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Distribution of BDI Scores 

 

 

Figure S1. Distribution of BDI scores.  



Recognition Hit Rates 

 

Because the effects of encoding task on recognition accuracy cannot be easily incorporated into 

the HDDM and SDT analyses, we present here an analysis of the hit rate data from each task separately to 

supplement the models. As shown in Figure S2a, participants correctly recognized more old positive 

versus old negative words, and more words from the self-reference versus valence task. These effects do 

not appear to interact: The recognition advantage for positive versus negative words appears similar for 

words from both tasks. As shown in Figure S2b, higher BDI scores were associated with better 

recognition of negative words from both tasks, with perhaps slightly poorer recognition of positive words 

from the self-reference task.  

The above observations were confirmed by a Bayesian mixed effects logistic regression model: 

𝑝("𝑜𝑙𝑑")	~	𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∙ 𝑡𝑎𝑠𝑘 ∙ 𝐵𝐷𝐼 + (1	|	𝑠𝑢𝑏𝑗𝑒𝑐𝑡) + (1	|	𝑤𝑜𝑟𝑑). Participants are more 

likely to correctly recognize positive vs. negative words from the self-reference task (95% HDI: 

0.432:0.804). Participants are also estimated to correctly recognize fewer negative words from the valence 

task than the self-reference task (95% HDI: -0.462:-0.288), with no difference for positive words (95% 

HDI: -0.183:0.071). As BDI score increases, the number of correctly recognized positive words from the 

self-reference task decreases (95% HDI: -0.018:-0.008), but the number of correctly recognized negative 

words increases (95% HDI: 0.002:0.012). There were no additional interactions of BDI with encoding 

task for either positive (95% HDI: -0.002:0.011) or negative (95% HDI: -0.004:0.005) words.  

 

 



 

Figure S2. Hit rate at recognition. In each panel, columns denote encoding task (left: self-reference task, 
right: valence task), and colors denote normative valence (blue: positive, red: negative). Error bars and 
bands represent 95% bootstrap confidence intervals (Waskom et al., 2017). Panel (a) depicts a higher 
average hit rate for positive vs. negative words, and for words from the self-reference vs. valence task. 
Panel (b) demonstrates that as BDI scores increase, hit rates increase for negative words regardless of task 
but weakly decrease for positive words from the self-reference task.  

  



Recognition Performance for Non-Recalled Words 

 

It is possible that by testing free recall before recognition memory, item effects were introduced 

for recalled words. We therefore present here a re-analysis of the recognition data reported in the main 

text, with recalled words excluded. 

 

Hit Rates 

As shown in Figure S3a, participants correctly recognized more old positive vs. old negative 

words, and more words from the self-reference task versus valence task. These effects do not appear to 

interact: The recognition advantage for positive versus negative words appears similar for words from 

both tasks. As shown in Figure S3b, higher BDI scores were associated with better recognition of 

negative words from both tasks, and with slightly poorer recognition of positive words from the self-

reference task.  

These observations were confirmed by a Bayesian mixed effects logistic regression model: 

𝑝("𝑜𝑙𝑑")	~	𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∙ 𝑡𝑎𝑠𝑘 ∙ 𝐵𝐷𝐼 + (1	|	𝑠𝑢𝑏𝑗𝑒𝑐𝑡) + (1	|	𝑤𝑜𝑟𝑑). Participants are more 

likely to correctly recognize positive versus negative words from the self-reference task (95% HDI: 

0.356:0.744). Participants are also estimated to correctly recognize fewer negative words from the valence 

task than the self-reference task (95% HDI: -0.451:-0.274), with no difference for positive words (95% 

HDI: -0.165:0.101). As BDI score increases, the number of correctly recognized positive words from the 

self-reference task decreases (95% HDI: -0.016:-0.005), but the number of correctly recognized negative 

words increases (95% HDI: 0.002:0.012). There were no additional interactions of BDI with encoding 

task for either positive (95% HDI: -0.005:0.010) or negative (95% HDI: -0.004:0.005) words.  

