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Hurlstone and Hitch (2017) used computational simulations to compare the transpo-
sition error latency predictions of five different models of serial order. This integral
supplementary document reports detailed information about the generic network ar-
chitecture used for the simulations; how the different representational principles and
models were implemented; and the model fitting and evaluation procedures. This
document is not meant as a stand-alone paper (the sections contained herein are ef-
fectively appendices to the main article)—please refer to Hurlstone and Hitch (2017)
for further explanation.

Formal Description of the Generic Network
Architecture Used to Model Transposition

Latencies

Following Farrell and Lewandowsky (Farrell &
Lewandowsky, 2004; Lewandowsky & Farrell, 2008)
and our own earlier modeling (Hurlstone & Hitch,
2015), we did not utilize a fully implemented compet-
itive queuing architecture for our simulations, but in-
stead employed a single layer lateral inhibition network
corresponding to the competitive choice layer in com-
petitive queuing models. For each of the representa-
tional principles being modeled, we specified the pro-
file of activations that would be expected initially at
each output position in the parallel planning layer, be-
fore feeding that pattern of activations into the lateral
inhibition network in order to generate an unambigu-
ous response and an associated recall latency. Thus, we
did not simulate the process of encoding serial order,
since the selection mechanism is insensitive to the ex-
act mechanisms generating the initial activations used
to drive recall.

A Common Lateral Inhibition Response Selection
Network

A schematic of the response selection network em-
ployed for the simulations is illustrated in Figure 1. It
consists of a single competitive layer of localist item
nodes corresponding to the pool of response elements

from which sequences can be generated. Each node has
a recurrent self-excitatory connection, plus lateral in-
hibitory connections to all other nodes. The excitatory
and inhibitory weights are a hardwired property of the
network and were set to constant values of 1.1 and -
0.1, respectively. This network acts as a “competitive
filter” that selects a single response from amongst a set
of parallel activated representations. As noted earlier,
retrieval involves first establishing starting activation
values for the item nodes based on the representational
principles being modeled (see later). The activations are
then iteratively passed through the weights until only
one node remains active above a response threshold.
The netinput net j a node j receives from within the net-
work is determined by the following equation:

net j(t) = a j(t − 1)α + β
∑
i, j

ai(t − 1) + ε(0, σ), (1)

Where a j is the activation of node j, ai is the activa-
tion of all other nodes in the layer, α and β represent the
excitatory and lateral inhibitory weight values, respec-
tively, and t corresponds to time. To model transposi-
tion errors, the node activations are supplemented with
zero-mean Gaussian noise ε with standard deviation σ
(σ = .04 for all simulations).

The first term on the right hand side of equation 1
represents the recurrent self excitation, whereas the sec-
ond term represents the lateral inhibition received from

1



2 HURLSTONE & HITCH

Excitatory

Inhibitory

Output Threshold

A
c
ti
v
a
ti
o
n

Figure 1. A schematic of the lateral inhibition neural network architecture employed for the simulations. The
network is modeled on the competitive choice layer employed in competitive queuing models of serial behavior
(Bullock, 2004; Rhodes & Bullock, 2003). Each localist item node possesses a single recurrent excitatory con-
nection as well as lateral inhibitory connections to all other item nodes. Nodes are fully interconnected, but only
adjacent-neighbor inhibitory connections are shown to prevent visual cluttering. Note—the number of nodes in the
network is dependent on the sequence length being modeled.

all other nodes in the layer. This sets up a winner-takes-
all response competition over the item nodes, and the
initially most active node has the advantage that it will
send more activation to itself than any other node, and
will also receive the least lateral inhibition. Equation 1
is iteratively applied by passing the activation pattern
at time t-1 through the weights to determine the acti-
vation pattern at time t. Thus, after a starting activa-
tion pattern has been established over the item nodes
the competitive dynamics of the network will result in a
gradual increase in the activation of the strongest node,
and a gradual decrease in the activations of the weaker
nodes as they receive more lateral inhibition. The iter-
ations stop when the strongest node exceeds a response
threshold T (T = 1.0 for all simulations) and the number
of iterations required to determine the response is taken
as the network’s recall latency.

In order to bring the predicted recall times of the net-
work within the range of the observed latencies in the
experiments they were multiplied by a scaling factor S
(0 < S ≤ 200; where S = 50 for the initial simulations—
1 iterative cycle = 50 ms).

