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Supplementary Material for A double-blind study assessing the impact of orbitofrontal theta 
burst stimulation on goal-directed behavior 

Computational modeling of habit override task performance 

Results reported in the main manuscript use summary statistics of behavior to describe performance on 
the habit override task. However, learning tasks can also be analyzed with generative models, which 
describe trial-level learning patterns and can arbitrate among different influences on behavior with 
increased precision. Development, estimation, and results of a computational model of habit override 
are presented below; results are generally consistent with the summary statistics presented in the 
manuscript but are described below for the interested reader.   

Model development: To our knowledge, computational learning models have not been developed for 
habit override tasks, so we developed a model and possible variants to account for differences in 
override behavior. Specifically, we developed models to test whether variations in override behavior are 
due to differences in model-based revaluation of stimuli, learning from experienced outcomes, or 
random responding.  

Reinforcement learning models assumed participants learned the value of responding (pressing a 
button) for each stimulus based on outcomes (shock or no shock) and instructions. The values of 
responding for each stimulus (CS+A, CS+B, and CS-) were assumed to be independent of one another. 
Therefore, the probability of responding on a trial (P(at)) when presented with a stimulus s was based on 
arbitrating the expected value of responding (Q(at)) versus not responding (1-Q(at)) for that stimulus (s) 
based on a softmax function, with an inverse temperature parameter β representing choice stochasticity 
or randomness:  

𝑃(𝑎!|𝑠!) = 	
exp	[𝛽 ∗ 𝑄(𝑎!)]

exp[𝛽 ∗ 𝑄(𝑎!)] + exp	[𝛽 ∗ [1 − 𝑄(𝑎!)]]
 

For each trial, the experienced outcome (Ot) was coded as the value of making a response to avoid a 
shock: 1 if the participant either: responded and did not receive a shock, or did not respond and 
received a shock, and 0 if the participant did not respond and did not receive a shock. For the sake of 
consistency, the value of responding was 0 if the participant responded and received a shock as well, 
which would occur if participants pressed the wrong button (such errors were rare: 1.8% of responses). 
This design allowed the model to capture habitual avoidance responses, which are common (Solomon & 
Wynne, 1954), by coding a non-shocked outcome as 1 regardless if the button press prevented the 
shock or if a shock would not have been delivered regardless. Therefore, the expected value of 
responding for a stimulus was updated with the following equation after an outcome, with a learning 
rate parameter α representing how quickly expected values were updated based on the experienced 
difference between actual and expected outcomes: 

𝑄(𝑎!"#) = 𝑄(𝑎!) + 𝛼 ∗ [𝑂! − 𝑄(𝑎!)] 

At the beginning of the override block, one of the shock electrodes attached to the participant’s wrist 
was disconnected and the participant was instructed that one of the stimuli (CS+B) would no longer lead 
to shock. For the sake of modeling, any change in the value of responding for this devalued stimulus at 
the beginning of the override block is termed ‘instructed devaluation’ (though ‘observed devaluation’ 
would also be appropriate, as participants both observed and were instructed about the change in 
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contingencies, and the model is agnostic as to whether instructions, observed disconnection of shock 
electrodes, or both, caused changes in behavior). This instructed devaluation was represented in the 
model by a change in the expected value of the devalued stimulus to the parameter τ at the beginning 
of each block of new stimuli (when t=1, similar to (Atlas, Doll, Li, Daw, & Phelps, 2016)):  

𝑄[𝑎#(𝐶𝑆−)] = 0 

𝑄[𝑎#(𝐶𝑆 + 𝐴)] = 1	 

𝑄[𝑎#(𝐶𝑆 + 𝐵)] = 𝜏	 

Given the near-ceiling performance for CS- and CS+A during both acquisition and override, the expected 
value of responding for CS- was set at 0 and for CS+A was set at 1 at the beginning of each block. 	 

