
Revision of XGE-2021-3289 as invited by the action editor, Adam Waytz. 

 

 

 

 

Supplemental Material for: 

Background Music Changes the Policy of Human Decision-Making: Evidence from 

Experimental and Drift-Diffusion Model-Based Approaches on Different Decision 

Tasks 

 

Agustín Perez Santangelo1,2, Casimir J.H. Ludwig3, Joaquín Navajas2, Mariano Sigman2, and 

María Juliana Leone2,4 

1Instituto de Investigación en Ciencias de la Computación, Universidad de Buenos Aires, 

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) 

2Laboratorio de Neurociencia, CONICET, Universidad Torcuato Di Tella 

3School of Psychological Science, University of Bristol 

4Laboratorio de Cronobiología, CONICET, Departamento de Ciencia y Tecnología, Universidad 

Nacional de Quilmes 

  



 

 

2 

 

Supplemental Text 

Timing Hypothesis Control Analyses 

We performed two control analyses to assess the timing hypothesis in more detail. 

Specifically, according to this hypothesis, the observed reduction in RTs for both slow and fast 

music should correlate with a tempo-dependent arousal increase. 

First, we verified that participants were able to synchronize to the beat of the slow and 

fast music in order to measure tempo perception (John Iversen, 2008). To this end, we 

evaluated participants ability to tap to the beat of the music that was played during the decision 

tasks -at the end of the study- and quantified their performance using circular statistics. We 

found that participants were generally able to synchronize to the tempo of the music (Figure. 

S2), showing that the tempo of the music was effectively perceived. To ascertain that the 

perceived faster tempo induced higher subjective arousal as expected (Husain et al., 2002), we 

collected subjective arousal ratings (in arbitrary units (a.u.), ranging from 0 to 1 with 0.001 

resolution) for each music track at the end of the study. We fit the data with a zero-one-inflated-

beta generalized linear mixed model (Arousal-rating-ZOIB, see Supplemental Methods for 

model specification) and found that fast music induced higher arousal levels than slow music 

(Δrating(fast-slow) = 0.30 a.u., CI95 = [0.21, 0.38]) (Figure. S3a). 

Second, we assessed whether music tempo affected arousal states during decision-

making (measured at the end of each trial-block). We fit arousal data with a ZOIB-GLMM 

(Arousal-ZOIB) which revealed that, across-tasks, fast music induced higher arousal than 

silence (Δarousal(fast-silence) = 0.11 a.u., CI95 = [0.06,0.15]) and slow music (Δarousal(fast-slow) = 

0.06a.u., CI95 = [0.01,0.11]), which also induced higher arousal than silence (Δarousal(slow-silence) = 

0.05a.u., CI95 = [0.01, 0.08]) (Figure. S3b). Thus, participants’ subjective arousal was 
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increasingly higher with faster music tempo, relative to silence, throughout all tasks. But did this 

tempo-dependent arousal induction translate to a monotonical reduction of RT, as predicted by 

the timing hypothesis? To answer this, we modeled mean RT for correct responses with a 

shifted log-Normal GLMM (Arousal-RT-GLMM) that included a continuous predictor for 

subjective arousal. By the timing hypothesis we expected a negative coefficient for this 

predictor, i.e., faster RT for higher arousal. The model revealed that overall (βarousal = -0.04, CI95 

= [-0.13, 0.05]) and, consistently, by-task arousal levels were not significantly related to RT 

(Table S2).  

Beat-Synchronization 

We analyzed whether participants may have used the music beat as a cue to respond, 

relying on a motor-synchronization strategy to decide. By this idea, participants would press the 

key to respond when they expected the beat of the background music. Indeed, as described 

above, participants were generally able to synchronize to the beat of the music played during 

the decision tasks (Figure S2). We analyzed whether they relied on this strategy to decide, 

using circular statistics to assess to what extent the keypresses were phase-locked to the 

background-music-beat times (see Supplemental Methods). We found that only 10% of the 

keypress-time data was compatible with a synchronization strategy (even allowing for a non-

zero offset, i.e., responses not perfectly aligned to the beat), but not consistently either within 

participants, task, or music condition (e.g., a participant that synchronized on RDK trials with 

slow music, did not with fast music in the same task) (Figure S4). This suggests that 

synchronization did not play a relevant role in the effects of music on decisions. 

Liking 

After listening to a 12-second excerpt of each musical track (the same we used as our 

experimental manipulation), participants rated their subjective liking with a clickable visual 
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analogue scale (ranging from 0 -nothing- to 1 -a lot- with a resolution of 0.001). We visually 

inspected these data and found that it did not meet any informative distributional assumptions. 

Thus, we performed a non-parametric paired-sample Wilcoxon signed rank test for paired 

samples over the difference in liking between music conditions for each participant (using 

Bayesian methods with bayesWilcoxTest (Reinhardt, 2020)). This test revealed that both 

conditions produced similar liking ratings as the difference (Δlike(fast-slow) = -0.11 a.u, CI95 = [-0.54, 

0.33]) was not significantly different from zero. Further, we performed a similar test to assess 

whether ratings were lower than the middle point of the visual-analog scale (i.e., 0.5). We found 

that liking ratings were lower for both slow (median = 0.40, V = 159.5, p-value = 0.026) and fast 

music (median = 0.35, V = 110, p-value = 0.0035). These results held when grouping 

participants by level of musicianship. For musicians, Δlike(fast-slow) = -0.02 a.u. (CI95 = [-0.77, 

0.70]) and both liking ratings were lower than the scale middle point (slow music: median = 

0.34, V = 23, p-value = 0.062; fast music: median = 0.32, V = 18, p-value = 0.03). For non-

musicians, Δlike(fast-slow) = -0.16 a.u. (CI95 = [-0.70, 0.37]) and both liking ratings were lower than 

the scale middle point (slow music: median = 0.42, V = 63.5, p-value = 0.11; fast music: median 

= 0.37, V = 42, p-value = 0.03). 

To provide reassurance to these findings, we employed a parametric approach (fitting 

data with a ZOIB-GLMM, similar to arousal-ratings analysis) and found consistent results. 