 

HDDM 

Figure S4a presents the estimated mean drift rates by condition. Recall that positive and negative 

values indicate evidence accumulation towards “old” and “new” responses, respectively. As shown in the 



left panel, evidence accumulated more efficiently towards an “old” response for old positive words (95% 

HDI: 0.977:1.031) relative to old negative words (95% HDI: 0.707:0.759). In contrast, the right panel 

shows that evidence accumulated slightly less efficiently towards a “new” response (i.e., was less 

negative) for new positive words (95% HDI: -0.879:-0.826) versus new negative words (95% HDI: -

0.962:-0.909).  

Figure S4b shows that, as BDI score increases, drift rate increases for negative words—especially 

old negative words—whereas drift rate for positive words is weakly decreased. That is, as depressive 

symptoms increase, participants accumulate more evidence towards an “old” response for negative words 

and a “new” response for positive words. These impressions were largely supported by a Bayesian mixed 

effects regression model: 𝑣	~	𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∙ 𝑠𝑡𝑢𝑑𝑦	 ∙ 	𝐵𝐷𝐼 + (1	|	𝑠𝑢𝑏𝑗𝑒𝑐𝑡). BDI score is 

not clearly associated with drift rates for new negative words (95% HDI: -0.001:0.002), but there is a 

relative increase for old negative words (95% HDI: 0.001:0.005). We note that this is very similar to the 

findings in the main text, in which the 95% HDI bordered zero for each coefficient. In contrast, the model 

estimates that, relative to negative words, drift rates decrease with BDI score for new positive words 

(95% HDI: -0.005:-0.001), with no estimated difference for old positive words (95% HDI: -0.004:0.002).  

Bayesian regression models were also conducted to evaluate the effect of BDI score on threshold 

a, starting point bias z, and non-decision time t0: 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟	~	𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝐵𝐷𝐼. As BDI scores 

increased, participants exhibited no effect on thresholds (95% HDI: -0.002:0.001), a weakly increased 

bias towards “old” responses (95% HDI: 0.000:0.001), and weakly increased non-decision times (95% 

HDI: 0.000:0.002). 

 

SDT 

Figure S5a presents the SDT parameters for memory strength (d’, left column) and bias (c, right 

column). As can be seen, participants exhibited greater memory strength and a weaker tendency to 

respond “new” to positive than negative words, with a conservative response bias across valences. Figure 

S5b reveals that memory strength for positive and negative words was unaffected by BDI score, as was 



response bias for positive words; however, c decreased with BDI score for negative words, indicating 

greater willingness to endorse old and new negative words as “old” as the severity of depression 

increases. This selective effect of BDI on response bias for negative words is consistent with the positive 

association between BDI scores and hit rates for negative words, but not positive words (see Figure S3). 

Each parameter was analyzed with a Bayesian mixed effects regression model: 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟	~	𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∙ 𝐵𝐷𝐼 + (1	|	𝑠𝑢𝑏𝑗𝑒𝑐𝑡). Consistent with the observations above, 

positive words are associated with higher d’ scores (95% HDI: 0.57:1.66) a stronger bias to respond “old” 

(95% HDI: -0.172:-0.107) relative to negative words. The model does not estimate a relationship between 

BDI score and d’ for either positive (95% HDI: -0.002:0.003) or negative (95% HDI: -0.004:0.002) 

words. There was a modest negative association between BDI scores and c for negative words (95% HDI: 

-0.004:-0.001), confirming the impression from the right panel of Figure S5b. As in the main text, though 

the 95% HDI for the interaction of positive valence and BDI scores on c (positive:BDI) is entirely above 

zero, this merely serves to counteract the negative effect of BDI on c for negative words, thereby 

estimating the same null effect of BDI on positive words observed in Figure S5b. 

