
Bayesian statistical inference for the hierarchical
Ornstein-Uhlenbeck model: An online supplement to “A

hierarchical latent stochastic differential equation model for
affective dynamics”

Zita Oravecz, Francis Tuerlinckx, & Joachim Vandekerckhove
Department of Psychology

Department of Psychology

University of Leuven, Belgium

The hierarchical Ornstein-Uhlenbeck model

Modeling the affect dynamics of a single individual: The OU model with mea-

surement error

The true or latent position in a two-dimensional latent space at time t will be denoted by the vector

Θ(t) defined as: Θ(t) = (Θ1(t), Θ2(t))T and the superscript T indicates the transpose operation.

In the core affect application, Θ1(t) refers to the position on the first dimension (pleasantness)

and Θ2(t) to the position on the second dimension (arousal). (We will define the model for two

dimensions here and we refer specifically to core affect, but generalizations to more dimensions and

other application areas are possible.) In the model formulation, it is assumed that the true core

affect changes continuously throughout time, but the measurements are taken at a finite number

of time points: t1, t2, . . . , ts, . . . , tn, where n stands for the number of measurements. We define the

vector Y (ts) = (Y1(ts), Y2(ts))T as the observed pleasantness and arousal scores at time point ts.

The general model can then be written as follows:



dΘ(t) = B
(
µ−Θ(t)

)
dt + σdW (t)

Y (ts) = Θ(ts) + ε(ts),
(1)

where µ is a vector with two components, σ and B are positive definite 2× 2 matrices. The mea-

surement error is represented by ε(ts), which is a random draw from a bivariate normal distribution
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with mean (0, 0)
T

and covariance matrix Σε. The component W (t) stands for the standard Wiener

process.

Let us first reparametrize the model such that Σ is replaced by Γ, which has the following

relation to Σ (see Gardiner, 2004):

Σ = BΓ + ΓBT.

The matrix Γ is called the stationary covariance matrix. By integrating over the transition equation

(Eq. 1, first line), we arrive at the conditional distribution of the two-dimensional OU process (see

Appendix B of the paper for a derivation):

Θ(t)|Θ(t− d) ∼ N2

(
µ + e−Bd

(
Θ(t− d)− µ

)
, Γ− e−BdΓe−BTd

)
, (2)

where N2 refers to the bivariate normal distribution. As in the unidimensional case, the two-

dimensional process converges to a stationary distribution:

Θ(t) ∼ N2(µ,Γ), (3)

provided that all eigenvalues of B are positive.

The hierarchical OU model

The hierarchical extension requires the specification of population distributions. To proceed with

the model description, assumptions about these distributions will be introduced now.

The hierarchical formulation of the OU model is based on the previously presented equations,

but some new notation has to be introduced. A specific person p (p = 1, ..., P ) is measured np

times at the following sequence of time points: tp1, tp2, . . . , tps, . . . , tp,np . The index s denotes the

sth measurement occasion of that individual. For notational convenience, we will use p and s as the

only indicies when denoting parameters or data which are related to the specific observation at tps.

The model for a single person p for whom the observed data are a function of an underlying

OU process and some measurement error can now be written as follows:

Y ps = Θps + εps (4)

where Y ps stands for the observed random vector, Θps for the latent state (or true score) and εps

for the measurement error. The conditional distribution of Θps given Θp,s−1 is normally distributed

as follows (for s > 1):

Θps|Θp,s−1 ∼ N2

(
µps + e−Bp(tps−tp,s−1)(Θp,s−1 − µps),Γp − e−Bp(tps−tp,s−1)Γpe

−BT
p (tps−tp,s−1)

)
. (5)



HIERARCHICAL LATENT SDE MODEL 3

For the first observation, Θp1, it is assumed that Θp1 ∼ N2(µps,Γp).

