelihood ratio chi-square tests.

Model	AIC	BIC	Comparing the models
EDEQ shape concern	2150.19	2177.50	
EDEQ mean	2153.97	2181.27	$\chi^2(1) = 2.21, p = .137$
EDEQ weight concern	2151.64	2178.95	$\chi^2(1) = 0.01, p = .940$
EDEQ eating concern	2156.37	2183.68	$\chi^2(1) = 0.75, p = .386$
EDEQ restraint	2160.75	2188.06	$\chi^2(1) = 2.83, p = .093$
BSQ	2159.41	2186.71	$\chi^2(1) = 0.13, p = .715$
BDI-II	2154.95	2182.25	$\chi^2(1) = 1.87, p = .172$

Note: In a first step, separate models were estimated for each self-report measure. The best model to fit the data was selected based on the Akaike (AIC) and Bayesian information criteria (BIC). Both showed that the model including EDEQ shape concern (LMM shape concern, depicted in boldface) had the best fit of the models tested. Note that lower AIC and BIC values represent a better model fit. We further tested whether adding one of the other self-report measures (as a fixed effect) to LMM shape concern would significantly improve our model fit by conducting model comparison using a likelihood-ratio test (see column comparing the models). The model comparisons indicated that LMM shape concern was not significantly improved by adding another self-report measure. EDEQ = Eating disorder examination questionnaire; BSQ = Body Shape Questionnaire; BDI-II = Becks Depression Inventory II (for further information see questionnaires-section)

Table S3.2 AIC and BIC criteria for the different models in the BED group, along with likelihood ratio chi-square tests.

Model	AIC	BIC	Comparing the models
EDEQ restraint	1479.10	1503.92	
EDEQ shape concern	1479.45	1504.26	$\chi^2(1) = 0.30, p = .303$
EDEQ mean	1479.73	1504.55	$\chi^2(1) = 0.95, p = .329$
EDEQ weight concern	1479.90	1504.71	$\chi^2(1) = 0.78, p = .375$
EDEQ eating concern	1480.37	1505.18	$\chi^2(1) = 0.51, p = .476$
BSQ	1486.46	1511.27	$\chi^2(1) = 0.49, p = .483$
BDI-II	1483.91	1508.72	$\chi^2(1) = 0.05, p = .820$

Note: For the description of the analysis procedure see table S3.1. In this analysis, EDEQ restraint (LMM restraint, depicted in boldface) had the best fit of the models tested. The model comparisons indicated that LMM restraint was not significantly improved by adding another self-report measure.

AIC = Akaike information criteria; BIC = Bayesian information criteria); EDEQ = Eating disorder examination questionnaire; BSQ = Body Shape Questionnaire; BDI-II = Becks Depression Inventory II

Table S3.3 AIC and BIC criteria for the different models in the CG, along with likelihood ratio chi-square tests.

Model	AIC	BIC	Comparing the models
BDI-II	667.11	687.94	
EDEQ shape concern	670.20	691.04	$\chi^2(1) = 0.54, p = .464$
EDEQ mean	669.80	690.64	$\chi^2(1) = 0.56, p = .453$
EDEQ weight concern	669.95	690.80	$\chi^2(1) = 0.42, p = .515$
EDEQ eating concern	667.78	688.60	$\chi^2(1) = 0.01, p = .972$
EDEQ restraint	671.19	692.03	$\chi^2(1) = 0.33, p = .563$
BDI-II	667.42	688.25	$\chi^2(1) = 0.01, p = .997$

Note: For the description of the analysis procedure see table S3.1. In this analysis, BDI-II (LMM BDI-II, depicted in boldface) had the best fit of the models tested. The model comparisons indicated that LMM BDI-II was not significantly improved by adding another self-report measure. AIC = Akaike information criteria; BIC = Bayesian information criteria); EDEQ = Eating disorder examination questionnaire; BSQ = Body Shape Questionnaire; BDI-II = Becks Depression Inventory II

Table S4.1 Main effect condition (p < .05, FWE-corrected)