Implementation of Representational Principles

The representational principles were implemented
through different settings of the starting activations at
each output position, which were computed as follows:

Position marking. Position marking was imple-
mented by specifying activations for item nodes that
reflected the distances between item positions. Specifi-
cally, the activation a of the item node j at output po-
sition p was strongest, whilst the activations of item
nodes from neighboring serial positions decreased as an
accelerating function of their distance from the target
item:

a j = Ωθ(| j−p|), (2)

Where θ is a parameter controlling the distinctive-
ness of the position marking activations (0 < θ ≤ 1; θ
= .65 for the initial simulations) and Ω is a weighting
parameter that determines the distance of each item’s
initial activation from the response threshold (0 < Ω ≤

1; Ω = 1 for the initial simulations). For each output
position, the activations generated by θ were rescaled to
sum to 1—calculated by dividing each node’s activation
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by the sum of the activations of all nodes—before they
were multiplied by Ω. This representational scheme
produces gradients of activations akin to those gener-
ated by the positional context signals in the Burgess and
Hitch (1999) and OSCAR (Brown et al., 2000) models.
Figure 2A shows example starting activations for posi-
tion marking for the fourth output position in a six-item
sequence.

Primacy gradient. The primacy gradient was im-
plemented as a decrease in activations across input po-
sitions. The activation of each node was determined by:

a j = φρ( j−1), (3)

Where φ is the activation of the item node corre-
sponding to the first input position (0 < φ ≤ 1; φ = .6 for
the initial simulations) and ρ is a parameter controlling
the steepness of the primacy gradient (0 < ρ ≤ 1; ρ =

.85 for the initial simulations). Retrieval commenced
by imposing the entire primacy gradient over the item
nodes at the first output position and allowing activa-
tion to accumulate towards a response. This process
was then repeated for each subsequent output position
by imposing the same primacy gradient over the item
nodes but with suppression (see below) of those nodes
corresponding to previously recalled items. Example
starting activations for a primacy gradient for the first
output position are shown in Figure 2B.

Primacy gradient + position marking. In line
with the seriating mechanisms instantiated in several
theories of serial recall (Burgess & Hitch, 1999; Brown
et al., 2000; Lewandowsky & Farrell, 2008), in some
simulations serial order was represented through the
combination of a primacy gradient and position mark-
ing by calculating starting activations as follows:

a j = (1 − ω) φ ρ( j−1) + ωΩ θ(| j−p|), (4)

Equation 4 integrates equations 2 and 3 above and
incorporates an additional weighting parameter ω (0 <
ω ≤ 1; ω = .5 for the initial simulations) that governs the
relative importance of the two representations of serial
order. When ω = .5 the two representations of order are
weighted equally. However, when ω < .5 more weight
is given to the primacy gradient representation of or-
der; conversely, when ω > .5 more weight is given to
the positional representation of order. Figure 2C shows
example starting activations for the combination of a

primacy gradient and position marking for the fourth
output position.

Response suppression. Response suppression was
implemented by reducing an item’s activation once it
had been recalled. For each output position, starting ac-
tivation values were first calculated based on the other
representational principles being modeled. The activa-
tions of nodes corresponding to items that had already
been recalled were then multiplied by 1-τ, where τ rep-
resents the extent of response suppression (0 < τ ≤ 1;
τ = .95 for the initial simulations). Example starting
activations for a primacy gradient complemented by re-
sponse suppression for the fourth output position are il-
lustrated in Figure 2D.

Output interference. Output interference was
modeled by assuming that recall of an item added noise
to the activations of yet to be recalled items. Accord-
ingly, random Gaussian noise with a standard deviation
that increased as a function of output position was ap-
plied to the starting activations generated by the serial
ordering principles being modeled (e.g., position mark-
ing) and was determined by δ × σ × p, where δ is a
parameter controlling the weighting of output interfer-
ence across output positions (0 < δ ≤ 1; δ = .5 for the
initial simulations) and σ is the standard deviation of
noise applied to activations during the iterative updat-
ing process (see earlier). An example of the increase in
the standard deviation of Gaussian noise applied to the
starting activations across output positions is shown in
Figure 2E.