 

  



 

Figure S3. Hit rate at recognition, excluding recalled words. In each panel, columns denote encoding task 
(left: self-reference task, right: valence task), and colors denote normative valence (blue: positive, red: 
negative). Error bars and bands represent 95% bootstrap confidence intervals (Waskom et al., 2017). 
Panel (a) depicts a higher average hit rate for positive vs. negative words, and for words from the self-
reference vs. valence task. Panel (b) demonstrates that as BDI scores increase, hit rates increase for 
negative words from both tasks but weakly decrease for positive words from the self-reference task. 

  



 

Figure S4. HDDM drift rate estimates for the recognition data. Positive values indicate evidence 
accumulation towards an “old” response, while negative values indicate evidence accumulation towards a 
“new” response. In each panel, columns denote study status (left: old/studied words, right: new/unstudied 
words), and colors denote normative valence (blue: positive, red: negative). Error bars in panel (a) 
represent 95% HDIs. Error bands in panel (b) represent 95% bootstrap confidence intervals (Waskom et 
al., 2017). Panel (a) depicts more efficient evidence accumulation towards an “old” response for old 
positive vs. old negative words, but less efficient accumulation towards a “new” response for new 
positive vs. new negative words. Panel (b) demonstrates that as BDI scores increase, drift rate increases 
(towards an “old” response) for negative words but weakly decreases (towards a “new” response) for 
positive words. The impact of BDI on drift rate is especially apparent for old negative words.  



 

Figure S5. SDT parameter values for the recognition data. In each panel, columns denote parameter (left: 
d’, right: c), and colors denote normative valence (blue: positive, red: negative). Error bars and bands 
represent 95% bootstrap confidence intervals (Waskom et al., 2017). Panel (a) depicts higher average 
values of d’ and lower (more liberal) average values of c for positive vs. negative words. Panel (b) 
demonstrates that as BDI score increases, d’ is unaffected but c decreases (becomes more liberal) for 
negative words.  

  



Source Accuracy for Recognition Hits 

 

As for the recognition analyses, because the effects of encoding task cannot be easily 

incorporated into the HDDM and SDT analyses of source accuracy, we present here an analysis of the 

response proportions from each task separately to supplement the models. As predicted, Figure S6a 

reveals greater source accuracy for positive than negative words from the self-reference task. 

Surprisingly, however, source accuracy was higher for negative than positive words from the valence 

task. Figure S6b (left panel) shows that as BDI scores increased, source accuracy improved for negative 

words but decreased for positive words from the self-reference task. However, the opposite pattern was 

found for words from the valence task (right panel): here, increased BDI scores were associated with 

lower source accuracy for negative words but higher source accuracy for positive words.  

The above observations were confirmed by a Bayesian mixed effects logistic regression model: 

𝑝(𝑐𝑜𝑟𝑟𝑒𝑐𝑡)	~	𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∙ 𝑡𝑎𝑠𝑘 ∙ 𝐵𝐷𝐼 + (1	|	𝑠𝑢𝑏𝑗𝑒𝑐𝑡) + (1	|	𝑤𝑜𝑟𝑑). Participants are 

more likely to correctly identify the source of positive vs. negative words from the self-reference task 

(95% HDI: 1.143:1.390). Participants are more likely to correctly identify the source of negative words 

from the valence task vs. the self-reference task (95% HDI: 0.730:0.919), with a corresponding decrease 

for positive words (95% HDI: -2.192:-1.926). As BDI score increases, accuracy increases in the self-

reference task for negative words (95% HDI: 0.011:0.021), but decreases for positive words (95% HDI: -

0.039:-0.029). These effects flip in the valence task, such that relative accuracy decreases for negative 

words (95% HDI: -0.040:-0.031) and increases for positive words (95% HDI: 0.052:0.066).  

 

  



 

Figure S6. Source accuracy for recognition hits. Panel (a) presents average accuracy per condition. Panel 
(b) presents accuracy as a function of BDI score. In each panel, columns denote encoding task (left: self-
reference task, right: valence task), and colors denote normative valence (blue: positive, red: negative). 
Error bars and bands represent 95% bootstrap confidence intervals (Waskom et al., 2017). Panel (a) 
depicts a higher average source accuracy for positive vs. negative words in the self-reference task, with 
the opposite effect in the valence task. Panel (b) demonstrates that as BDI scores increase, hit rates 
increase for negative words but weakly decrease for positive words in the self-reference task, again with 
an opposite effect in the valence task.   