The regression of µps onto the two types of covariates and allowing for a person-specific

random deviation is defined as follows:

µps = ∆µzps + Aµxp + Epµ, (6)

with Epµ ∼ N2 (0,Σµ). The matrices ∆µ and Aµ are parameter matrices of dimension 2×m and

2 × (k + 1), respectively, containing the regression weights for the covariates. Furthermore, the

covariance matrix Σµ is defined as follows:

Σµ =

(
σ2

µ1
σµ1µ2

σµ1µ2 σ2
µ2

)
(7)

For implementation purposes, it is helpful to use another formulation:

µps =
(
I2 ⊗ zps

)
δ + Aµxp + Epµ, (8)

with ⊗ denoting the Kronecker product. Vector δ = vec(∆µ) is a (2m) × 1 vector of regression

coefficients (the coefficient vectors of each dimension are stacked on top of each other).

As explained in the paper, also the other person-specific OU parameters (γ1p, γ2p, ργp , β1p,

β2p and ρβp) can be made functions of time-invariant covariates. The population distribution for the

other parameters is unidimensional. As an example, the population distribution for γ1p is defined

as

γ1p ∼ LN(xT
pαγ1 , σ

2
γ1

),

where the density function is:

f(γ1p) =
1

γ1p

√
2πσ2

γ1

e
− 1

2

(log(γ1p)−xT
p αγ1 )2

σ2
γ1 . (9)

The same properties are valid for γ2p, β1p and β2p.

In the case of the standardized off-diagonal elements (ργp and ρβp), it is assumed that their

Fisher-z transformed values F (ργp) = 1
2 log 1+ργp

1−ργp
and F (ρβp) = 1

2 log
1+ρβp

1−ρβp
are drawn from a normal

population distribution, the mean of which mean depends on covariates. As an example, let us

consider ργp (ρβp follows the same reasoning):

F (ργp) ∼ N(xT
pαργ , σ2

ργ
).
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The density of the original ργp then equals (applying the transformation of variables technique, see

e.g. Mood, Graybill, & Boes, 1974):

f(ργp) =
∣∣∣∣
dF (ργp)

dργp

∣∣∣∣φ(F (ργp);x
T
pαργ , σ2

ργ
)

=
1

(1− ργp)(1 + ργp)
1√

2πσ2
ργ

× exp

(
− 1

2

(
1
2 log

(1+ργp

1−ργp

)− xT
pαργ

)2

σ2
ργ

)
, (10)

where F (·) is the Fisher-z transform and φ(x; µ, σ2) is the normal density evaluated at x with mean

µ and variance σ2. Again, αργ contains k + 1 regression coefficients.

Having completed the description of the model, we will summarize in the next section how

the statistical inference is carried out.

Bayesian inference in the OU model

As explained in the paper, we opt for the Gibbs sampler whereby, in each iteration, a new value of

each parameter is sampled, based on the full conditional distribution of the parameter in question

(i.e., the probability distribution of the parameter, given the values of all other parameters as

obtained in the previous iteration, as well as the data). The full conditional of all parameters have

to be derived. If such a full conditional is a known distribution, then drawing a random sample

from it is straightforward. If the full conditional does not correspond to a known distributional

form, however, we will implement a Metropolis-Hastings (M-H) step (Gelman, Carlin, Stern, &

Rubin, 2004, p. 291) in the Gibbs sampling structure.

As a first general step for describing the inference, we give the contribution of one person to

the likelihood:

Lp = L(µp,Bp,Γp,Σε, {Θps}np

s=1 | {Y ps}np

s=1)

= f({Y ps}np

s=1 | {Θps}np

s=1,Σε, µp, δ,Bp,Γp),

where {Yps}np

s=1 and {Θps}np

s=1 stand for the indexed lists {Yp1,Yp2,. . .,Yp,np} and

{Θp1,Θp2,. . .,Θp,np}, respectively. Instead of presenting the posterior distribution hereby,

we immediately go on with describing the full conditionals of each parameter. Note that we will

represent µp in these derivations as the person-specific home base (i.e., the random intercept) with

a mean possibly different from zero.
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The full conditional of the latent state Θps

We use a single move sampler (as opposed to a multimove sampler) to draw each latent state value

separately (Carter & Kohn, 1994). We choose a normal distribution as a prior for Θps:

Θps ∼ N2(Θ0,ΦΘ).

To achieve a relatively uninformative prior, we set the mean Θ0 to 0 and choose a high variance

(ΦΘ = 1000× I2). If we combine its normal likelihood with this normal prior, the full conditional

also has normal distribution.

For convenience, we introduce some new notations, which will stand for time differences.