 

Additional Music Stimuli Testing 

First, to address the possibility that the slow tempo (40 bpm) manipulation could have 

distorted relevant features of the original music piece, we ran a reduced version of our 

experiment (with Marble task only) in which we tested the effects of a new slow version (at 70 

bpm) on decision-making. We analyzed data the same way we did for the main experiment. We 
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observed (N = 20) that the new slow music had similar effects on decisions as the 40 bpm 

music had, i.e., it induced faster (ΔRT (slow-silence) = -124ms, CI95 = [-169, -87] ms) and less 

accurate (OR(slow/silence) = 0.813, CI95 = [0.597, 1.110]) decisions, which mapped onto a lower 

decision threshold (Δa(slow-silence) = -0.161, CI95 = [-0.225, -0.099])  in DDM (Figure S8). 

These results suggest that the new slow version (which should be normatively less 

disruptive of temporal coherence) had similar effects as those we reported using the original 

slow music, providing further support for both the appropriateness of our stimulus selection and 

the discussed tempo-independency of the observed effects on decision-making.  

Second, to understand -at least on an exploratory basis- to what extent our results and 

interpretations hold with other music, we ran an independent reduced version of our original 

experiment (with the Marble task only), but this time using new stimuli. We used for this new 

experiment a blues and a techno excerpt (both at 190 bpm). Our original results suggested that 

mood (instead of arousal) might be the main driver of the effects of music we observed. Thus, 

we expected (although there are certainly many factors that are different between our original 

stimuli and these new pieces, aside from pleasantness) that more pleasant music (like the blues 

excerpt, relative to techno) could induce slower and more accurate decisions. The results from 

this new experiment showed that blues music had minimal impact on decisions (slightly slower 

yet inaccurate decisions, mapping to a marginally more cautious decision threshold). In 

contrast, the techno excerpt, produced similar effects as those described in the main text: faster 

(ΔRT (slow-silence) = -41ms, CI95 = [-79, -2] ms) and less accurate (OR(slow/silence) = 0.808, CI95 = 

[0.552, 1.170]) decisions, which mapped onto a lower decision threshold (Δa(slow-silence) = -0.071, 

CI95 = [-0.143, -0.001]) in DDM (Figure S9). 
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Thus, it seems that there could be a shared signature between the original stimulus and 

this new techno excerpt that is not shared with the blues track. This signature might be an 

“unsettling” character, given that liking, pleasantness and tension ratings for these pieces were 

lower than the ratings for the blues excerpt. At the same time, the shy results with blues might 

be -in part- attributable to effect saturation (since accuracy rates are already high for silence, 

there is little room for the putative expected improvement in accuracy) and low number of trials 

and subjects (since we had to adapt our procedure to a non-in-lab setting). Interestingly, both 

new tracks (blues and techno) had the same fast tempo. This suggests that, consistent with the 

tempo-independency we observed with our original stimuli, tempo might have a secondary role 

in how music affects decisions (since music at the same tempo produced different effects on 

decisions), and rather mood might be the main driver. 

Supplemental Methods 

Participants Sample Size 

We ran a small pilot study (n=8) with the same design as the main experiment (except 

that we tested only one decision-making task: Marble) in order to estimate an effect (β40bpm = -

31ms) that would allow us to calculate the appropriate sample size for the main experiment. 

Pilot data power analysis (based on 1000 iterated simulations (Brysbaert & Stevens, 2018; 

Green & MacLeod, 2016) per sample size analyzed, namely 8, 16, 24, 32 and 40) showed that -

to detect a significant effect of music with a Wald z-test over the coefficient for slow music over 

RT- we would need, at least, n = 24 to achieve a power of at least 80%. Since our study 

required a 3-session commitment, we intentionally overshot the number of participants to 32 to 

safeguard sample size from any possible participant dropping out. With n=32 estimated power 

was 92.4% (95% confidence interval = [90.58, 93.97]), at significance threshold α = 0.045. 
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Decision-Making Tasks 

Tasks were programmed in MATLAB (MathWorks) using Psychtoolbox extensions 

(Brainard, 1997). Task structure is detailed in the main text methods. For all tasks, trials were 

interleaved by an inter-trial interval (ITI) drawn from a uniform distribution ITI ∼ uniform (0.7s, 

1s). During the ITI a fixation cross was displayed (.65º visual angle) to draw attention to the 

center of the screen. Next, stimuli were displayed on screen until a response was made or until 

a time deadline (3 seconds, learnt by the participant during practice trials) was reached. Overall, 

only 583 trials were lost due to time-outs (~0.58% of the total database).  

Next, we provide details for each task: 

 

Random dot kinetogram (RDK)  

This perceptual-motion task was adapted from refs. (Shadlen & Kiani, 2013; Zylberberg 

et al., 2012). Participants had to decide whether a moving cloud of dots (each dot had size=0.1º 

and moved at speed =50º/s) presented in a centered circular aperture (8º diameter) appeared to 

move to the left or to the right. Difficulty was given by the proportion of dots moving in the same 

direction (i.e., % coherence) and we set it at 51.2, 12.8 and 3.2% (for each response location), 

representing easy, medium and hard trials, respectively. Dot density was set at 16.7 dots/(º)2/s. 

Sequential position of dots was determined by a limited-lifetime algorithm(Palmer et al., 2005) to 

avoid single-dot tracking: A first group of dots is shown in the first frame, a second group are 

shown in the second frame, a third group is shown in the third frame. Then in the next (4th) 

frame, some percentage of the dots from the first frame are replotted in motion according to the 

speed/direction and % coherence value (as opposed to randomly replaced). Similarly, the same 

is done for the second group, etc. 
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Marble 

This numerosity and contrast-based perceptual task was adapted from ref.(Dutilh & 

Rieskamp, 2016) . Participants had to decide whether a screen-centered 7.72º-side square 

board (displayed over a gamma-corrected gray background (to avoid any confounding effects of 

luminance non-linearity)) containing 100 black and white marbles in total (0.45º diameter) had a 

greater number of black or white marbles. Difficulty was given by the percentage of white 

marbles and we set it at 38 (62), 45 (55) and 48 (52) for black (white) trials, representing easy, 

medium, and hard trials, respectively. 