Five Models of Serial Order

The response probability and recall latency predic-
tions of five models of serial order—built from different
combinations of the four principles—were compared:
(1) position marking (PM); (2) position marking and
response suppression (PM + RS); (3) position marking
and output interference (PM + OI); (4) a primacy gra-
dient and response suppression (PG + RS); and (5) a
primacy gradient, position marking, and response sup-
pression (PG + PM + RS). These are the same set of
models as those examined by Farrell and Lewandowsky
(Farrell & Lewandowsky, 2004; Lewandowsky & Far-
rell, 2008) and Hurlstone and Hitch (2015), and they are
representative of the range of mechanisms instantiated
in contemporary theories of serial recall (see Table 1
of Hurlstone & Hitch, 2015 and Table 2 of Hurlstone,
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Figure 2. Example starting activations for the four representational principles—and combination of principles—for
six-item sequences, based on the parameter settings employed for the initial simulations: (A) position marking
(showing activations for the fourth output position), (B) a primacy gradient (showing activations for the first output
position), (C) a primacy gradient and position marking (showing activations for the fourth output position), (D)
response suppression (showing activations for a primacy gradient with suppression of the first three recalled items),
(E) output interference (showing the increase in Gaussian noise applied to the starting activations across output
positions).

Hitch, & Baddeley, 2014). Predictions were generated
for each model using 50,000 simulation trials of six-
item sequences.

Extension to Grouped Sequences

In this section, we describe how the models imple-
menting position marking can be extended to account

for the recall of grouped sequences. Positional mod-
els of serial recall account for grouping effects by as-
suming that grouped sequences recruit two sets of po-
sition markers—one set that encodes the position of
groups (Brown et al., 2000; Hartley et al., 2016; Hen-
son, 1998; Lewandowsky & Farrell, 2008) or items
(Burgess Hitch, 1999) in the sequence, and a second set
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that encodes the position of items within groups. This
multidimensional representation has been shown to be
sufficient to account for the effects of grouping docu-
mented with verbal materials. In particular, the use of
a set of position markers to represent the within-group
position of items is crucial to explaining the between
group interposition errors that are a hallmark feature of
grouped verbal serial recall.

However, the failure to observe an increase in the
frequency of interpositions in grouped visual serial re-
call (Experiment 3 in the main article; Hurlstone &
Hitch, 2017) and grouped spatial serial recall (Hurl-
stone & Hitch, 2015; Experiments 1 & 3) raises the pos-
sibility that positional information might be represented
differently in the visual and spatial domains. Specifi-
cally, Hurlstone and Hitch (2015) speculated that in the
visual-spatial domain, position markers encoding the
position of groups in sequence might be augmented by
position markers encoding the position of items in the
sequence overall, as opposed to within each group. This
should in principle produce the usual effects of group-
ing on response probabilities, but without fostering an
increase in the frequency of interpositions.

To provide a formal test of this hypothesis, we con-
trasted two approaches to extending the positional mod-
els to grouped sequences, one in which position mark-
ers encoding the position of groups in sequence were
combined with position markers encoding the position
of items within groups—viz. the standard approach to
modeling grouping effects—and a second in which po-
sition markers encoding the position of groups in se-
quence were combined with position markers encod-
ing the position of items in the sequence overall—viz.
the revised approach proposed by Hurlstone and Hitch
(2015).

In the following, we outline the equations used to
calculate the starting activations for position mark-
ing for grouped sequences under the two different ap-
proaches to implementing grouped positional represen-
tations. When applying the PM, PM + RS, PM + OI,
and PG + PM + RS models to grouped sequences, these
equations were used in substitute for equation 2.

Position of Group + Position Within Group

In the implementation of position marking combin-
ing information about the position of groups and the po-
sition of items within groups, starting activations were

chosen that directly reflected the confusability of group
positions in the sequence and item positions within
groups:

a j = (1 − λ)Ωθ(|g−l|) + λΩθ(|i−r|), (5)

Where j indexes an item’s input position, g indexes
its group’s input position, l represents the input posi-
tion of the group of the target item to-be-recalled at
the current output position, i indexes the within-group
input position of item j, and r represents the within-
group input position of the target item to-be-recalled at
the current output position. To illustrate, suppose we
wish to calculate the activation of the second item at
the sixth output position in a six-item sequence grouped
into threes. In this example, g = 1 (since item 2 belongs
to the first group), l = 2 (since the target item 6 belongs
to the second group), i = 2 (since item 2 appears in the
second position in the first group), whilst r = 3 (since
item 6 appears in the third position in the second group).

