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The experiments were programmed using Javascript (JsPsych library). Statistical analyses 

were conducted using the R programming language. Observer models were programmed in 

Python.  

General approach for statistical analyses 

 

We employed linear (or generalised linear) mixed-effects models using the lme4 package in 

R (version 1.1-35.1). This approach provides the flexibility to incorporate both fixed effects, 

representing our experimental predictors, and random effects, capturing the variability among 

participants. For model comparison and validation, we used likelihood ratio tests and Akaike 

Information Criterion (AIC) values. This enabled us to systematically assess the explanatory 

power of the models and ensure the selection of the most parsimonious representation of the 

underlying relationships. To test main effects and interactions, we employed a hierarchical 

modelling strategy. Initially, we gauged the impact of independent variables individually by 

contrasting each one to a null model that only considered participant variability (random 

intercept). After identifying significant predictors, a comprehensive model incorporating all 

main effects and their interaction was developed and compared to the previously selected best 

model. 
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Bayes factors were calculated using the “ttestBF” functions for t-tests, from the BayesFactor 

R package (version 0.9.12-4.7, Morey & Rouder, 2018). For all analyses, we used the default 

prior distribution provided with the package. In cases where a one-tailed t-test was conducted, 

we adjusted the null interval accordingly (e.g., setting the nullInterval parameter to [0,Inf) when 

testing for a positive difference). This approach was also applied to rate differences, which 

theoretically should be constrained to the interval [0,1]. However, we maintained the [0,Inf) 

interval for consistency with the classical parametric t.test() function, which does not allow for 

restricting the alternative hypothesis to a specific range. This approach effectively makes the 

BF10 estimate more conservatory in these cases, as the wider interval reduces the likelihood 

of favouring the alternative hypothesis. We always report the Bayes factor in favour of the 

alternative hypothesis (BF10), with values above 3 providing evidence in favour of the 

alternative hypothesis and values below 0.33 evidence in favour of the null. 

Tables 

T-tests are all two-tailed unless stated (following a pre-registered directional effect). 



 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

Descriptive Bayesian observer model 

 

To understand in more detail the nature of nested judgments from Type-1 perception to Type-

3 curiosity, we developed a Type-2 metacognitively-ideal Bayesian observer model. According 

to the model, for each pair of trials, the observer first estimates the orientation of each stimulus 

(perceptual decision), and then compares the evidence for each estimated orientation, 

selecting the one with greater evidence (metacognitive decision). For Type-3 curiosity, the 

observer then compares perceptual evidence to metacognitive evidence to infer which type of 

feedback would subjectively lead to the greater information gain. This strategy would allow the 

observer to maximise information intake depending on the context, considering that both 

perceptual and metacognitive evidence are valuable. It is important to note that our observer 

model is ideal at the metacognition (Type-2) level, but not at the curiosity (Type-3) level: it 

does not make any assumption on the value function of the Type-3 decision for a given 

observer, but rather simply assume that an individual has some level of intrinsic appetite for 

metacognitive feedback. This approach was chosen because contrary to a Type-3 confidence 

judgement (i.e., the confidence in the quality of a confidence judgement, see Recht et al., 

2022; Zheng et al., 2023), there isn’t a definitive normative ground yet for Type-3 curiosity.  

The evidence at each order being always in Type-1 sensory evidence units, this 

approach provides a form of common currency across decision orders. Here, we use a nested 

observer model to describe the perceptual decision for each trial in a given pair, the 



metacognitive decision, and Type-3 curiosity. Critically, the observer makes multiple, recursive 

inferences on perceptual evidence (Type-1) and metacognitive evidence (Type-2) and finally 

compares these estimates to fine-tune curious exploration (Type-3). Drawing from earlier 

research (e.g., Keshvari et al., 2012; van den Berg et al., 2012, 2014), we use Fisher 

information (J) to measure Type-1 precision and quantify Type-2/Type-3 evidence. This metric 

sets a minimal threshold for the variance of any unbiased estimator: it is a measure of the 

amount of information in a specific random variable (Ly et al., 2005). Importantly, this measure 

of precision is in Type-1 units (or sensory units), making it comparable between cognitive 

orders (from Type-1 to Type-3).  

 

Perception (Type-1 decision) 

Stimulus distribution 

On each trial, a grid of oriented Gabor corrupted by noise is presented to the observer. The 

goal of the observer is to estimate the average orientation of the grid. The variance of the grid 

depends on the condition. Here, for simplicity, we consider a stimulus within a relatively stable 

context (i.e., one condition). In our paradigm, the stimulus’ average orientation is sampled 

from a circular uniform distribution (between 0 and pi, which can be rescaled); here, we will 

directly consider it in a full circle space.   