 

City  

This inference-from-memory general knowledge task was adapted from ref.(Pleskac & 

Busemeyer, 2010) and comprised two consecutive stages. First, we screened the knowledge of 

82 world cities by sequentially showing the participants the names of these cities and asking 

them to report whether they knew each of them with a keypress. Then, for each participant, we 

constructed all possible city pairs from the reportedly known cities and computed the absolute 

difference between the official population of both. Then, to set difficulty levels, we divided the 

whole set of pairs into tertiles following that difference value and flipped city-names according to 

the response location. On the second stage, the names of the cities in each pair were displayed 

in yellow (Arial 12) to the left and right of the screen-center (6.2º eccentricity) and participants 

had to choose the one –left or right- they considered had the highest population. No city name 

was repeated on consecutive trials. 
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Lexical  

This lexical categorization task was adapted from refs. (Gonzalez-Nosti et al., 2014; 

Ratcliff et al., 2004). Participants had to decide whether a string of 5 to 8 letters displayed in 

white (Arial 35) on the center of the screen was a word in Spanish or not. Following ref.(Ratcliff 

et al., 2004), we constructed difficulty levels over a wordness measure which integrates several 

lexical features that map onto evidence-accumulation rates in the Drift-Diffusion Model of 

decision-making (DDM). First, we downloaded (from the EsPal Corpus(Duchon et al., 2013)) 

and annotated 2605 Spanish 5-to-8-letter nouns (with all lexical-features metadata), with RT 

and age of acquisition (AoA) data from ref(Gonzalez-Nosti et al., 2014). Since faster 

accumulation rates yield faster and more accurate lexical categorization, we explored how 

lexical variables correlated to these decision outcomes. We found that -qualitatively- higher log 

frequency of occurrence, lower AoA and lower orthographic Levenshtein distance 20 (OLD20, 

i.e., the minimum number of edits required to obtain 20 words from a given word) were 

associated with faster RT. Thus, we used RT as a summary measure of wordness. We divided 

all words into 3 groups according to RT terciles, which represented easy, medium and hard 

difficulties. We randomly divided each group into two subsets (we checked all lexical features 

(including distribution of word length) were comparable between subsets). One subset was used 

for word stimuli, the other was used as a base-word pool to construct non-words. Non-word 

candidates were obtained using the Wuggy algorithm (Keuleers & Brysbaert, 2010) (which 

preserves language-specific phonotactic features) over each base-word string. We selected the 

non-word candidate that minimized the difference between its OLD20 and the base-word’s 

OLD20.  Then, we assigned the difficulty level for these non-words by inverting the difficulty of 

the base-words it was derived from (e.g., easy -low RT- base-words was categorized as a hard 

non-word). This way, we obtained a database comprising easy, medium, and hard words and 
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non-words, from which we sampled 120 of each category (720 in total) to use as our stimuli pool 

for each task run. 

 

Snack.  

This value-based task was adapted from ref.(Milosavljevic et al., 2010), and comprised 

two stages. First, participants reported their subjective ratings (i.e., how much they would like to 

eat) for each of 100 snacks using a 5-point Likert scale ranging from -2 (nothing) to 2 (a lot) 

starting point was random to account for anchoring effects. Before participants started to rate, 

they watched all snacks on screen to promote an effective use of the scale. Once we collected 

all snack ratings, we constructed snack pairs according to their rating difference. On the second 

stage, snack-images of a pair were displayed to the left and right of the screen center (4.9º 

eccentricity) and participants had to choose the item they preferred. A 6.5º-sided yellow squared 

box was displayed around the selected snack. Difficulty was given by the absolute difference 

between subjective values reported on the first stage for each item of a pair and we set it at 3, 2 

and 1 for E, M and H trials, respectively for each response location. No given item was shown in 

two consecutive trials. Further, no accuracy feedback was given throughout the task. All images 

were scraped from a popular Argentinian supermarket online-catalogue and then embedded on 

a black background for display. 

Auditory stimuli manipulation 

We passed a piano VSTi (Pianoteq 6 stage) to a Musical Instrument Digital Interface 

(MIDI) file of the composition originally adapted for piano and added a percussive quarter-note 

beat track to emphasize tempo as a salient feature. Care was taken to prevent audio 

deformations and to assure even levels of sound pressure for both tracks (approx. 60dB) during 
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playback. Both tracks contain only filled intervals (i.e., there are no silences nor gaps) which is 

important in light of possible time-distortions when judging filled and unfilled intervals (e.g., 

clicks) (Wearden et al., 2007). Finally, high-quality (sample rate = 44.1 kHz, bitrate = 352kbps) 

mono Wave files (available at https://osf.io/fguq6/) were exported and later played (on both, left 

and right channels) when called by the task-scripts, via PsychPortAudio (a sound driver from the 

Psychtoolbox suite).  

Music-related tasks 

The tapping task was adapted from ref.(John Iversen, 2008). After practice with 

unrelated music, participants were instructed to follow the beat of the music that was going to be 

played, with consecutive keypresses (in the same fashion they would usually tap with their feet 

or hands). We collected 50 keypresses per music track.  

Arousal and liking ratings were measured after the participant listened to a 12-second 

excerpt of each track, with a clickable visual analogue scale ranging from 0 (nothing) to 1 (a lot), 

with resolution of 0.001. Importantly, as for arousal reports during the decision tasks, we 

instructed participants to report felt arousal, and we used the same prompting question.  

Music order was randomized between participants for both tasks. Tapping ability and 

ratings for liking and arousal were measured at the end of the experiment to avoid revealing the 

purpose of the study to participants prematurely. 

Data Analysis 

Decision outcomes (RT and accuracy)  

Our statistical approach relied on Bayesian estimation of generalized linear mixed 

models (GLMM) with Hamiltonian Monte Carlo (HMC) sampling method. GLMMs extend the 

scope of general linear models to all the exponential family of probability distributions. 

https://osf.io/fguq6/
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Moreover, random effects modeling (the “mixed” part of GLMM) allowed us to represent data-

dependency through grouping variables which, at the same time, allowed for population-level 

inference and interpretation, and increased model parsimony (less parameters to estimate). 