As in equation 2, the parameter θ governs the distinc-
tiveness of the position markers (0 < θ ≤ 1), whilst Ω

is a scaling parameter (0 < Ω ≤ 1). The first term in
equation 5 generates gradients of activations represent-
ing the confusability of the positions of groups in the
sequence, whereas the second term generates gradients
of activations representing the confusability of the posi-
tions of items within groups. The parameter λ weights
the amount of attention allocated to the two positional
dimensions (0 < λ ≤ 1). When λ = .5, attention is di-
rected equally to the two dimensions; when λ < .5, more
attention is allocated to the group-position-in-sequence
dimension of order; when λ > .5, more attention is al-
located to the item-position-in-group representation of
order. Example starting activations based on equation 5
for all output positions in a six-item sequence grouped
into threes are shown in Figure 3.

Position of Group + Position Within Sequence

In the implementation of position marking combin-
ing information about the position of groups and the
position of items within sequence, starting activations
were chosen that directly reflected the confusability of
group and item positions within sequence:

a j = (1 − λ)Ωθ(|g−l|) + λΩθ(| j−p|), (6)
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Figure 3. Example starting activations for the position-of-group and position-within-group implementation of posi-
tion marking for a six-item sequence grouped into threes. Activations were generated using the following parameter
values: Ω = 1; θ = .65; λ = .5.

Where p represents the output position, and g, l, and
j are as before. To illustrate, using the earlier example
of calculating the activation of the second item at the
sixth output position in a six-item sequence grouped
into threes, g = 1 (since item 2 belongs to the first
group), l = 2 (since the target item 6 belongs to the sec-
ond group), j = 2 (since this is the item whose activation
is being calculated), and p = 6 (since this is the current
output position). The first term in equation 6 is the same
as in equation 5 and generates gradients of activations
representing the confusability of the positions of groups

in the sequence. The second term generates gradients
of activations representing the confusability of the po-
sitions of items in the sequence, and is identical to equa-
tion 2 used to generate starting activations for position
marking for ungrouped sequences. As in equation 5,
the parameter λ weights the amount of attention allo-
cated to the two positional dimensions. Figure 4 shows
example starting activations based on equation 6.
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Figure 4. Example starting activations for the position-of-group and position-within-sequence implementation of
position marking for a six-item sequence grouped into threes. Activations were generated using the following
parameter values: Ω = 1; θ = .65; λ = .5.

Incorporating a Primacy Gradient

When position marking was combined with a pri-
macy gradient—viz. the PG + PM + RS model—
equations 5 and 6 were augmented as follows:

a j = (1 − ω)(Eq. 5 |Eq. 6) + ωφρ( j−1), (7)

Where Eq. 5 | Eq. 6 implements equation 5 or 6,
φρ( j−1) corresponds to equation 3 used to compute the
primacy gradient over the input position of items, and
ω is the same weighting parameter used in equation 4

to determine the attentional weight assigned to the pri-
macy gradient and position markers.

Description of Parameter Fitting Procedure

For each of the four target data sets, the models were
fit to the response time distributions for each output
position—with the effects of output position subtracted,
as per the experiments and initial qualitative model
predictions—using a maximum likelihood method for
quantiles. For each output position, the response times
associated with items recalled from different input posi-
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tions on the input sequence were sorted in ascending or-
der by each participant and the reaction times for the .5
quantiles that divided the data into two bins were calcu-
lated for each individual. These quantile reaction times
were then averaged over participants to obtain group
response time distributions.1 The to-be-fitted data for
each output position therefore took the form of a 2 ×
sl (where sl represents the sequence length) matrix of
bins, where the rows represent categories defined by
quantile-averaged statistics (one category correspond-
ing to scores at or below the .5 quantile average; the
second corresponding to scores above the .5 quantile
average) and the columns represent input positions.2

The values in each bin represent the number of recall
latencies for a given category and input position. We
opted to fit quantile-averaged group data—rather than
individual participant data—to compensate for the fact
that participants contributed few or no response times
in bins corresponding to large output-input position dis-
placements. However, we note that quantile-averaging
preserves information about the shape of the individual
response time distributions (Ratcliff, 1979) and yields
parameter estimates that are comparable to the average
parameter estimates obtained by fitting individual par-
ticipants (Ratcliff, Thaper, & McKoon, 2001; Thaper,
Ratcliff, & McKoon, 2003).