Model comparison: Additional variants of the model separated learning rates for learning from 
responses vs. nonresponses (αact and αno_act) and represented the value of responding as a free 
parameter ω (instead of 1) to account for individual differences in avoidance. However, model 
simulation revealed that posterior values of the α (learning rate) parameter remained close to the prior, 
suggesting that participants’ behavior was uninformative about the value of α. This effect was similar for 
models using one parameter (α) versus two (αact and αno_act) and suggests that, regardless of whether an 
action was performed or not, little learning was occurring during the override portion. Specifically, the 
large number of trials with stable, deterministic outcomes resulted in small discrepancies between 
actual and expected values (prediction errors), leading to small value updates that could not arbitrate 
among different values of α. Therefore, another model variant was tested with α fixed at its mean (0.5). 
Simulation also showed that parameters β (inverse temperature) and ω (value of responding) were 
collinear, since both affect the relationship between expected value and choices (Huys, Pizzagalli, 
Bogdan, & Dayan, 2013). Only the β parameter was retained in most models, and differences in this 
parameter can therefore be interpreted as differences in choice stochasticity or the value of responding.  

Four models in total were tested on participants’ data from the baseline visit: α+β+τ (3 free parameters); 
αact+αno_act+β+τ (4 free parameters); β+τ+ω (3 parameters); and β+τ (2 parameters). See model 
estimation below for estimation details. Integrated BIC (iBIC; (Huys et al., 2013)) was used to compare 
model fits by averaging each model’s likelihood over the number of samples (marginal posterior 
likelihood) and correcting for the number of parameters. A lower iBIC indicates a better fit. The β+τ+ω 
model did not converge (𝑅=>1.05; likely due to the collinearity noted in simulations) and so is not 
included in comparisons. The other model fits are noted in the table below.  

Model Negative Log Likelihood iBIC 
α+β+τ -2386.881 4802.862 
αact+αno_act+β+τ -2386.707 4812.218 
β+τ -2382.877 4785.155 

Supplementary Table 1. Model fits for variants of habit override model. 

The model with a fixed, single learning rate (β+τ) fit the best (lowest iBIC), suggesting that differences in 
behavior were due to either differences in instructed devaluation (represented by differences in τ) or in 
choice stochasticity or relative valuation of responding (represented by differences in β), and not by 
differences in learning. To understand the relative effects of choice stochasticity and instructed 
devaluation, the best-fitting model was fit to participants’ choices and parameters were analyzed. 
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Model estimation: The best-fitting habit override model was fit using hierarchical Bayesian estimation in 
Stan (Carpenter et al., 2016). Hyperparameters on mean values of parameters were given a normal 
distribution centered at 0 and standard deviations of 1 (τ) or 3 (β). The mean value of β was constrained 
to be greater than 0. Hyperparameters on standard deviations of parameters were given a Student’s t 
distribution with three degrees of freedom and standard deviations of 1 (τ) or 2 (β). Parameter values 
per participant and visit (as applicable) were estimated using non-centered parameterization 
(Betancourt & Girolami, 2015) to improve estimation.  

Comparison to behavioral summaries: Free parameters β and τ were estimated per participant for the 
baseline visit and compared to summaries of accuracy for each parameter (see Supplementary Figure 1 
below). The model-estimated instructed devaluation parameter τ was strongly correlated with override 
performance (overall CS+B accuracy, Spearman correlation = -0.970), meaning that a higher model-
calculated value of responding at the beginning of each override block was negatively related to the 
average number of trials where responding was (correctly) withheld.  

The instructed devaluation parameter was not correlated with inverse temperature or either CS- or 
CS+A accuracy (rs < |0.2|), while inverse temperature was moderately correlated with both CS- (r = 
0.53) and CS+A (r = 0.67) accuracy. Therefore, while the instructed devaluation parameter was 
essentially equivalent to devaluation success and unrelated to performance with other stimuli, the 
inverse temperature parameter was related to performance accuracy on non-devalued stimuli but was 
unrelated to devaluation success. 

In summary, the modeling results show that variations in performance on the habit override task are 
due to a combination of differences in instructed devaluation and random responding (or choice 
stochasticity). The proportion of correctly devalued responses, reported in the main text, was strongly 
related to the model-based measure of instructed devaluation and not to random responding, 
confirming that this statistic measures the ability to re-value stimuli in a model-based manner, and not 
other behavioral effects. Meanwhile, the proportion of correct responses for non-devalued stimuli was 
related to the model-based parameter measuring random responding but not the parameter measuring 
instructed devaluation, supporting that random responding was related to accuracy of responses to 
other stimuli besides the devalued one.  