Further, this strategy is robust to unbalanced data (as was ours). We created our GLMMs within 

the Stan computational framework (http://mc-stan.org/) accessed with brms package (Bürkner, 

2017) in R (R Core Team, 2020). To improve convergence and guard against overfitting, we 

specified weakly informative priors.   

We first excluded timed-out (~0.58% of all data) and impulsive responses (RT < 0.25sec 

(< 0.2% of all data)) from the database since these data do not represent decisions.  

For the RT analysis, we used RT for correct trials because correct responses better 

represent decisions and because error trials were slower (median RTcorrect = 810 ms, median 

RTerror =1150 ms), only represented 16.4% of data and were not homogeneously distributed 

across tasks (RDK 3.1%, Marble 2.7%, City 6.4%, Lexical 1.5%, Snack 2.7%), which hindered 

model estimation.  

RT conditional  distributions (by task and by music condition) were right-skewed (as is 

typical for these decisions (Ratcliff & McKoon, 2008)), and observed conditional (by participant, 

task and music condition) means were proportional to its dispersion (standard deviations, SD). 

Thus, we fit our data with a shifted log-normal (Wagenmakers & Brown, 2007) GLMM. Since our 

approach was hypothesis-driven we defined our minimal model as the one including the 

hypothesis-related fixed factors (music and task) and their interaction, and by-participant 

random effects over these fixed factors, for the distribution location parameter (µ).  

We then specified, fit, and compared growingly complex models that included (or not) 

control-related fixed factors (and their interactions) and that varied in their random-effects 

structure. Regarding the fixed factors, we included difficulty, response location, their interaction, 

http://mc-stan.org/
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their interaction with task, their interaction with music condition and their triple interaction with 

task and music condition. Further, given that each task was completed in approx. 25min, 

chronological effects (fatigue, learning, hurry-to-leave) were likely to play a role in observed 

performance (Parasuraman & Mouloua, 1987). However, since music-condition order within a 

task was not fixed, music and chronology effects were not confounded. Thus, we included a 

mean-centered scaled predictor for trial number (and its interaction with task) to control for this 

effect. We also varied the random-effects structure, by including (or not) order-related grouping 

variables (task order and music order within a task) and by-participant variability over fixed-

effects (random slopes). For each of these growingly complex models, we drew 6000 samples 

(four chains of 2500 samples from which 1000 were for warmup) with an adaptive delta of 0.95 

to minimize non-divergent transitions after warmup. 

To diagnose each model, we visually inspected MCMC chains with trace plots for each 

parameter, we evaluated their autocorrelation, and assessed chain-mixing by determining if R̂ 

values were smaller than 1.01 using the launch_shinystan function (from rstanarm (Goodrich et 

al., 2018)).  

We then performed selection by computing and comparing the out-of-sample predictive 

accuracy of the models with an approximation to leave-one-out (loo) cross-validation using 

Pareto smoothed importance sampling (Goodrich et al., 2018). The model with the highest 

predictive accuracy was selected as the winning model (see its specification in main text 

Methods). For this model, we then drew 12000 samples (four chains of 5000 samples from 

which 2000 were for warmup) with an adaptive delta of 0.95. 

We validated the winning model with posterior predictive checks (PPC) by simulating 

2000 new datasets from the estimated parameters posterior distributions, and computing mean 

and SD of the conditional distributions (by task and music) of each set. We then obtained the 
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mean and credible interval (containing 95% of the probability density, CI95) of the distribution of 

mean and SD values and compared it to the observed-data summaries. This approach not only 

allowed us to assign credibility to the model, but also to have a measure of uncertainty derived 

from the distribution of simulated summary statistics. We also computed a Bayesian 

approximation to R2 (18) for a point estimate of the model (the mode) to have a more typical 

sense of in-sample goodness-of-fit. 

For the accuracy analysis, we applied the same method as for RT, except that here the 

dependent variable is binary (i.e., it only takes two values 1: correct response, 0: error) and was 

accordingly modeled as a random variable with a Bernoulli probability distribution with a logit 

link to the linear predictor.  

For validation, additionally to PPC and instead of R2, we computed the area under the 

Receiver Operating Characteristic curve (AUC-ROC), which reflects the classifying ability of the 

model predictions (as a rule-of-thumb, AUC-ROC = 0.8 denotes a good predictive model). 

Finally, for both models, we tested our hypotheses directly over the posterior (i.e., 

updated) probability distribution of an effect (i.e., difference/odds ratio between marginal or 

conditional means), by computing the CI95, (which is the benchmark for hypothesis testing within 

the Bayesian framework) of the effect distribution and assessing whether this interval contained 

a null-effect value (0 for differences, 1 for odds ratio). If the CI95 did not include this value, we 

interpreted this as credible support for the hypothesis that the corresponding effect is different 

from that null value, which we refer in the main text as “significant”, to match the concept from 

the more traditional frequentist framework. Marginal and conditional posterior distributions were 

computed either with custom R code or with the tidybayes package (Kay, 2020). To aid 

interpretation, the summary values of the reported effects (mean and CI95 for both RT and 
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accuracy) were calculated after transforming the marginal/conditional posterior distributions to 

the appropriate scale: milliseconds (ms) for RT; odds of a correct response for accuracy. 

 

Subjective arousal 

We divided the analysis in three parts and used the same overall rationale (model 

diagnosis, selection, validation, and hypothesis testing) as for the decision outcomes analysis.  

First, to determine the effect of music tempo on subjective arousal we fit arousal ratings with a 

zero-one-inflated-beta (ZOIB) (Ospina & Ferrari, 2012) GLMM using Bayesian methods. This 

mixture-of-distributions modelling approach is a better representation of the putative underlying 

generative process of arousal ratings (bounded between 0 and 1) and allowed us to dissect 

discrete events (zeros and ones) from continuous ratings and build linear models over each of 

its four parameters. After selection, we found that the model with music condition (slow, fast) as 

fixed factor and with random intercepts by participant on µ (mean of re-parameterized beta 

distribution) explained our data best.  