 

  (Eq. 1) 

 

where  is the average angle for a given grid.  

 

The final composite stimulus is made of 20 samples from a Von Mises distribution (with the 

concentration parameter depending on the condition, , ). Here, we consider 

a fixed concentration parameter: 



 

 (Eq. 2), 

 

where  is the concentration parameter (the inverse of the variance) for the stimuli grid in 

the considered condition. Here, we consider that  represents the ground truth for the 

external environment.  

 

Measurement distribution 

For the following steps, we use the Fisher information (𝐽) as a measure of sensory precision 

in place of the concentration parameter. The relation between Fisher information and  is given 

by: 

 

 (Eq. 3), 

 

where 𝐼! and 𝐼"	are the modified Bessel functions of orders 0 and 1, respectively. Equation 3 

can be numerically inverted to estimate the concentration of an arbitrary precision level (

). Note that in the following paragraphs, we will distinguish between  (the parameter used 

to generate our stimulus from the experimenter’s perspective) and , the parameter describing 

the internal precision of the observer.  

 

 

The sensory measurement itself is an estimate of the average orientation of the grid. We 

assume that it is unbiased but subject to (circular) Gaussian sensory noise. The measurement 

distribution for Type-1 is therefore centred on the correct value :  

 

  (Eq. 4), 



 

where  is the measurement in a given trial,  the composite stimulus orientation and 

𝐽 the overall precision for Type-1 judgement. We assume that the precision is variable from 

trial to trial (following previous work, e.g., van den Berg et al. (2012)). This variability results 

from multiple sources, and we remain largely neutral to the specific sources (i.e., external 

noise, vigilance/attention…). To model the distribution of precision levels across trials, we opt 

for a Gamma distribution, principally because it has been shown to capture noise in working 

memory (e.g., Schneegans, Taylor & Bays, 2020; van den Berg et al., 2012) and attention 

tasks involving confidence judgments (e.g., Recht et al., 2021), but also because it is a natural 

choice for a positive-only continuous variable like precision.   

 

 (Eq. 5), 

 

where 𝐽 is the precision in a given trial, 𝜏 is the shape (𝜏 > 0) and 𝛾 the scale (𝛾 > 0). The 

average precision is .  

Inference process 

Next, we define the prior distribution, the likelihood function and the posterior distribution for a 

Bayesian observer.  

 

For simplicity, we consider that the observer has an accurate representation of the statistics 

of the experimental environment (as provided in the instruction); the prior is therefore uniform 

over the orientation space (rescaled to a full circle for simplicity). 

 

  (Eq. 6) 

 



The likelihood, or the probability of the measurements given the stimulus, takes the same 

shape and variance as the sensory noise distribution (Eq. 4): 

 

 

 (Eq. 7) 

  

Finally, the observer inverts the generative model via Bayes’ rule to obtain the posterior 

distribution, and the final measurement estimation is inferred from the posterior via a cost 

function: 

 

 (Eq. 8) 

 

 

 

Here, we consider a squared error loss function (𝐿#) equivalent to computing the (circular) 

mean of the posterior. Given our assumption of a uniform prior, the posterior distribution and 

its precision are reducible to the likelihood parameters; the precision of the estimate is 

therefore . Note that under non-uniform priors, the Type-1 evidence might differ from the 

precision of the likelihood function and has to be estimated numerically.  

 

Metacognition (Type-2 decision) 

Every two trials, the observer is required to compare their performance in the first and second 

trial to make a confidence judgement. The Type-2 evidence is therefore the signed difference 

in evidence (or precision) read out from the two posterior distributions (trial A and trial B in the 

pair). We remain neutral to the exact readout of confidence from the posterior, any monotonic 

estimate of the inverse posterior uncertainty could work. We consider that it reliably reflects 



the precision of the likelihood, . We assume the readout to be ideal and therefore to incur no 

extra noise.  

 

 (Eq. 9), 

 

where  and  are the precision levels for the first and second trial in a pair.   

 

We also considered a biased observer model, following the strong metacognitive bias 

observed empirically (see Figure 2c and e). The metacognitive bias is implemented as a 

consistent shift in evidence imbalance between first and second trial in a pair.  

 

 (Eq. 10), 

 

Where 𝑐 is the bias in precision, a positive value corresponding to a bias towards  trial B.  