		MNI	coordinat	es		
Brain Structure	BA	X	y	z	k	F-Value
Middle temporal gyrus right	-	50	-68	16	4842	117.85
Middle temporal gyrus right	-	50	-66	8		115.19
Superior temporal gyrus	22	42	-60	14		107.11
Middle temporal gyrus left	-	-44	-68	12	1361	78.78
Middle occipital gyrus left	-	-42	-78	12		47.31
Medial occipitotemporal gyrus	-	-28	-62	-8	5420	75.95
Lateral occipitotemporal gyrus right	-	28	-54	-10		65.46
Lateral occipitotemporal gyrus left	-	-26	-48	-18		54.67
Fusiform gyrus right	-	40	-50	-16	143	71.22
Inferior frontal gyrus right	-	52	10	20	1694	57.91
Precentral gyrus right	-	46	6	24		56.07
Inferior frontal gyrus right	-	44	38	10		47.26
Precuneus right	7	4	-68	36	3589	56.66
Superior parietal lobule right	-	12	-66	36		53.79
Cingulate gyrus	23	4	-24	28		49.99
Supramarginal gyrus right	-	38	-16	20	161	36.86
Postcentral gyrus right	43	54	-10	14		22.64
Supramarginal gyrus left	-	-62	-34	32	117	35.99
Medial front-orbital gyrus right	-	6	48	-18	103	32.34
Medial front-orbital gyrus right	-	2	42	-22		25.77
Postcentral gyrus left	13	-38	-18	16	103	27.54
Postcentral gyrus left	-	-48	-10	14		18.12
Lateral occipitotemporal gyrus left	-	-32	-8	-32	39	27.24
Right insula	47	28	12	-18	33	26.32

Right insula	-	34	16	2	198	26.26
Right insula	-	44	12	-6		25.27
Brain stem	-	8	-28	-14	42	25.56
Anterior cingulate	24	4	38	2	334	25.50
Anterior cingulate left	32	-4	42	2		23.66
Anterior cingulate left	-	-4	52	-6		17.52
Cingulate gyrus right	-	2	26	32	178	25.30
Anterior cingulate right	-	2	34	18		24.90
Cerebellum left	-	-10	-76	-36	148	24.03
Cerebellum left	-	-10	-78	-26		22.92
Cerebellum right	-	0	-56	-36	40	23.32
Precentral gyrus right	3	42	-22	60	52	23.05
Cerebellum left	-	-34	-73	-40	31	22.65
Cerebellum left	-	-20	-40	-44	21	22.34
Right supplementary motor area	-	6	-22	64	35	21.99
Fusiform gyrus left	-	-40	-46	-18	10	21.70
Cerebellum left	-	-24	-70	-26	27	19.46
Lateral front-orbital gyrus left	47	-36	32	-14	15	19.12
Left insula	13	-32	14	-16	21	18.80
Superior frontal gyrus right	-	18	34	48	8	18.69
Hippocampal formation right	-	28	-30	-8	8	18.22
Cingulate gyrus right	24	4	2	34	13	18.12
Precentral Gyrus	-	26	-26	70	3	17.99
Vermis	-	0	-50	-20	6	17.40
Cerebellum left	-	-34	-46	-42	2	17.35
Left insula	-	-36	-8	4	1	16.43
Superior temporal gyrus right	21	54	6	-14	1	16.42
Brain stem	-	18	-38	-46	3	16.25

Lateral front-orbital gyrus right	11	24	32	-14	1	16.22
Angular gyrus left	-	-40	-70	44	3	16.17
Middle temporal gyrus left	-	-58	-58	-4	1	16.06
Inferior Frontal Gyrus	-	24	26	-14	1	15.75

Table S4.2 Posthoc t-test own body > other body (p < .05, FWE-corrected)

	MNI coordinates				
BA	X	y	Z	k	T-Value
32	-4	42	6	4	5.69
13	44	10	-6	2	5.58
-	18	-38	-46	1	5.56
-	4	34	18	1	5.52
-	-36	-52	-24	1	5.50
-	-32	-56	-22	1	5.49
-	0	-50	-20	1	5.47
-	0	26	32	6	5.47
	32 13 - - - -	BA x 32 -4 13 44 - 18 - 4 36 32 - 0	BA x y 32 -4 42 13 44 10 - 18 -38 - 4 34 - -36 -52 - -32 -56 - 0 -50	BA x y z 32 -4 42 6 13 44 10 -6 - 18 -38 -46 - 4 34 18 - -36 -52 -24 - -32 -56 -22 - 0 -50 -20	BA x y z k 32 -4 42 6 4 13 44 10 -6 2 - 18 -38 -46 1 - 4 34 18 1 - -36 -52 -24 1 - -32 -56 -22 1 - 0 -50 -20 1