Similarly, to determine the effect of music tempo on subjective arousal during decision-

making we fit arousal ratings with a ZOIB GLMM with music condition, task, their interaction and 

a numerical predictor for block number (to account for chronological effects (van den Brink et 

al., 2016), allowed to vary by task) as fixed factors and full random-slopes by participant ID. 

Third, to test the relation between arousal and RT, we computed the RT-mean of the last 

six correct trials by trial-block as our dependent variable (since arousal was measured at the 

end of each trial-block). We specified a shifted-logNormal Bayesian GLMM that included task 

and a continuous predictor for arousal (and their interaction) as fixed factors. We also included 

predictors to control for mean trial difficulty (in those six trials) and chronological effects (using 
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block number), and their interaction with task. We also specified Participant ID as grouping 

factor with random effects over all fixed factors (but not their interactions). Since arousal is a 

continuous predictor, we computed the marginal (across tasks) and conditional (by task) 

regression coefficients for arousal with their respective CI95 and tested our hypothesis by 

assessing whether these intervals contained 0 (Table S2). 

 

Tapping 

First, we removed the first 10 keypresses of each tapping session as a conservative 

measure against “landing” presses (i.e., adjusting to the beat progressively). Then, to 

understand whether participants were tapping on the beat, we built a beat vector (i.e., a vector 

with the actual-beat times. E.g., for slow music this vector is: [0, 1.5s, 3s, 4.5s, etc.]) and 

computed the difference of each keypress time to the closest beat in this vector. These 

differences were divided by the beat duration (1.5s for slow, 0.31s for fast) to obtain relative 

differences (by definition, maximal relative difference is half the beat duration) which were then 

transformed to radians. Next, we analyzed these data with circular statistics based on the 

circular version of the Normal distribution: the von Mises probability distribution. Specifically, we 

first tested unimodality using CircMLE (Fitak & Johnsen, 2017), which determines the best 

circular model (among models that include uniform, unimodal and bimodal circular distributions) 

and applies a Rayleigh test for unimodality that tells whether there is evidence for rejecting the 

hypothesis of a uniform distribution over the circle, but not whether there might be a phase-shift 

(i.e. a participant might have tapped at the actual beat, but with a constant delay of time). To 

assess whether participants were synchronizing their tapping phase to the beat, we tested 

whether the mode of these unimodal data was equal to zero with a V-test (Landler et al., 2018). 
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Last, since these analyses were uninformative of whether participants tapped over 

multiples of integer powers of 2 of the beat durations (e.g., for slow music, instead of tapping 

every 1.5s, every 0.75s or 3s), we computed the mean and standard deviation (SD) of the 

difference between consecutive keypresses. For clarity, we also computed the ratio of these 

means and SD to the beat duration. This way, the value of this beat ratio represented whether 

participants tapped at the actual tempo (ratio = 1), faster (ratio <1) or slower (ratio>1). 

 

Beat-synchronization 

To detect whether participants adopted a synchronization strategy to decide, i.e., they 

were pressing the key to respond when they expected the beat of the music that was being 

played on the background, we followed the same rationale as for the tapping analysis. However, 

here, we evaluated the alignment of the responses (decisions) to the background-music beat. 

Critically, we recorded the timestamp of each response and of the music onset (which was 

played continuously over 5 trial-blocks) within the decision-task MATLAB scripts. Thus, by 

constructing a beat-vector over that period, we were able to compute the difference of the 

responses’ keypress times relative to the beat duration. After data transformation we applied the 

same circular modeling strategy as for tapping analysis and applied a Rayleigh test to detect 

distribution unimodality (Landler et al., 2018). Further, we computed the proportion of block-

groups on which participants relative keypresses were indicative of synchronization (significant 

Rayleigh test) and we qualitatively assessed consistency of this strategy within participant, task, 

and music condition. Last, we considered whether participants that synchronized on more than 

one block-group of trials, had a consistent phase (i.e., whether they were responding in a 

specific moment of the beat-cycle). Homogeneity in this phase by participant would speak in 

favor of a synchronization strategy. 
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Decision Process (DDM) 

To dissect the effects of background music on the decision process, RT and accuracy 

data were simultaneously fit to the DDM using the HDDM Python toolbox (Wiecki et al., 2013) 

which implements Bayesian estimation of parameters with literature-based priors following a 

generative-node hierarchical tree structure. This is a flexible and reliable version for DDM 

parameter estimation that is robust to unbalanced data (Ratcliff & Childers, 2015). Critically, we 

constructed linear (mixed) models over each DDM parameter using the HDDMRegressor 

function, to quantify and test the impact of our experimental conditions on each component of 

the decision process. We specified a minimal model which included main-effects terms for task, 

difficulty and chronological effects and was informed by theoretical constraints (Ratcliff & 

McKoon, 2008), namely: evidence threshold was allowed to vary between tasks, difficulty only 

affected accumulation rate (since participants are unaware of the type of trial they would get 

next, thus virtually dismissing any anticipatory strategy that would impact on the evidence 

threshold); starting point was fixed at 0.5 (unbiased priors); non-decision time was free to vary 

between tasks since encoding times of different types of information -related to each task- vary 

(reflected on the distribution of minimum RT by task); inter-trial variability of the accumulation 

rate was included to account for slow errors (Ratcliff & McKoon, 2008). Crucially, we included 

by-participant random-intercepts over evidence threshold and accumulation rate, and random-

slopes over non-decision time task effects. 

We used the minimal model to build new models in which either the evidence threshold 

or the accumulation rate or both were allowed to vary by music condition since -a priori- we had 

no reasons to believe that the music effects were exclusive to a single DDM parameter. We 
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estimated these models by sampling 2000 traces with a 500 burn-in. Later, the winning model 

was better estimated with 12000 traces and a 5000 burn-in. 

To diagnose estimation, we visually inspected MCMC chains and evaluated trace 

autocorrelation for each estimated coefficient. 

To select the best model, we compared the Deviance Information Criterion (DIC) of the 

competing models as to select the one with the best trade-off between explanatory power and 

model complexity (i.e. lowest DIC), which yields similar results to the Watanabe-Akaike 

information criterion (WAIC) in evidence-accumulation models (Evans, 2019).  