Source Attributions for Recognition False Alarms 

 

The analyses of recognition and source memory reported in the main text consistently indicate a 

role for bias. Recall that at recognition, participants were asked to report the encoding task for each word 

that they reported as “old”, regardless of whether the word had actually been studied. Though source 

attributions for studied words (recognition hits) can be driven by either memory strength or response bias, 

such attributions for unstudied words (recognition false alarms) can only reflect bias. Thus, an effect of 

BDI on source attributions for recognition false alarms would suggest a key role for bias. We therefore 

present an analysis of source attributions for recognition false alarms to further explore the role of bias.  

Because the data includes only unstudied words, there are no encoding task conditions to assign 

items to. Thus, a signal detection analysis (comparing the proportion of self-reference attributions from 

each task) was not feasible. HDDM fits were conducted, however drift rates varied only by valence.  

 

Proportion of Self-Reference Attributions 

Figure S7a reveals that the proportion of self-reference source attributions was greater for 

positive versus negative false alarms. Figure S7b shows that as BDI scores increased, the proportion of 

self-reference source attributions increases for negative false alarms, but slightly decreases for positive 

false alarms. These observations were confirmed by a Bayesian mixed effects logistic regression model: 

𝑝(𝑐𝑜𝑟𝑟𝑒𝑐𝑡)	~	𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∙ 𝐵𝐷𝐼 + (1	|	𝑠𝑢𝑏𝑗𝑒𝑐𝑡) + (1	|	𝑤𝑜𝑟𝑑). Participants are more 

likely to attribute positive versus negative false alarms to the self-reference task (95% HDI: 0.920:1.427). 

As BDI score increases, the probability of a self-reference source attribution increases for negative false 

alarms (95% HDI: 0.021:0.038), but decreases for positive false alarms (95% HDI: -0.050:-0.032).  

 

HDDM 

Figure S8a presents the estimated mean drift rates. Recall that positive and negative values 

indicated evidence accumulation towards “self-reference” and “valence” responses, respectively. 



Participants had numerically positive, but near-zero, drift rates for positive false alarms, suggesting very 

slow accumulation that trends towards a “self-reference” response on average (95% HDI: 0.013:0.098). In 

contrast, participants had negative drift rates for negative false alarms, suggesting accumulation towards a 

“valence” response on average (95% HDI: -0.377:-0.225).  

As shown in Figure S8b, as BDI score increased participants tended to accumulate evidence in 

favor of a “self-reference” response for negative false alarms and weakly in favor of a “valence” response 

for positive false alarms. These conclusions were supported by a Bayesian mixed effects regression 

model: 𝑣	~	𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∙ 𝐵𝐷𝐼 + (1	|	𝑠𝑢𝑏𝑗𝑒𝑐𝑡). Higher BDI scores lead to more positive 

drift rates (more “self-reference” responses) for negative words (95% HDI: 0.005:0.009) but relatively 

more negative drift rates (more “valence” responses) for positive words (95% HDI: -0.012:-0.006).  

Bayesian regression models were also conducted to evaluate the effect of BDI score on threshold 

a, starting point bias z, and non-decision time t0: 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟	~	𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝐵𝐷𝐼. As BDI score 

increased, participants exhibited no discernable changes in thresholds (95% HDI: -0.002:0.001), no 

discernable changes in starting point bias (95% HDI: 0.000:0.000), and weakly increased non-decision 

times (95% HDI: 0.000:0.001).  