 

Finally, the Type-2 response (2AFC) is defined using the sign of the Type-2 evidence:  

 

(Eq. 11) 

 

and the Type-2 evidence for the considered response is the absolute value of the Type-2 

measurement (i.e., the estimated difference in precision between the two trials):  

 

 (Eq. 12) 

 



Curiosity (Type-3 decision) 

We define curious exploration as the result of an arbitrage between Type-1 and Type-2 

evidence. The Type-3 decision involves choosing from 4 distinct alternatives. Discarding the 

“no” trials, three alternatives remain available, and we consider the evidence for each of these 

alternatives here in order to make a judgement. The evidence for the first trial and the second 

trial was defined previously (  and ). Considering that the vast majority of Type-1 

exploration was made for the selected trial (see Figure 2a), we only consider the evidence for 

the trial that was selected for the sake of simplicity (that is, we consider that the observer will 

never request Type-1 feedback for the rejected trial):  

 

 (eq. 12) 

 

Now, the observer has to compare the precision of Type-1 ( ) to the precision of Type-

2 ( ) and select the option with the lower precision. The Type-3 measurement for a 

given curiosity decision is therefore the difference in evidence between the selected Type-1 

and the Type-2 decision:  

 

 (Eq. 13), 

 

where  is a Type-3 evidence weight accounting for the tendency to select one type of 

feedback more often than the other. Without this scaling factor, the observer would 

systematically select Type-2, because the evidence is by definition lower for Type-2 than 

Type-1 (Type-2 evidence being calculated as the difference in Type-1 evidence).  

 

Finally, the Type-3 response is defined using the sign of the Type-3 evidence:  

 



(Eq. 14) 

 

The Type-3 evidence for the considered response is the absolute value of the Type-3 

measurement (i.e., the estimated difference in precision between the two trials):  

 

 (Eq. 15) 

 

Note that the evidence across orders ( , , ) are all in the same Fisher 

information unit ( ).  

 

 

 

Figure S1. Model predictions. (a) Left ‘perception’ panel (yellow): For each pair of trials, the 

response error is drawn from a circular normal distribution (Von Mises), centred on the correct 



orientation as shown in the middle figures. The internal precision of the representation varies 

across trials according to a Gamma distribution. The top-right figure illustrates how the 

Gamma distribution changes with the scale parameter (𝛾), while the bottom-right figure shows 

changes as a function of the shape parameter (𝜏). Light and dark grey represent hard and 

easy trials, respectively. Middle ‘metacognition’ panel (blue): An ideal observer assesses 

and compares the precision of each trial, preferring the one with greater precision. The blue 

panel plots the proportion of correct metacognitive judgments against the difference in average 

perceptual precision. The change in precision is achieved either through the scale or shape of 

the Gamma distribution (top or bottom figures, respectively). The x-axis displays the average 

precision for Trial A in a pair, with changes mediated either by scale (top figure) or shape 

adjustments (bottom). The colour gradient shows how metacognitive accuracy shifts with an 

increase in Trial B's average precision relative to Trial A, either via change in scale (top panel) 

or shape parameter (bottom). Note that the 'proportion correct' indicates the highest level of 

performance attainable given the limits of perceptual sensitivity. Right ‘Curiosity’ panel 

(pink): the observer then decides to monitor metacognition (or perception otherwise) by 

comparing the perceptual evidence of the selected trial (max(JA,JB)) to the metacognitive 

evidence (the absolute of the difference in precision), deciding request feedback for the 

decision with lower evidence. Note that for the arbitration to be possible, it is necessary to 

scale metacognitive evidence by a proportionality factor considered fixed (𝛽). The figure plots 

the rate of metacognition feedback request as a function of average perceptual precision (𝛽	= 

1.42, see Model fitting procedure section below for details).  

 

 



Model fitting procedure 

Perception 

The model was fit exclusively on the perceptual error. We aggregated the data from all 

experiments, leading to 1147 trials per condition in total. For each trial, we calculated the 

response error as the signed angular difference between the participant’s response and the 

true orientation: 

 

 (Eq. 16) 

 

Where  is the response of the participant, and  the true orientation of the stimulus. The 

probability of an error is given by an infinite mixture of Von Mises, each with a different 

concentration ( ) following a Gamma distribution:  

 

 

(Eq. 17) 

 

Where  is the concentration of a Von Mises,  and  are the shape and scale parameters of 

the Gamma distribution. 

Metacognition 

We did not fit any extra parameter for metacognition in the ideal observer model. For the 

biased observer model, we added a bias term to the metacognitive evidence (Figure S2). 