To validate the selected model, we performed PPC as for the GLMMs, only that here two 

conditional RT distributions are represented (for correct and error responses). 

Model inference for hypothesis testing was based on analysis of conditional posterior 

distributions, as described in the main text of the article. 

Models 

Here, we report specification, priors, and validation for all models referenced in the main and 

supporting text and on which we based all inferences. For clarity, specifications are written with 

lme4-like syntax (Bates et al., 2015).  

A. Decision outcomes  

a. RT-GLMM 

i. Specification.  

1. Family:  

Shifted log-Normal: 
( , ) ~ NormalRT e ndt  +  
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2. Formula:  

µ~ task * (music * difficulty + resploc + trial) + 

         (task + music + difficulty + resploc + trial | pID) 

log(σ) ~ task * (music + difficulty) 

log(ndt) ~ task                  

3. Priors:    

µ intercept ~ normal (-0.4,0.4) 

log(σ) intercept ~ normal (-0.7,0.2) 

log(ndt) intercept ~ normal (-1.7,0.1) 

µ betas ~ normal (0,0.4) 

σ betas ~ normal (0,0.2) 

ndt betas ~ normal (0,0.1) 

sd ~ normal (0.2,0.2) 

ii. Validation.   

1. R2 = 0.41, CI95 = [0.40,0.41] 

2. Posterior predictive checks (PPC) (Figure. S6a) 

b. Accuracy-GLMM:  

i. Specification.  

1. Family:  
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Bernoulli: ~ ( )Accuracy Bernoulli   

2. Formula:  

logit(π) ~ task * (music * difficulty + resploc + trial) + 

   (task + music + difficulty + resploc + trial| pID)           

3. Priors: 

Intercept ~ student (3,0,2.5) 

betas ~ normal (0,1.5) 

sd ~ student (3,0,2.5) 

ii. Validation.   

1. Area under the Receiver Operating Characteristic curve: 0.79 

2. PPC (Figure. S6b) 

B. Subjective arousal 

a. Arousal-rating ZOIB (music-elicited arousal)  

i. Specification.  

1. Family: 

Zero-one-inflated-beta 

))* ( * , *(( 1 )) ( )* ( )~ (1A rrousal Beta Bernn oB ulli Be noul ier oulli l      − +−   

2. Formula: 

logit (µ) ~ music + (1 | pID) 



 

 

22 

 

log (ϕ) ~ 1 

logit (α) ~ 1 

logit (γ) ~ 1 

3. Priors:  

µ intercept ~ normal (0, 1.5) 

µ betas ~ normal (0, 1.5) 

ϕ intercept ~ student (3,0,2.5) 

α ~ logistic (0,1) 

γ ~ logistic (0,1) 

sd ~ student (3, 0, 2.5) 

ii. Validation.   

1. R2 = 0.43, CI95 = [0.24,0.60] 

2. PPC (Figure. S7a) 

b. Arousal ZOIB (music-elicited arousal during decision-making)  

i. Specification.  

1. Family: 

Zero-one-inflated-beta 

))* ( * , *(( 1 )) ( )* ( )~ (1A rrousal Beta Bernn oB ulli Be noul ier oulli l      − +−   

2. Formula: 
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logit (µ) ~ task * (music + block) +  

              (task * (music + block) | pID) 

log (ϕ) ~ 1 

logit (α) ~ 1 

logit (γ) ~ 1 

3. Priors:  

µ intercept ~ student (3,0,2.5) 

µ betas ~ normal (0, 1.5) 

ϕ intercept ~ student (3,0,2.5) 

α intercept ~ logistic (0,1) 

γ intercept ~ logistic (0,1) 

sd ~ student (3, 0, 2.5) 

ii. Validation.   

1. R2 = 0.85, CI95 = [0.84,0.85] 

2. PPC (Figure. S7b) 

c. Arousal-RT GLMM (Arousal effect on mean RT) 

i. Specification.  

1. Family:  

Shifted log-Normal: 
( , ) ~ NormalRT e ndt  +    
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2. Formula:  

µ ~ task * (arousal + difficulty + block) + 

         (task + arousal + difficulty + block | pID) 

log(σ) ~ task * (arousal + difficulty) 

log(ndt) ~ task * arousal               

3. Priors:    

µ intercept ~ normal (-0.4,0.4) 

log(σ) intercept ~ normal (-0.7,0.2) 

log(ndt) intercept ~ normal (-1.7,0.1) 

µ betas ~ normal (0,0.4) 

σ betas ~ normal (0,0.2) 

ndt betas ~ normal (0,0.1) 

sd ~ normal (0.2,0.2) 

ii. Validation. 

1. R2 = 0.70, CI95 = [0.68,0.71] 

2. PPC (Figure. S7c) 

 

C. Decision process (DDM) 

a. Specification.  
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i. Family 

WFPT (Navarro & Fuss, 2009):  

( , ) ~ ( , , , , )RT Accuracy WFPT v a z t sv  

ii. Formula 

• Evidence-accumulation rate (v) ~ task * (difficulty + trial) + music 

• Evidence threshold (a) ~ task * (music + trial) 

• Non-decision time (t) ~ task + trial 

• Starting point (z) = 0.5 (fixed) 

• Accumulation rate inter-trial variability (sv) ~ task  

iii. Priors (Wiecki et al., 2013). Note, HN: half-normal. 