With dp,s+1, we denote the time difference between tp,s+1 and tp,s. Also dp,s stands for the time

difference between tp,s and tp,s−1. Finally dp,np equals tp,np − tp,np−1.

The values of the latent state Θps are drawn sequentially. Since for the first point the

likelihood is a bit more simple (it is estimated with the stationary distribution), the full conditional

of the first observation (s = 1) is different from the rest:

(Θp1 | µp1,Γp,Σε, Y p1) ∼ N2(MΘp1 , V Θp1),

with covariance matrix

V Θp1 = (Φ−1
Θ + Σ−1

ε + Γ−1
p )−1

and mean

MΘp1 = V Θ1(Φ
−1
Θ Θ0 + Σ−1

ε Y p1 + Γ−1
p µp1).

As we can see, the full conditional of Θp1 only depends on µp1, Γp, Σε and Y p1. On the

other hand, for s > 1, Θps is conditional on the previous latent state value (Θp,s−1), the next latent

state value (Θp,s+1), some of the model parameters (µp, δ, Bp, Γp and Σε), the corresponding data

point (Y ps) and the time-varying covariate information (zps) :

(Θps | µps,Bp,Γp,Σε, Y ps,Θp,s−1,Θp,s+1) ∼ N2(MΘps , V Θps),

since

V Θps = (Φ−1
Θ + Σ−1

ε + V −1
ps + (e−Bpdp,s+1)TV −1

p,s+1(e
−Bpdp,s+1))−1
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and

MΘps = V Θps(Φ
−1
Θ Θ0 + Σ−1

εp
Y ps + V −1

ps µps

+V −1
ps e−BpdpsΘp,s−1 − V −1

ps e−Bpdpsµps

+(e−Bpdp,s+1)TV −1
p,s+1Θp,s+1

−(e−Bpdp,s+1)TV −1
p,s+1µp,s+1

+(e−Bpdp,s+1)TV −1
p,s+1e

−Bpdp,s+1µp,s+1),

where V ps is defined as:

V ps =

{
Γp if s = 1

Γp − e−Bp(tps−tp,s−1)Γpe
−BT

p (tps−tp,s−1) if s > 1.
(11)

. The definition of V p,s+1 is analogue (with the appropriate changes of indices).

Naturally, the likelihood of the last point Θp,np can not depend on the next observation point

Θp,s+1, therefore its posterior has a simpler form:

(Θp,np | µps,Bp,Γp,Σε, Y p,np) ∼ N2(MΘp,np
, V Θp,np

),

with covariance matrix

V Θp,np
= (Φ−1

Θ + Σ−1
ε + V −1

p,np
)−1

and mean

MΘp,np
= V Θp,np

(Φ−1
Θ Θ0 + Σ−1

εp
Y p,np + V −1

p,np
µp,np

+V −1
p,np

e−Bpdp,npΘp,np−1 − V −1
p,np

e−Bpdp,np µp,np
).

The full conditional of the person-specific parameters

In the case of the two-dimensional parameter µp, its bivariate normal prior) combined with its

bivariate normal likelihood results in a bivariate normal full conditional density:

(µp | {Θps}np

s=1,Bp,Γp, δ, αµ,Σµ) ∼ N2(Ωp,Φp).
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where

Φp =
(
Σ−1

µ + Γ−1
p +

np∑

s=2

V −1
ps −

np∑

s=2

V −1
ps e−Bpdps

−
np∑

s=2

(e−Bpdps)TV −1
ps +

np∑

s=2

(e−Bpdps)TV −1
ps e−Bpdps

)−1

Ωp = Φp

(
Σ−1

µ zT
pαµ − Γ−1

p F p1δ + Γ−1
p Θp1 +

np∑

s=2

V −1
ps Θps

−
np∑

s=2

V −1
ps e−BpdpsΘp,s−1 −

np∑

s=2

(e−Bpdps)TV −1
ps Θps

+
np∑

s=2

(e−Bdps)TV −1
ps e−BdpsΘp,s−1 −

np∑

s=2

V −1
ps F psδ

+
np∑

s=2

(e−Bpdps)TV −1
ps F psδ

)
, (12)

and we define F ps = I2 ⊗ zps − e−BpdpsI2 ⊗ zps, and F p1 = I2 ⊗ zp1.