 4 

 

Supplementary Figure 1: Relationships between model-estimated parameters and summaries of 
behavioral performance on the override task at baseline. Diagonal plots are histogram and density plots 
for each variable, values above the diagonal are Spearman correlations between variables, and plots 
below the diagonal are scatterplots and regression lines for individual data points.  

 

Relationships between symptoms (OCI Total Score) or devaluation success and all measures on two-
step task.  

The main text reports relationships between symptoms or devaluation success and the main behavioral 
measure of interest on the two-step task, model-based planning (reward x transition interaction). 
Supplementary Table 2 below reports all results for these analyses. Model-free learning is represented 
by the main effect of reward and the intercept represents the overall likelihood of staying with the 
previous action (perseveration).  

 
Intercept Reward Transition Type Reward x 

Transition Type  
z p z p z p z p 

OCI Total 
      

  
Main effect 4.134 <.001 2.225 0.0261 0.143 0.8862 1.37 0.172 

Interaction with OCI -1.672 0.095 -0.264 0.792 -0.773 0.440 -0.244 0.807 
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Devaluation task 
success 

      
  

Main effect 2.78 0.005 2.16 0.031 -0.780 0.436 0.060 0.952 
Interaction with 

devaluation success 
2.00 0.046 1.63 0.104 -0.301 0.763 2.85 0.004 

Supplementary Table 2: All relationships on the two-step task with symptoms and devaluation success.  

 

Relationships between other symptom measures and behavior. 

The main text results report on total OCI score as a measure of compulsive symptom severity. As an 
alternate measure of severity that encompassed different presentations of compulsive behavior, the 
total number of self-report measures of compulsivity (OCI subscales, MGH Hairpulling Scale, Skin Picking 
Scale, and Threat-Related Reassurance Seeking scale) that each participant scored more than 1 SD above 
the mean on. Using this measure showed similar patterns as the total OCI score: significantly higher 
scores for those with unsuccessful devaluation (t52 = 2.35, p=0.02) and no relationship with model-based 
planning (z = -0.799, p > 0.1).   

To examine if specific compulsive symptoms may relate more to behavioral alterations than others, we 
assessed relationships between OCI subscores and other measures of compulsive behaviors (OCI 
Washing, Ordering, Checking, Thought Neutralizing; MGH Hairpulling Scale, Skin Picking Scale, and 
Threat Related Reassurance Scale) and devaluation success. The strongest effect was with the Washing 
OCI subscale (t52 = 2.70, p=.009). This relationship did not hold when covarying for other OCI subscales 
(significance of beta value predicting devaluation success from logistic regression: z = -1.47), suggesting 
that behavioral impairments were more strongly related, but not specific, to this subscale.  
 

Relationship between model-based planning and devaluation success by visit and group. 

As reported in the main text, participants with lower model-based planning showed better devaluation 
success after active cTBS (reward*transition type*devaluation success*active TBS type: z = 2.68, p = 
0.007). To understand the direction of results in this interaction, the relationship between model-based 
planning and devaluation success (reward*transition type*devaluation success) was investigated 
separately by visit and group, and then the change in the relationship between model-based planning 
and devaluation success with active vs. sham TBS (reward*transition type*devaluation success*active 
TBS) was assessed separately by group (see Supplementary Table 2 for results for each model). Briefly, 
these results showed that the relationship between model-based planning and devaluation success 
decreased with active TBS for the cTBS group and, to a lesser extent, increased with active TBS for the 
iTBS group. The model specification used here (where model-based planning is measured via trial-level 
interactions of reward and transition type on stay behavior) does not allow for running separate models 
by level of model-based planning, but further investigation of individual random effect coefficients, as 
plotted in Figure 4C, confirmed that the reduction in the relationship between model-based planning 
and devaluation success was driven by lower model-based planning in participants showing successful 
devaluation after active cTBS.  
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Reward*transition type*devaluation success 
Group Visit Coefficient SE z 
cTBS Baseline 0.240 0.143 1.68 
cTBS Active -0.039 0.180 -0.217 
iTBS Baseline 0.136 0.131 1.04 
iTBS Active 0.423 0.161 2.62 

Reward*transition type*devaluation success*active TBS 
Group Coefficient SE z 
cTBS -0.360 0.179 -2.02 
iTBS 0.288 0.185 1.56 

Supplementary Table 3. Relationship between model-based planning and devaluation success by visit 
and group.  
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