• v: µ ~ Normal (2,3), σ ~ HN (2) 

• a: µ ~ Gamma (1.5,0.75), σ ~ HN (0.1)  

• t: µ ~ Gamma (0.4,0.2), σ ~ HN (1)  

• sv: µ ~ HN (2)  

b. Selection  

i. Deviance information criterion (DIC) comparison (Table S3) 

c. Validation   

i. PPC (Figure. S5) 
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Note, music: music condition (silence, slow -at 40bpm-, fast -at 190bpm-); task: decision 

task (RDK, Marble, City, Lexical, Snack); difficulty: trial difficulty (easy, medium, hard); resploc: 

response location (left, right); trial: scaled and centered trial number within a task; pID: 

participant ID; mRT: mean RT; ndt: non-decision time (shift); DDM: Drift-Diffusion Model; WFPT: 

Wiener first-passage time distribution; betas: prior for linear predictor coefficients.  
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Supplemental Figures and Tables 

Figure S1. Music effects on decision-making by task.  

a. Estimated RT and accuracy (i.e., probability of a correct response) means (averaged across 

difficulty and response location) for each task and music condition are represented jointly. Note 

that, under the Bayesian framework, model estimation returns a probability distribution of values 

for each parameter that is the result of combining the prior probability for each parameter and 

the likelihood of the observed data given a parameter value, called the updated or posterior 

distribution (henceforth, posterior). Here, estimated-means posteriors are represented as “eye” 

intervals -with higher probability mapped to greater width- and the point-estimates (the posterior 

median) are represented by colored dots. Contrasts between conditions (Table 1) were 

performed on the linear predictor scale (log and logit, for RT and accuracy, respectively), but we 

transformed these estimates (to linear time units and odds ratio, respectively) to aid 

interpretability. These effects were traced to b. A reduction in evidence threshold (a in DDM). To 

mimic the DDM graphical depiction, coordinates were flipped. On the vertical axis we represent 
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the change in threshold relative to silence condition (grey horizontal line). The horizontal axis 

represents the probability density of the contrast values. The black vertical segments represent 

the CI95 and the embedded colored dots are the medians of the contrast distributions. Both slow 

and fast music significantly lowered the decision threshold relative to silence on all tasks (Table 

1). All results are based on data from the 32 participants. 
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Figure S2. Participants were able to tap to the tempo (beat) of both slow and fast music. 

We used circular statistics (Fitak & Johnsen, 2017; Landler et al., 2018) to assess whether 

participants were able to tap to the beat of unrelated (training, purple) music, and of slow and 

fast music used in the main decision-making experiment. a. After transforming keypress-data to 

circular data (relative to the beat of the music that was being played), we assessed unimodality 

with the Rayleigh test. Clock-plots were constructed with tapping data from each of the 32 

participants (from left to right, and from top to bottom) and when unimodality was significant 

(represented by the presence of a solid radial line), the estimated circular mean (the angle of 

the solid radial lines) generally matched the observed mean (colored dot). For each clock-plot, 
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the small vertical black line indicates the start of the beat cycle (0), with time following a 

clockwise direction. Asterisks denote when the estimated mean was not different from 0 (i.e., 

participant was tapping on the beat) assessed with a directional V-test. If participants were 

tapping to a different (non-multiple) beat, taps would shift phase on every cycle, since each 

cycle is referenced to the true beat, which would be evidenced as a departure from unimodality. 

Further, tapping exactly to the beat of the fast music was very challenging since each beat 

duration is 60/190=0.31s. So, phase-shifts were expected. With very few exceptions, 

participants were generally able to perceive and tap to the beat (92.7% of tapping data). Phase-

synchronization was less common (60,4%), mainly because of the shift on fast music. In any 

case, beat synchronization (and not phase) was the relevant feature to our hypotheses. 

However, these results do not answer whether participants were tapping exactly at every beat 

or rather at multiples (e.g., every 2 or 3 beats), which would be relevant to determine whether 

participants accurately perceived the actual tempo of the music (i.e., if they tapped at every 2 

beats for the fast music, the subjective tempo would be half (95bpm) the actual tempo 

(190bpm)). b. Although for training music (at 100bpm, purple) most participants tapped every 2 

beats, subjective beat matched the actual beat (i.e., participants did not tap over multiples of the 

beat) for slow and fast music, which is depicted with dashed lines. Colored bars and solid 

vertical lines represent mean beat ratio ± SD for each participant.  
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Figure S3. Faster music tempo induces higher subjective arousal levels. 

Fast music induced higher arousal levels both after and during decision-making. a. After 

listening to a 12-second excerpt of each musical track (the same we used as our experimental 

conditions), participants rated their subjective arousal with a visual analogue scale (ranging from 

0: low to 1: a lot). We represent the estimated means on the left-side plot in which scattered 

dots are the raw data (jittered on the x axis for clarity), white dots are the medians of the 

posterior distributions (colored densities) for each music and black vertical lines represent CI95 

of the posteriors. Hypothesis testing was performed over the difference between conditions for 

arousal ratings (right-side plot), revealing that fast music elicited higher arousal than slow music. 

b. The left-side plot shows the estimated posterior medians (white points) and their probability 
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(mapped to color opacity) for each task and for the task average by music condition. On the 

right side, posterior density plots (with greater effects -i.e., greater differences- mapped to 

higher density color opacity) for the difference between music conditions (overall) revealed 

increasingly higher arousal levels with slow and fast music, in that order.  
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Figure S4. Response times are not a result of a synchronize-to-the-beat strategy. 

If participants responded at the expected beat of the background music, histograms of the 

differences between keypress times and the actual beat-time should reveal a unimodal 

distribution. If synchronization was perfectly accurate, the value of this mode (phase) should be 

0. a. Plots are circular histograms for the transformed keypress-time data for a given participant, 

task (RDK), and music condition. Black dots represent the observed circular means. Values on 

the circles’ perimeter are angles –phase shifts- relative to the beat (at 0/360°, vertical upwards), 

e.g., a slow-music data-point at 180° means that the keypress for that trial was made 0.75s 

before/after the actual music beat. Rayleigh-test for unimodality was performed to assess 

whether the estimated mode was statistically significant.  For clarity, we show data for two 

participants with different behavior. On the lower margin, circular plots for responses of 

participant 11 (in the RDK task for slow and fast music) are an example of non-synchronized 

behavior and are representative of most participants. Note, although a circular mean can be 
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calculated (black dot) it is non-informative as data show no evidence of departure from 

uniformity. On the upper margin, circular plots for responses of participant 13 in the RDK task 

for slow music show that responses followed a consistent period (unimodality) and its phase is 

represented by a solid black line.  b. Participant-by-task “punch-card” plot (for each music 

condition) show when responses from a given participant at a given task (R: RDK, M: Marble, C: 

City, L: Lexical, S: Snack) were unimodal (i.e., followed the beat). Only 10% of the data had 

significant unimodal distributions and were not consistent either between or within participant 

(e.g., a participant synchronized on RDK trials with slow music, but not for fast in the same 

task). c, If a participant with unimodal distribution (each clock-plot) effectively synchronized, we 

expected that phases (arrow direction) would be consistent within that participant for different 

tasks (but not necessarily for different tempi), however we did not observe this pattern. The beat 

is denoted by the vertical black line (at “12 o’clock” of each clock-plot). Overall, these results 

show that response times were likely not a product of a synchronization strategy. 