Table S4.3 Posthoc t-test own body > diffeomorphic stimuli (p < .05, FWE-corrected)

		MNI	l coordinat	es		T-Value
Brain Structure	BA	X	y	Z	k	
Middle temporal gyrus right		48	-62	14	4600	16.33
Middle temporal gyrus right		46	-68	20		13.89
Middle temporal gyrus right	37	46	-70	2		13.13
Inferior occipital gyrus left	39	-48	-74	8	1270	12.28
Middle temporal gyrus left	-	-46	-62	10		11.56
Middle occipital gyrus left	39	-40	-76	24		9.73
Fusiform gyrus right	-	40	-50	-16	131	10.06
Inferior frontal gyrus right	-	50	36	16	2026	9.48
Precentral gyrus right	-	46	8	24		9.36
Inferior frontal gyrus right	-	52	12	14		9.06
Cingulate gyrus	-	2	-18	30	2626	8.64
Superior parietal lobule right	-	12	-70	38		8.53
Cingulate Gyrus left	-	-6	-52	28		8.37
Cerebellum left (Pyramis)	-	-10	-78	-38	127	7.97
Cerebellum left (Declive)	-	-12	-76	-24		6.22
Supramarginal gyrus left	-	-62	-34	32	99	7.93
Brain stem	-	8	-28	-14	50	7.91
Cerebellum right (Nodule)	-	0	-58	-36	71	7.88
Right insula	-	34	16	0	140	6.99
Right insula	13	30	14	-16	44	6.86
Cerebellum left (Declive)	-	-24	-70	-26	41	6.57
Fusiform g yrus	-	-42	-50	-18	15	6.44
Anterior cingulate	32	4	40	4	148	6.38
Cingulate region left		0	42	-6		6.07

Anterior cingulate left	32	-2	34	-6		5.94
Cerebellum left (Cerebellar tonsil)	-	-36	-46	-42	4	6.25
Cerebellum left (Cerebellar tonsil)	-	-20	-40	-44	12	6.19
Left insula	13	-32	12	-16	19	6.12
Cingulate gyrus right	-	2	22	38	28	6.02
Cerebellum left (Tuber)	-	-34	-72	-40	11	5.90
Brain stem	-	-4	-30	-14	2	5.81
Medial frontal gyrus left	10	-2	58	-2	14	5.72
Middle frontal gyrus left	6	-26	-4	48	1	5.69
Medial front-orbital gyrus left	-	-8	52	-10	5	5.69
Inferior frontal gyrus right	-	30	30	2	1	5.59
Middle frontal gyrus/ Precentral left	6	-30	-8	46	3	5.58
Parahippocampal gyrus right	-	28	-26	-14	1	5.54
Anterior cingulate right	-	2	34	20	3	5.53
Cingulate gyrus right	-	10	20	36	2	5.50
Cingulate gyrus right	24	6	-12	36	1	5.46
Superior temporal gyrus right	-	46	-46	16	1	5.41
Middle frontal gyrus right		32	10	54	1	5.40

 $\overline{Note: FWE = family-wise\ error\ rate}$

Table S4.4 Posthoc t-test other body > diffeomorphic stimuli (p < .05, FWE-corrected)