 

Figure S7. Source attributions for recognition false alarms. Panel (a) presents the average proportion of 
self-reference task attributions per condition. Panel (b) presents the proportion of self-reference task 
attributions as a function of BDI score. Colors denote normative valence (blue: positive, red: negative). 
Error bars and bands represent 95% bootstrap confidence intervals (Waskom et al., 2017). Panel (a) 
depicts a higher average proportion of self-reference source attributions for positive vs. negative false 
alarms. Panel (b) demonstrates that as BDI score increase, the proportion of self-reference source 
attributions increases for negative false alarms but weakly decreases for positive false alarms. 

  



 

Figure S8. HDDM drift rate estimates for source attributions for recognition false alarms. Colors denote 
normative valence (blue: positive, red: negative). Error bars in panel (a) represent 95% HDIs. Error bands 
in panel (b) represent 95% bootstrap confidence intervals (Waskom et al., 2017). Panel (a) depicts 
sluggish evidence accumulation for positive false alarms and accumulation towards a “valence” response 
for negative false alarms. Panel (b) demonstrates that as BDI score increases, drift rate increases (towards 
a “self-reference” response) for negative false alarms but weakly decreases (towards a “valence” 
response) for positive false alarms.  



Additional Samples without BDI Scores 

 

The data included in this portion of the supplement constitute two pilot studies that preceded the 

study reported in the main text. These studies are highly similar to the main study, but (a) used much 

smaller samples and (b) do not include BDI measurements. Further details are included in the Methods 

section below. The Results section presents all analyses from the main text not pertaining to BDI scores. 

The pattern of results is consistent with those from the main study, with some exceptions related to the 

substantially reduced power and greater number of trials in these earlier studies.  

 

Methods 

 

 In the following subsections, we report only that information which deviates from the main text.  

Participants. As in the sample reported in the main text, participants were recruited through the 

online psychology experiment platform, TestMyBrain.org (Germine et al., 2012), in two samples (N1=95, 

N2=111). Prior to analyses, in each Sample (1, 2) we excluded (21, 25) participants for being younger 

than 18 years old, (5, 0) for not completing all study phases, and (2, 1) for having a negative recognition 

d’ score, leaving a total of (67, 85) participants in the final analyses. The final samples were diverse: (52, 

61)% were female and (67, 51)% were of European descent, with mean (SD) ages of 35.3 (14.4) and 38.1 

(16.5) years in Samples 1 and 2, respectively. Limited analyses of these samples were previously 

described in an open access report by Passell et al (2019).  

Self-Report Measures. Participants in all three samples provided basic demographic 

information, including age, gender, and ethnicity, prior to completing the task. 

Memory Task. Samples 1 and 2 completed 100 encoding trials, instead of the 50 trials completed 

by participants in the main text. Due to a coding error, the word lists were not randomly assigned to each 

of the two encoding tasks for Sample 1; that is, old words were assigned to the same encoding task for 

almost all participants. This error was corrected in Sample 2 and for the participants in the main text. 



Participants completed 200 recognition trials (100 words from encoding plus 100 lures), reflecting the 

increased number of studied words.  

 

Results 

 

Encoding. As shown in Figure S9 (left panel), on average participants responded “yes” to more 

positive than negative words in the self-reference task. They also responded “yes” (indicating that the 

word was positive) to more positive than negative words in the valence task (right panel), and to a greater 

degree than in the self-reference task; this is unsurprising given that, in the valence task, participants were 

asked to indicate whether or not a word was positive.  

To quantify these impressions, the encoding responses were analyzed with a Bayesian mixed 

effects logistic regression model: 𝑝("𝑦𝑒𝑠")	~	𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∙ 𝑡𝑎𝑠𝑘 + (1	|	𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 	+

	(1	|	𝑤𝑜𝑟𝑑). The patterns observed above were all statistically supported. That is, the model indicated that 

participants are more likely to respond “yes” to a positive versus negative word in the self-reference task 

(95% HDIs: Sample 1, 2.565:3.309; Sample 2, 2.597:3.174). Participants are less likely to respond “yes” 

to negative words in the valence task relative to the self-reference task (95% HDIs: Sample 1, -1.806:-

1.019; Sample 2, -1.288:-0.884), but are more likely to respond “yes” to positive words (95% HDIs: 

Sample 1, 2.438:3.518; Sample 2, 2.216:2.766).  