The models were used to obtain predicted frequen-
cies in each bin for each output position. The dis-
crepancy between observed and predicted frequencies
was evaluated using a maximum likelihood criterion.
Specifically, for a given model and set of parameter val-
ues, the likelihood of the observed response frequencies
for a given output position p was determined using the
multinomial log-likelihood function:

ln Lpos(p) =
∑

j

∑
i

Ni j ln(πi j), (8)

Where Ni j is the frequency of observations in the bin
for the ith category at the jth input position, πi j is the
corresponding probability in the bin predicted by the
model, and ln is the natural logarithm. The number
of bins varied according to the sequence length of the
data set being fitted. For four-item sequences, there
were 8 bins per output position (32 in total); for five-
item sequences there were 10 bins per output position
(50 in total); for six-item sequences there were 12 bins
per output position (72 in total). A total log-likelihood

was then calculated by summing the individual log-
likelihoods for each output position:

ln L =

P∑
p=1

ln Lpos(p), (9)

Where ln L is the joint multinomial log-likelihood,
which was converted to a negative value. Model param-
eters were varied systematically using the SIMPLEX
function minimization algorithm (Nelder & Mead,
1965) until the smallest possible value of this objective
function was obtained. Each parameter vector explored
by the minimization algorithm involved 5,000 model
simulation trials of the sequence length and grouping
condition being simulated.

The parameters that were free to vary for the PM
model were the weighting (Ω) and distinctiveness (θ)
of the position markers. These free parameters were
augmented by the amount of response suppression (τ)
in the PM + RS model and the amount of output inter-
ference (δ) in the PM + OI model. The PG + RS model
took as its free parameters the starting point (φ) and
steepness (ρ) of the primacy gradient, and the degree

1This procedure of forming group response time distribu-
tions is known as Vincentizing (or Vincent averaging). There
are two different versions of this procedure (Andrews &
Heathcote, 2001; Jian, Rouder, & Speckman, 2004). The first
produces a group response time distribution by averaging
over the quantiles—the values beneath which given propor-
tions of the distribution occur—of individual response time
distributions. The second produces a group response time
distribution by averaging over the Vincentiles—the average
of values between pairs of quantiles—of individual response
time distributions. The approach adopted here is based on
the first version of this procedure.

2We have also applied the model fitting and evaluation
procedure described here to a larger number of bins us-
ing categories defined either by the .25, .5, and .75 quan-
tile averages, or the .1, .3, .5, .7, and .9 quantile averages
(both of which are common choices in the evidence accu-
mulation model fitting literature). The relative fits of the
models—examined using the goodness-of-fit criteria speci-
fied below—using these three- and five-quantile summaries
was comparable to our single-quantile summary, except that
the discrepancy between the observed and predicted accuracy
serial position curves was too large in the former instances.
Accordingly, we report the fits of the models using the single-
quantile summary, which provided the best approximation of
the accuracy and latency data of the three quantile summary
approaches.
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of response suppression (τ). Finally, the free parame-
ters for the PG + PM + RS model were the weighting
(Ω) and distinctiveness (θ) of the position markers, the
starting point (φ) and steepness (ρ) of the primacy gra-
dient, and the degree of response suppression (τ). The
weighting of the position markers and primacy gradient
(ω) was frozen to a value of .5.3 For the simulations
of grouped sequences, the weighting of the two sets of
position markers (λ) in the two versions of the PM, PM
+ RS, PM + OI, and PG + PM + RS models was also
set to a fixed value of .5.4 In addition to the above-
mentioned parameters, the iteration-to-ms scaling pa-
rameter S was included as a free parameter in all mod-
els. In summary, the number of free parameters was
three for the PM model, four for the PM + RS, PM +

OI, and PG + RS models, and six for the PG + PM +

RS model.
The models were initially fit to the data according to

the procedure described above, which yielded for each
data set and each model, a set of best fitting parame-
ter values and an associated maximum log-likelihood
estimate. However, as the models differ in their num-
ber of free parameters, it is necessary to augment this
goodness-of-fit metric with a penalty term that punishes
excessive model complexity. Accordingly, in order to
provide a measure of the descriptive accuracy of the
models that takes into consideration differences in their
degree of complexity, the log-likelihood estimates were
converted into Akaike and Bayesian information crite-
rion scores (AIC, Akaike, 1973; BIC, Schwartz, 1978,
respectively). The AIC was calculated as:

AICi = −2 ln Li + 2 Vi, (10)

Where V is the number of free parameters involved
in maximizing ln L and i indexes the model for which
AIC is being calculated (smaller values of AIC indi-
cate a better fit). As can be seen from equation 10, the
AIC rewards a model for its goodness-of-fit via its max-
imized log-likelihood and punishes it as a function of
its number of free parameters. Similarly, the BIC was
calculated as:

BICi = −2 ln Li + Vi ln(n), (11)

Like the AIC, the BIC rewards a model for its
goodness-of-fit via its maximized log-likelihood but
punishes it as a function of the number of free param-

eters weighted by the number of observations n enter-
ing into the log-likelihood calculation (smaller values
of BIC indicate a better fit). Accordingly, the BIC of-
fers a more stringent correction for model complexity.
As the BIC was calculated on quantile-averaged group
data, the value of n in the penalty term was set equal to
the average number of observations per participant in
the data set.

To aid interpretation, the raw AIC and BIC scores
were converted into so-called IC weights (Burnham &
Anderson, 2002; Lewandowsky & Farrell, 2011; Wa-
genmakers & Farrell, 2004), which express the degree
of support for each model on a continuous measure of
evidence. The IC weight for model i was calculated by:

wICi =
exp(−0.5 ∆ICi)∑K

k=1 exp(−0.5 ∆ICk)
, (12)

Where ∆ICi is the difference in IC between model i rel-
ative to the best model, and each ∆ICk is the difference
in IC between a specific model k in the candidate set K
and the best model. These IC weights—normalized to
sum to 1—represent the probability that each model is

3We opted to freeze ω because there is some redundancy
in this parameter, given the other parameters varied in the fit-
ting. Specifically, the free parameters φ and Ω will determine
the relative weight given to the primacy gradient and position
markers, thus removing the need to also systematically vary
ω. An alternative approach—adopted previously (Hurlstone
& Hitch, 2015)—would be to fix the latter parameters to val-
ues of 1—rendering them inactive—and incorporate ω as a
free parameter to govern the relative influence of the primacy
gradient and position markers. Varying all three parameters
simultaneously improves the quantitative fit of the PG + PM
+ RS model, but we have not pursued this option here since
it is not necessary to bring out the qualitative effects in the
data.

4We fixed the setting of λ because the main focus of
our model comparisons for grouped sequences was to es-
tablish whether the data is better understood in terms of
a model combining position-of-group with position-within-
group markers, or a model combining position-of-group with
position-within-sequence markers. The problem with allow-
ing λ to vary is that it opens up the possibility that the models
may preferentially engage only one of the two sets of posi-
tion markers, which spoils this comparison (we consider the
impact of varying λ in the General Discussion of the main ar-
ticle). With λ fixed, the magnitude of grouping effects in the
simulations is governed by the setting of the free parameter
θ.
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the best given the data and the competitor models un-
der comparison. The support for a model is considered
equivocal if its IC weight does not exceed 1/N—where
N is the number of models under comparison. Thus,
with five models, the support for a particular model is
considered equivocal if its IC weight does not exceed
0.2.

We also conducted model comparisons using likeli-
hood ratio tests (Lamberts, 2004), which compared the
improvement in fit of a general model (viz. the PG +

PM + RS model) with restricted versions of that model
in which one of its components was removed (viz. PM
+ RS and PG + RS models). The likelihood ratio statis-
tic is calculated by:

χ2 = −2[ln L(restricted) − ln L(general)], (13)

Where ln L(restricted) is the log-likelihood of the re-
stricted model and ln L(general) is the log-likelihood
of the general model. The likelihood ratio statistic
provides a measure of the reliability of the difference
in goodness-of-fit between the restricted and general
model. If χ2 exceeds the critical value corresponding
to the 95th percentile of the chi-squared distribution—
with degrees of freedom determined by the number of
free parameters in the restricted model that were re-
moved from the general model—then the null hypoth-
esis that the restricted model is the best model can be
rejected.
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