		MNI	coordinat			
Brain Structure	BA	X	y	Z	k	T-Value
Middle temporal gyrus right	-	48	-62	14	4163	16.14
Middle temporal gyrus right	-	48	-70	4		14.57
Middle temporal gyrus right	-	52	-68	18		14.11
Middle temporal gyrus left	-	-52	-70	10	1181	12.32
Middle temporal gyrus left	-	-44	-62	10		11.59
Inferior occipital gyrus left	39	-46	-78	8		11.42
Precuneus right	7	4	-70	38	2492	11.51
Cingulate region right	23	4	-38	24		9.49
Cingulate gyrus right	23	4	-26	28		8.76
Fusiform gyrus right	-	42	-52	-18	85	8.88
Inferior frontal gyrus right	-	50	12	14	1287	8.65
Precentral gyrus right	-	44	8	22		8.01
Inferior frontal gyrus	-	52	10	24		7.81
Medial front-orbital gyrus right	-	6	48	-20	92	7.90
Medial frontal gyrus	-	-6	50	-18		5.74
Middle frontal gyrus	-	38	40	-10	37	7.33
Cerebellum left (Pyramis)	-	-10	-78	-36	116	7.15
Cerebellum left (Declive)	-	-10	-78	-26		6.95
Inferior parietal lobule left	-	-36	-54	40	24	6.23
Inferior parietal lobule left	-	-38	-52	48		5.72
Corpus callosum	-	-6	-44	12	3	5.92
Lateral front-orbital gyrus right	-	36	36	-16	2	5.85
Cerebellum left (Culmen)	-	-22	-64	-32	3	5.82
Superior frontal gyrus	-	20	32	48	4	5.79

Cerebellum left (Tuber)	-	-36	-72	-38	12	5.79
Middle frontal gyrus	-	-34	-6	46	4	5.72
Hippocampus right	-	28	-30	-8	4	5.70
Supramarginal gyrus left	-	-62	-34	34	8	5.59
Superior temporal gyrus left	-	-54	-50	14	4	5.54
Angular gyrus left	39	-48	-70	32	1	5.43
Superior parietal lobule left	7	-38	-60	52	2	5.43
Middle frontal gyrus right	6	38	10	56	1	5.42

Table S4.5 Posthoc t-test diffeomorphic stimuli > own body (p < .05, FWE-corrected)

Brain Structure	BA	X	y	z	k	T-Value
Superior occipital gyrus right	-	20	-92	26	4697	12.31
Superior occipital gyrus left	-	-12	-96	18		12.02
Cuneus	18	14	-90	20		12.02
Precentral gyrus right	3	42	-22	58	123	8.28
Right insula	13	38	-16	18	181	8.24
Postcentral gyrus right	43	52	-10	14		6.78
Postcentral gyrus left	13	-38	-16	18	89	6.92
Right supplementary motor area	-	6	-22	64	39	6.82
Lateral occipitotemporal gyrus left	-	-34	-26	-22	7	6.14
Hippocampal formation left	-	-32	-6	-30	9	6.10
Superior temporal gyrus right	38	52	6	-14	2	5.97
Right cerebrum	-	28	-42	18	3	5.67
Precentral gyrus right	-	58	-6	38	2	5.60
Superior temporal gyrus right	21	64	-8	-2	2	5.52
Precentral gyrus right	6	62	-2	14	1	5.52
Postcentral gyrus left	-	-50	-8	16	1	5.47

 $\overline{Note: FWE = family\text{-}wise\ error\ rate}$

Table S4.6 Posthoc t-test diffeomorphic stimuli > other body (p < .05, FWE-corrected)

		MNI	coordinat	es		
Brain Structure	BA	X	y	z	k	T-Value
Superior occipital gyrus right	19	16	-92	22	5586	12.92
Medial occipitotemporal gyrus left	-	-22	-54	-14		11.03
Medial occipitotemporal gyrus left	-	-28	-66	-8		10.76
Hippocampal formation left	-	-34	-14	-28	30	6.92
Hippocampal formation left	-	-32	-6	-30		6.75
Right cerebrum	-	28	-16	20	19	6.07
Lateral occipitotemporal gyrus right	-	34	-26	-22	7	6.00
Precentral gyrus right	3	44	-20	58	3	5.57
Lateral front-orbital gyrus left	11	-36	34	-14	4	5.56
Putamen left	-	-28	-12	0	1	5.56
Putamen left	-	-26	6	-4	2	5.52
Inferior temporal gyrus right	-	36	-14	-28	1	5.49
Corpus callosum		-12	-34	22	1	5.46

Table S4.7 Posthoc t-test other body > own body (p < .05, FWE-corrected)

No significant main effect.