 

Recall. As shown in Figure S10, participants recalled more positive than negative words, as well 

as more words from the self-reference task versus the valence task. The recall advantage for positive 

versus negative words appears to be reduced for words recalled from the valence task compared to the 

self-reference task in Sample 1, however this interaction does not appear in Sample 2. Relative to the 

sample reported in the main text, participants from Samples 1 and 2 recalled a greater number of words 

on average, reflecting the use of twice as many encoding trials as in the main study. 



These observations were partially supported by a Bayesian mixed effects Poisson regression 

model: #	𝑟𝑒𝑐𝑎𝑙𝑙𝑒𝑑	~	𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∙ 𝑡𝑎𝑠𝑘 + (1	|	𝑠𝑢𝑏𝑗𝑒𝑐𝑡). Participants recall more positive 

than negative words from the self-reference task (95% HDIs: Sample 1, 0.165:0.537; Sample 2, 

0.052:0.317). There was no estimated effect on the number of negative words recalled from the valence 

task vs. the self-reference task in Sample 1 (95% HDI: -0.417:0.011), however participants in Sample 2 

were estimated to recall fewer negative words in the valence task (95% HDI: -0.586:-0.163), with no 

estimated difference for positive words in either sample (95% HDIs: Sample 1, -2.000:0.093; Sample 2, -

0.190:0.379).  

 

Recognition. Hit rates. As shown in Figure S11, participants correctly recognized more old 

positive versus old negative words, and more words from the self-reference task versus valence task. 

However—likely due to reduced power—these effects are reduced relative to the sample reported in the 

main text (see Figure S2). These effects do not appear to interact: The recognition advantage for positive 

versus negative words appears similar for words from the self-reference and valence tasks.  

These observations were largely confirmed by Bayesian mixed effects logistic regression models: 

𝑝("𝑜𝑙𝑑")	~	𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∙ 𝑡𝑎𝑠𝑘 ∙ 𝐵𝐷𝐼 + (1	|	𝑠𝑢𝑏𝑗𝑒𝑐𝑡) + (1	|	𝑤𝑜𝑟𝑑). Participants are more 

likely to correctly recognize positive versus negative words from the self-reference task for Sample 2 

(95% HDI: 0.189:0.564) but not Sample 1 (95% HDI: -0.052:0.511). Participants are also estimated to 

correctly recognize fewer negative words from the valence task than the self-reference task (95% HDIs: 

Sample 1, -0.629:-0.091; Sample 2, -0.461:-0.192), with no difference for positive words (95% HDIs: 

Sample 1, -0.369:0.399; Sample 2, -0.091:0.304).  

HDDM. Threshold a, starting point bias z, and non-decision time t0 were all fixed within subjects. 

Drift rate v was allowed to vary by valence and study status. A positive value indicated evidence 

accumulation towards an “old” response and a negative value indicated evidence accumulation towards a 

“new” response. Figure S12 presents the estimated mean drift rates by condition; note here that error bars 

represent 95% HDIs. As shown in the left panel, though numerically in the same direction as the effect 



reported in the main text, evidence accumulated about equally efficiently towards an “old” response for 

old positive words (95% HDIs: Sample 1, 0.760:1.053; Sample 2, 0.718:0.919) compared to old negative 

words (95% HDIs: Sample 1, 0.569:0.862; Sample 2: 0.477:0.678). Similarly, the right panel shows that 

evidence accumulated equally efficiently towards a “new” response (i.e., was more positive) for new 

positive words (95% HDIs: Sample 1, -0.848:-0.558; Sample 2: -0.744:-0.541) compared to new negative 

words (95% HDIs: Sample 1, -0.807:-0.515; Sample 2, -0.833:-0.629). We attribute these differences 

from the main text to reduced power, as evidenced by the wider intervals. 