Curiosity 

To estimate a tangible curiosity rate (the probability of requesting metacognitive feedback), 

rather than fitting the parameter on one data point, we decided to select a rate that would lead 



to an average of 50% for as many   and  combinations (i.e., evidence distributions) as 

possible within a reasonable range of possible values given our experimental data. To this 

end, we tested 1,000 equally spaced biases between 0.1 and 5, across a variety of different 

Gamma distributions ( , , with a factorial combination of 12 distinct 

parameter values), and took the bias that led to a rate of 50% the most frequently ( ). 

Of note, this approach was not meant to provide a representative value in absolute terms, but 

rather to allow for curiosity to vary as a function of perceptual and metacognitive evidence.  

 

 

Figure S2. Effect of metacognitive bias. (a) Adding a bias term (c) to the observer 

metacognitive decision is equivalent to systematically shift the evidence ( ), here in favour 

of the second trial in a pair. (b) Increasing metacognitive bias leads to a marked imbalance 

between the Easy-Hard and Hard-Easy conditions, despite the two having the same average 

evidence. (c) The metacognitive bias has a cascading effect and also affects curiosity in an 

opposite pattern (lower metacognitive accuracy = greater curiosity). Similarly to metacognition, 

the curiosity predictions from the model do also capture the relative shift in between conditions, 

but suffers from a notable overshoot in terms of magnitude.  

 

The Python code for the observer model is available on the OSF repository: 

https://osf.io/45wvb/ 

 

https://osf.io/45wvb/


Simulations (Figures 3a and S1) 

To generate the plots on Figure 3a, and Figure S1, we fixed either the scale or the shape 

parameter of our perceptual model (making it equal to the estimated value from our 

aggregated observer, 𝜏 = 0.96 and 𝛾 = 5.08  for the easy trials, 𝜏 = 1.52 and 𝛾 = 0.54 for the 

hard trials, we used the values for the easy trials only), and estimated the number of times 

where both  and  were verified, the first being the decision signal, and the 

second the objective outcome of the decision (the average precision can be calculated as the 

product of the shape and scale parameters). Note that because of sampling variability, it is 

possible for the observer to be correct about the difference in precision, despite the 

metacognitive decision being wrong (because the errors’ difference does not match the 

difference in precisions).  

Instructions provided to the participants 

 

Figure S3: Caption of the instructions provided to the participants prior to the study 

commencing: The order of the options' display was randomised across trials. 



Additional notes on the pre-registration for Exp 2 and 3 

Experiment 2 

Upon finding a medium effect size in Experiment 1 (the pre-registration erroneously mentioned 

0.57, the correct value being 0.75) via the one-sample (two-sided) paired t-test on the 

difference in Type-2 feedback request rate between correct and incorrect Type-2 judgments, 

we determined that a minimum of 24 participants was required to ensure an 85% power to 

detect the effect (for a Cohen's d of 0.57 in a one-tailed t-test). A Bayesian stopping rule was 

applied to determine the final sample size (less than one third or greater than three for the 

Bayesian version of the aforementioned t-test). After collecting data from 25 participants, we 

reached the evidence threshold for the null (0.29 < 1/3) and therefore stopped data collection. 

For Exp 2 and 3, our design initially involved three more “global” subjective estimates of 

performance, recorded during each break using rating scales, for exploratory analyses. We 

did not analyse these ratings in the present study.  

 

Link to pre-registration: https://aspredicted.org/ii3gb.pdf 

Experiment 3 

We used the same target rule as for Experiment 2. In addition to the unambiguous Bayes 

factor (BF10) for the aforementioned t-test, we also added a secondary BF target of reaching 

an unambiguous BF for the condition effect. As initially pre-registered, we aimed to use both 

anovaBF for estimating the Bayes Factor (BF) on the condition effect and ttestBF for 

estimating the Bayes Factor on the effect of metacognitive accuracy on feedback requests. 

These BF estimates were used during data collection with a Bayesian stopping rule. However, 

we identified two key errors: first, anovaBF is not compatible with our mixed-effects logistic 

model analysis, since it only considers aggregated averages over trials, while the pre-

registered logistic regression model involves a trial-by-trial prediction; second, we used a two-

tailed test in ttestBF during data collection, which has lower power compared to the expected 

https://aspredicted.org/ii3gb.pdf


one-tailed test given our pre-registered directional prediction. At N = 60 (our pre-registered 

upper bound), we did not cross the BF target for the anovaBF test (BF10 = 0.43), but we did 

for the one-tailed ttestBF (BF10 = 5.96), a two-sided t-test leading to a BF10 of 3.00. 

 

Link to pre-registration: https://aspredicted.org/y932m.pdf 
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