The conditional distributions for the unidimensional person-specific parameters do not have

a known form. Therefore for these parameters we give the product of the likelihood and the prior,

which is proportional to the full conditional. The prior distributional assumptions for these param-

eters are represented by their population densities, which have been specified in Equations 9 and

10. In the derivation of the conditionals, we have to distinguish between two groups of parameters.

In the case of γ1p, γ2p and ργp, the first observation of the chain must be taken into account, while

for β1p, β2p and ρβp it does not. As a result, their likelihoods differ slightly. Within these two

groups, however, the likelihoods are identical. In the first group, we multiply over all observations:

f(γ1p | {Θps}np

s=1, µp, γ2p, ργp,Bp)

∝ f(γ1p)
np∏

s=1

|V ps|−
1
2 e−

1
2

(
MT

psV −1
ps Mps

)
, (13)

where Mps is defined as:

Mps =

{
µps if s = 1

µps + e−Bp(tps−tp,s−1)(Θp,s−1 − µps) if s > 1
(14)

and V ps are defined as in Equation 11. The same derivation can be done easily for γ2p and ργ as

well.
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For the second group, we start multiplying from the second observation (s = 2) onward:

f(β1p | {Θps}np

s=1, µp,Γp, β2p, ρβp)

∝ f(β1p)
np∏

s=2

|V ps|−
1
2 e−

1
2

(
MT

psV −1
ps Mps

)
. (15)

The full conditional of the regression terms

First, we start with the regression coefficients of the time-varying covariates, which have a rather

special design: the coefficients of the two dimensions are stacked below each other in a vector δ, as

defined in Equation 8. As prior for δ, we choose a multivariate normal distribution:

δ ∼ N2E(Mδ0 ,V δ0).

To achieve a relatively uninformative prior, we set Mδ0 to 0 and we choose a high variance

(V δ0 = 1000× I2E). By combining the normal prior with the normal likelihood, we can derive the

conditional distribution of δ, which is a multivariate normal distribution:

(δ | {Θps}np

s=1,Bp,Γp, Mδ0 ,V δ0) ∼ N2E(Mδ, V δ).

with the following parameters:

V δ =


V −1

δ0
+

P∑

p=1

F T
p1Γ

−1
p F p1 +

P∑

p=1

np∑

s=2

F T
psV

−1
ps F ps



−1

Mδ = V δ

(
V −1

δ0
Mδ0 +

P∑

p=1

F T
1Γ

−1
p Θp1 −

P∑

p=1

F T
1Γ

−1
p µp

+
P∑

p=1

np∑

s=2

F T
psV

−1
ps Θps −

P∑

p=1

np∑

s=2

F T
psV

−1
ps µp

−
P∑

p=1

np∑

s=2

F T
psV

−1
ps e−BpdpsΘp,s−1 +

P∑

p=1

np∑

s=2

F T
psV

−1
ps e−Bpdpsµp

)
,

where F ps and F p1 are defined as for Equation 12.

Second, we deal with regression coefficients of the the time-invariant predictors. They can

appear in all population distributions of the person-specific OU parameters, thereby allowing every

dynamic model parameter to be turned into a random effect. Let us first specify the priors. A

uniform distribution is used as a prior for the regression coefficients

f(αh) ∝ 1,
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where h can be equal to µ1, µ2, γ1, γ2, ργ , β1, β2 or ρβ. For the residual variance parameters, we

choose a uniform prior on log σg such that:

f(σ2
h) ∝ σ−2

h ,

where h again equals one of the unidimensional parameters γ1,γ2, ργ , β1, β2 or ρβ. For the two-

dimensional µ, a prior has to be set on its covariance matrix Σµ, which can be specified as:

f(Σµ) ∝| Σµ |−3/2,

which is the bivariate Jeffreys prior. All these priors can be considered non-informative.

For deriving the full conditional distributions of the regression terms for the person-specific

parameters, we again separate µ from the unidimensional parameters (γ1, γ2, ργ , β1, β2 and ρβ).