Signal detection. Figure S13 presents the SDT parameters for memory strength (d’, left column) 

and bias (c, right column). As can be seen, participants exhibited greater memory strength for positive 

than negative words, with a conservative response bias across valences. Contrary to the sample reported 

in the main text, bias appears to be about the same for positive and negative words. Further, d’ values 

were reduced in Samples 1 and 2 relative to the main text, potentially due to the larger number of trials.  

Each parameter was analyzed with a Bayesian mixed effects regression model: 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟	~	𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 + (1	|	𝑠𝑢𝑏𝑗𝑒𝑐𝑡). Consistent with the observations above, 

positive words are associated with higher d’ scores (95% HDIs: Sample 1, 0.037:0.270; Sample 2, 

0.104:0.313) relative to negative words. There was no estimated difference in bias between positive and 

negative words for Sample 1 (95% HDI: -0.078:0.069), however participants in Sample 2 were estimated 

to have a stronger bias to respond “new” for negative versus positive words (95% HDI: -0.162:-0.022).  

 

Source Accuracy. Source accuracy for recognition hits. As predicted, Figure S14 reveals greater 

source accuracy for positive than negative words from the self-reference task. By contrast, and consistent 

with the data reported in the main text (see Figure S6), source accuracy was higher for negative than 

positive words from the valence task. These observations were confirmed by Bayesian mixed effects 

logistic regression models: 𝑝(𝑐𝑜𝑟𝑟𝑒𝑐𝑡)	~	𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ∙ 𝑡𝑎𝑠𝑘 ∙ 𝐵𝐷𝐼 + (1	|	𝑠𝑢𝑏𝑗𝑒𝑐𝑡) +

(1	|	𝑤𝑜𝑟𝑑). Participants are more likely to correctly identify the source of positive versus negative words 

from the self-reference task (95% HDIs: Sample 1, 0.579:1.175; Sample 2, 0.731:1.076). Participants are 



more likely to correctly identify the source of negative words from the valence task versus the self-

reference task (95% HDIs: Sample 1, 0.250:0.819; Sample 2, 0.193:0.526), with a corresponding decrease 

for positive words (95% HDIs: Sample 1, -1.589:-0.793; Sample 2, -1.570:-1.100).  

HDDM. As for the recognition model, threshold a, starting point bias z, and non-decision time t0 

were all fixed within subjects. Drift rate v was allowed to vary by valence and the source (encoding) task. 

Positive and negative values indicated evidence accumulation towards “self-reference” and “valence” 

responses, respectively. Figure S15 presents the estimated mean drift rates by condition; note here that 

error bars represent 95% HDIs. Appropriately, participants had positive drift rates for words from the 

self-reference task (left panel) and negative drift rates for words from the valence task (right panel). For 

words from the self-reference task, evidence accumulated more efficiently towards a “self-reference” 

response for positive words (95% HDIs: Sample 1, 0.530:0.911; Sample 2: 0.563:0.866) relative to 

negative words (95% HDIs: Sample 1, -0.086:0.283; Sample 2, -0.049:0.244). For words from the 

valence task, evidence accumulated less efficiently (i.e., was less negative) for positive words (95% 

HDIs: Sample 1, -0.781:-0.403; Sample 2: -0.502:-0.210) versus negative words (95% HDIs: Sample 1, -

0.825:-0.452; Sample 2: -0.834:-0.532), though there is some overlap between these values for Sample 1.  

Signal detection. Figure S16 presents source discriminability between the self-reference and 

valence tasks (d’, left panel) as well as bias towards a “self-reference” source attribution (c, right panel). 

As shown on the left, participants exhibited greater source discriminability for positive versus negative 

words. The right panel reveals that response bias was liberal for positive words but conservative for 

negative words, indicating that participants tended to attribute positive words to the self-reference task but 

negative words to the valence task.  