The distributional forms for the regression terms of the latter ones are identical. Here we give the

example of the full conditionals of αγ1 and σ2
γ1

(but γ1 could be substituted by γ2, ργ , β1, β2 or ρβ

as well):

f(αγ1 | γ11, . . . , γ1P , σ2
γ1

) ∝ exp
(
− 1

2
(αγ1 −Xα̂γ1)

T V −1
g (αγ1 −Xα̂γ1)

)
, (16)

where X is a P × (k + 1) matrix defined by stacking the person-specific covariate vectors xT
p

underneath each other. If we denote g = (log(γ11), . . . , log(γ1P ))T such that α̂γ1 = (XTX)−1XTg

and V g = σ2
γ1

(XTX)−1, it can be seen that the full conditional of αγ1 is a normal density with

mean Xα̂γ1 and covariance matrix V g.

The full conditional for σ2
γ1

, the residual variance of αγ1 , has the following form:

f(σ2
γ1
| γ11, . . . , γ1P ) ∝ (σ2

γ1
)−

(
P−k−1

2
+1

)
e
− (P−k−1)s2

2σ2
γ1 ,

with

s2 =
1

P − k − 1
(g −Xα̂γ1)

T(g −Xα̂γ1),

which corresponds to a scaled inverse-χ2 distribution with scale s2 and degrees of freedom P −k−1

(see e.g. Gelman et al., 2004, Appendix A); and where g, X, and α̂γ1 are defined in the same way

as in Equation 16.

The full conditional of αµ and its covariance matrix Σµ are also known densities. Their

derivation involves a bivariate regression problem. Here we just give the solution for the parameters

in question (for a general step-by-step treatment of the problem, see Zellner, 1971). First, the data
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have to be rearranged. We define the matrix M as the P × 2 matrix of individual home base

intercepts, that is M = (µ1, . . . ,µP )T. Then the least squares regression coefficient matrix (of the

regression of M on X, where the latter is defined in Equation 16), equals Âµ = (XTX)−1XTM .

Stacking columns of Âµ below each other results in α̂µ = (Â
T

µ1
, Â

T

µ2
)T. In the same vein, let us

also define ~αµ = (αT
µ1

, αT
µ2

)T and S = (M −XÂµ)T(M −XÂµ). The full conditional of Σµ then

equals

f(Σµ | µ1, . . . ,µP ) ∝ |Σµ|−v/2 e−
1
2
tr(Σ−1

µ S),

where v = P − k + 2, and tr(·) denotes the trace operator. This density corresponds to an inverse-

Wishart distribution with P − k + 2 degrees of freedom and scale S. In the estimation algorithm,

Σµ has to be sampled first, and based on its value the matrix αµ can be sampled from the following

conditional density

f(αµ | Σµ,µp, x) ∝ e−
1
2
(~αµ−α̂µ)T(Σ−1

µ ⊗xpxT
p )(~αµ−α̂µ),

which is a bivariate normal density with mean α̂µ and covariance matrix Σµ ⊗ (xpx
T
p )−1.

The full conditional of Σε

The covariance matrix of the measurement error is constrained to be a diagonal matrix:

Σε =

[
σ2

1ε 0

0 σ2
2ε

]
.

We will sample σ2
1ε and σ2

2ε in identical ways. First, we assume prior independence for σ2
1ε and σ2

2ε,

and we demonstrate the inference with σ2
1ε. As a prior, we take a scaled inverse-χ2 distribution:

σ2
1ε ∼ inv-χ2(ν0, s

2
0).

If we combine this with the likelihood of σ2
1ε, which is univariate normal, the result is another scaled

inverse-χ2 distribution:

(σ2
1ε | {Y (t1s)}n1

s=1, . . . , {Y (tPs)}, {Θ(t1s)}n1
s=1, . . . , {Θ(tPs)})

∼ inv-χ2(νσ2
1ε

, sσ2
1ε

),

with parameters

νσ2
1ε

= ν0 +
P∑

p=1

np
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and

sσ2
1ε

= (ν0s
2
0 + s2)/νσ2

1ε
,

where

s2 =
P∑

p=1

np∑

s=1

(
yps1 − θps1

)2.