A Bayesian mixed effects regression model was used to analyze each parameter: 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟	~	𝑎𝑔𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 + (1	|	𝑠𝑢𝑏𝑗𝑒𝑐𝑡). As seen in Figure S16, positive words are 

associated with higher values of d’ (95% HDIs: Sample 1, 0.222:0.605; Sample 2, 0.124:0.429) and lower 

values of c (95% HDIs: Sample 1, -0.498:-0.146; Sample 2, -0.569:-0.249).   
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Figure S9. Proportion of “yes” responses at encoding for Sample 1 (squares), Sample 2 (triangles), and 
the main text (bars). Columns denote encoding task (left: self-reference task, right: valence task), and 
colors denote normative valence (blue: positive, red: negative). Error bars represent 95% bootstrap 
confidence intervals (Waskom et al., 2017). The average proportion of “yes” responses is higher for 
positive vs. negative words in both encoding tasks. 

  



 

Figure S10. Number of correctly recalled words for Sample 1 (squares), Sample 2 (triangles), and the 
main text (bars). Columns denote encoding task (left: self-reference task, right: valence task), and colors 
denote normative valence (blue: positive, red: negative). Error bars represent 95% bootstrap confidence 
intervals (Waskom et al., 2017). There is a higher average number of positive vs. negative words recalled 
from each encoding task, and a higher average number of words recalled from the self-reference task 
overall. The number of words recalled is lower for Sample 3 overall, likely due to the shorter study list 
length. 

  



 

Figure S11. Hit rate at recognition for Sample 1 (squares), Sample 2 (triangles), and the main text (bars). 
Columns denote encoding task (left: self-reference task, right: valence task), and colors denote normative 
valence (blue: positive, red: negative). Error bars represent 95% bootstrap confidence intervals (Waskom 
et al., 2017). The average hit rate is higher for positive vs. negative words, and for words from the self-
reference vs. valence task.  

 

  



 

Figure S12. HDDM drift rate estimates for the recognition data for Sample 1 (squares), Sample 2 
(triangles), and the main text (bars). Columns denote study status (left: old/studied words, right: 
new/unstudied words), and colors denote normative valence (blue: positive, red: negative). Error bars 
represent 95% HDIs. Evidence accumulates about as efficiently towards an “old” response for old 
positive vs. old negative words, but less efficiently towards a “new” response for new positive vs. new 
negative words.  

  



 

Figure S13. SDT parameter values for the recognition data for Sample 1 (squares), Sample 2 (triangles), 
and the main text (bars). Columns denote parameter (left: d’, right: c), and colors denote normative 
valence (blue: positive, red: negative). Error bars represent 95% bootstrap confidence intervals (Waskom 
et al., 2017). On average, values of d’ are higher and values of c are lower (more liberal) for positive vs. 
negative words. 

  



 

Figure S14. Source accuracy for recognition hits for Sample 1 (squares), Sample 2 (triangles), and the 
main text (bars). Columns denote encoding task (left: self-reference task, right: valence task), and colors 
denote normative valence (blue: positive, red: negative). Error bars represent 95% bootstrap confidence 
intervals (Waskom et al., 2017). The average source accuracy is higher for positive vs. negative words in 
the self-reference task, with the opposite effect in the valence task. 

  



 

Figure S15. HDDM drift rate estimates for the source accuracy data for Sample 1 (square points), Sample 
2 (triangle points), and the main text (bars). Columns denote study status (left: old/studied words, right: 
new/unstudied words), and colors denote normative valence (blue: positive, red: negative). Error bars 
represent 95% HDIs. Evidence accumulates more efficiently towards a “self-reference” response for 
positive vs. negative words from the self-reference task, but less efficiently towards a “valence” response 
for positive vs. negative words from the valence task.  

  



 

Figure S16. SDT parameter values for the source accuracy data for Sample 1 (squares), Sample 2 
(triangles), and the main text (bars). Columns denote parameter (left: d’, right: c), and colors denote 
normative valence (blue: positive, red: negative). Error bars represent 95% bootstrap confidence intervals 
(Waskom et al., 2017). On average, values of d’ are higher and values of c are lower (more liberal) for 
positive vs. negative words.  