Sampling specifications

As has been discussed above, we use the Gibbs sampler for sampling from the full conditionals

with a known form, which is the case for most of the parameters. Only for γ1p, γ2p, ργp , β1p,

β2p and ρβp (the elements of Γp and Bp), we need to implement a Metropolis-Hastings step. For

this purpose, reasonable candidate generating distributions have to be assigned. With regard to

the two matrices Γp and Bp, there is also a constraint which has to be met. According to the

theory of the OU process, the matrix product BpΓp + ΓpBT
p has to be positive definite, since it

represents the instantaneous covariance matrix (see e.g., Dunn & Gipson, 1977). Implementing such

a restriction is a complex task, so most of the applications on the OU process have opted for an

isotropic constraint on Bp with positive diagonal elements (Blackwell, 1997; Oravecz, Tuerlinckx, &

Vandekerckhove, 2009), in which case the aforementioned criterion is always automatically fulfilled.

However, our present model incorporates a more general representation of Bp. Accordingly, a

technique is needed to preserve the positive definiteness of the matrix product BpΓp + ΓpBT
p .

Our method is the following. First of all, Bp and Γp matrices are decomposed into subelements,

as has been shown in the paper. The idea is to sample each of the subelements (γ1p, γ2p, ργp ,

β1p, β2p and ρβp) subsequently in Metropolis-Hastings steps in such a way that their candidate

generating distributions are constrained as a function of the previously accepted values of the

other five subelements. We infer the form of the function by constraining the determinant of the

result of the matrix-product BpΓp + ΓpBT
p to be always positive (this is a sufficient condition

for positive-definiteness in the two-dimensional case with positive diagonal elements, based on

Sylvester’s criterion). First BpΓp + ΓpBT
p has to be solved based on the decomposed elements.

This way the resulting 2-by-2 matrix consists of four elements which are sums and products of the

six subelements in Bp and Γp. Second, we calculate the determinant of this form and constrain it

to be larger than 0, which results in a fourth order polynomial. Finally, solving this polynomial

for the six different subelements gives us its roots. We can sufficiently constrain the candidate

generating distributions based on these values. In practice, truncated normal distributions were
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implemented with the previously accepted value as a mean and with a variance which ensured a

reasonable acceptance ratio (around 0.44, see Gelman et al., 2004, p. 306).

A software program to sample from the joint posterior was written in MATLAB. Since the

process is computationally demanding, some subroutines of the code have been written in C++,

which then can be called from MATLAB in a straightforward way. Consequently, the computation

time is reduced. To demonstrate the program, we present a simulation in the next section.

Simulation

To demonstrate the algorithm, we performed two simulation studies. In each study, we simulated

ten datasets with 100 subjects and 100 observations per subject, according to the presented model

assumptions. To imitate the properties of a dataset the model is most likely to be used for, we

assumed that the data came from consecutive measurement during ten days, ten measurements per

day at random intervals. The observation time points are arranged according to this design, and

are calculated in minutes. As time-varying covariate information, we use the measurement times

and their squared value in hours, this way accounting for linear and quadratic time-effects (δLµ1 ,

δQµ1 , δLµ2 , δQµ2) in the home base.

The presented model was fitted to the simulated datasets by using the aforementioned MAT-

LAB routine. For each parameter, three chains were run with different starting values to explore

the full conditional densities. The different starting values are used to test whether the algorithm

does not get stuck in a local maximum. The results are based on 30000 draws from each full

conditional (10000 iterations per chain). These iterations were preceded by a discarded burn-in

period (5000 iterations in each chain), avoiding the incorrect starting values to influence the final

estimates. No matter what starting values are set, the chains have to converge around the same

value. Convergence can be checked visually and mathematically as well. The mathematical way

to check convergence is to calculate the R̂ value (Gelman et al., 2004), which expresses the ratio

of the between- and within chain variances. In the literature on Bayesian statistics, the chains are

considered to have converged if the R̂ value is below 1.1. We used the visual and the mathematical

criteria as well to asses the convergence of the simulated chains, and we experienced no problems

with it in the current analyses.

The computation time per chain was about 4 hours on a computing node with an AMD

Opteron250 processor and 2Gb of RAM. Tables 1 and 2 summarize the most important results

for the two simulation studies. In the first simulation study, we choose most of the parameters
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in correspondence with a real life application, except for the measurement error of the second

dimension (σ2
2ε), which was increased. In the second study, we increased the measurement error

even further, and we slightly altered the other parameters as well. The main difference between

the two studies is in the magnitude of the supposed measurement error (σ2
1ε and σ2

2ε): the second

simulation setting corresponds to a rather noisy dataset. In each table, the first column contains

the notation of the selected variables of interest. The second column shows their true values as

simulated. The third column is the averaged recovered posterior mean: the average of the posterior

means over the simulation studies. The fourth column is the standard deviation of these posterior

means.

The recovery in the first simulation study (Table 1) can be considered sufficient. However,

there were minor issues in the second study (Table 2), where the parameter settings corresponded

to a noisy dataset. As we can see, the algorithm does especially well at estimating the home bases

and the related time-varying coefficients. With regard to the more problematic parameters, the

estimate of αγ1 seems somewhat biased in the second simulation. The value itself overestimates the

true (simulated) value, and its variance σ2
γ1

is lower than expected. However, we have to remark

on the fact that the second simulation study has rather a extreme setting on this parameter, in

terms of comparing the level of this so-called stochastic variability to the level of the measurement

error variance. The expected stochastic variance in the first dimension (based on the mean (αγ1)

and the variance (σ2
γ1

) of the lognormal distribution for γ1) is around 3.5, which is lower than the

variance of the noise (σ2
1ε = 4.00). Such a ratio might make it very difficult to correctly estimate

these two parameters, as some trade-offs are likely. Clearly, the estimation procedure can still be

improved in that respect. However, based on experience, we do not typically expect a very high

level of measurement noise in substantive applications. In the second dimension, where the ratio

of the measurement error (σ2
2ε) and the stochastic variability (αγ2) favors the latter, the estimation

algorithm is more accurate.
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Table 1:: Summary of the results of simulation study 1.

Model Simulated Mean posterior SD of the posterior

Parameter value estimate estimates

αµ1 6.00 5.99 0.04

αµ2 5.00 4.97 0.07

σµ1 0.40 0.42 0.07

σµ1µ2 0.05 0.04 0.04

σµ2 0.30 0.27 0.05

δLµ1 1.00 1.00 0.12

δQµ1 0.00 −0.01 0.12

δLµ2 4.00 3.96 0.12

δQµ2 −4.00 −4.00 0.14

αγ1 0.80 0.77 0.07

σ2
γ1

0.40 0.38 0.04

αγ2 1.00 1.01 0.10

σ2
γ2

0.20 0.20 0.03

αγρ 0.01 0.09 0.03

σ2
γρ

0.10 0.08 0.01

αβ1 −4.20 −4.21 0.04

σ2
β1

0.40 0.39 0.10

αβ2 −4.00 −3.93 0.09

σ2
β2

0.50 0.49 0.18

αβρ −0.10 −0.11 0.03

σ2
βρ

0.10 0.08 0.02

σ2
1ε 0.20 0.21 0.04

σ2
2ε 1.00 0.88 0.13
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Table 2:: Summary of the results of simulation study 2, with a higher level of measurement error

Model Simulated Mean posterior SD of the posterior

Parameter value estimate estimates

αµ1 0.00 −0.04 0.12

αµ2 0.00 −0.01 0.14

σµ1 2.00 2.14 0.32

σµ1µ2 0.70 0.71 0.23

σµ2 1.00 0.93 0.17

δLµ1 2.00 1.86 0.22

δQµ1 0.00 0.10 0.22

δLµ2 0.00 −0.01 0.26

δQµ2 4.00 3.99 0.26

αγ1 1.00 1.32 0.11

σ2
γ1

0.50 0.28 0.05

αγ2 2.00 1.95 0.10

σ2
γ2

0.10 0.10 0.02

αγρ 0.50 0.41 0.05

σ2
γρ

0.10 0.05 0.01

αβ1 −4.00 −3.75 0.24

σ2
β1

0.50 0.40 0.26

αβ2 −3.50 −3.44 0.20

σ2
β2

0.10 0.18 0.13

αβρ 0.50 0.38 0.07

σ2
βρ

0.10 0.06 0.03

σ2
1ε 4.00 3.20 0.24

σ2
2ε 2.00 2.13 0.73
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