 

 

35 

 

Figure S5. Posterior predictive checks (PPC) for the decision process model (DDM).  

To validate the winning DDM model (for the effect of music on the decision process) we 

performed PPC as described in the Methods section. Colored lines represent distributions of 

100 randomly selected datasets generated from the posterior distribution of the model. Black 

lines are the distribution of observed data. Rows divide music conditions (from top to bottom: 

silence, slow, fast) and columns divide tasks (from left to right: RDK, Marble, City, Lexical, 

Snack). Vertical axis represents probability density, and the horizontal axis represents RT (note, 

RT for correct (error) responses are represented with positive (negative) values). The relative 

height of the negative and positive densities (divided by the vertical dashed line) in each panel 

reflects the accuracy for that condition. The fit was generally good, although for the City task 

there were distributional features mismatches.   
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Figure S6. PPC for decision outcomes (RT and accuracy). 

To validate the RT and accuracy models we performed PPC as described in the Methods 

section. Rows divide music conditions (from top to bottom: silence, slow, fast) and columns 

divide tasks (from left to right: RDK, Marble, City, Lexical, Snack). Vertical axis represents 

probability, and the horizontal axis represents the dependent variable. a. For the RT-GLMM 

(effect of music on RT), colored lines represent distributions of 100 randomly selected datasets 

generated from the posterior distribution of each model. Black lines are the distribution of 

observed data. Fit was generally good, although for Marble and Lexical, some distributional 
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features are slightly off (which is consistent with the point-wise estimation of R2=0.41). b. For 

the accuracy-GLMM (effect of music on decision accuracy), posterior predictions (on the 

response variable scale, i.e. 0: error, 1: correct response) from 100 random samples (colored 

dots, jittered on the x axis for clarity) are plotted against the actual accuracy data (black dots). 

Fit was generally good, as predictions are virtually undistinguishable from actual data, which is 

in line with the estimated AUC-ROC of 0.79).  
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Figure S7. PPC for arousal models. 

To validate the arousal-related models we performed PPC as described in the Methods section. 

Colored lines represent distributions of 100 randomly selected datasets generated from the 

posterior distribution of each model. Black lines are the distribution of observed data. a. For the 

Arousal-rating ZOIB (effect of music on arousal ratings) rows divide music conditions (slow and 

fast). The fit captured the main distributional features although with a somewhat wide 

uncertainty (which is consistent with the point-wise estimation of R2=0.43). b. For the Arousal-

ZOIB (effect of music on arousal during decision-making) rows divide music conditions (silence, 

slow and fast) and columns divide tasks (from left to right: RDK, Marble, City, Lexical, Snack). 

The fit was generally good which is in line with R2=0.85. c. For the Arousal-RT GLMM (arousal 

effect on mean RT) columns divide tasks (from left to right: RDK, Marble, City, Lexical, Snack). 
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The fit was generally good which is in line with R2=0.70. In all cases, the vertical axis represents 

probability density, and the horizontal axis represents the dependent variable.  
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Figure S8. Effects of music at a less-disruptive slow tempo (70 bpm) on decision-making. 

Estimated (A) accuracy, (B) RT and (C) decision threshold (a parameter in DDM) conditional 

means ((and their corresponding 95% CI) for the silence (gray), new slow (70bpm, orange) and 

fast (190bpm, light blue) music conditions. All music effects are reliable (i.e., the 95% CI of the 

contrasts’ posterior distribution do not include zero), except for the odds ratio estimates (for 

assessing effects on accuracy) which, although have most of their posterior density below zero, 

these posteriors include zero within their 95% CI. 
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Figure S9. Effects of blues and techno music on decision-making. 

Estimated (A) accuracy, (B) RT and (C) decision threshold (a parameter in DDM) conditional 

means ((and their corresponding 95% CI) for the silence (gray), blues (green) and techno 

(purple) music conditions (both at 190 bpm). Blues music had minimal impact on decisions 

(slightly slower yet inaccurate decisions, mapping to a marginally more cautious decision 

threshold). Techno music produced similar effects as those described in the original manuscript. 

Note that all the techno music effects are reliable (i.e., the 95% CI of the contrasts’ posterior 

distribution do not include zero), except for the odds ratio estimate (for assessing effects on 

accuracy) which, although has most of their posterior density below zero, these posteriors 

include zero within their 95% CI.  
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Table S1. Estimated effects of difficulty over music condition effects (i.e., interaction effects) on 

RT and Accuracy. 

difficulty.effect music.effect median .lower .upper dep.var 

Hard-Easy Slow-Silence -18.51 -35.14 -2.41 RT 

Hard-Medium Slow-Silence -16.65 -33.92 0.40 RT 

Medium-Easy Slow-Silence -1.99 -14.29 10.31 RT 

Hard-Easy Fast-Silence -8.37 -25.57 8.07 RT 

Hard-Medium Fast-Silence -10.98 -28.51 5.87 RT 

Medium-Easy Fast-Silence 2.71 -9.77 15.17 RT 

Hard-Easy Fast-Slow 10.19 -6.40 26.49 RT 

Hard-Medium Fast-Slow 5.63 -11.63 22.48 RT 

Medium-Easy Fast-Slow 4.65 -7.61 16.91 RT 

Hard-Easy Slow-Silence 0.13 -0.03 0.28 Accuracy 

Hard-Medium Slow-Silence 0.09 -0.02 0.20 Accuracy 

Medium-Easy Slow-Silence 0.03 -0.13 0.20 Accuracy 

Hard-Easy Fast-Silence 0.15 -0.01 0.30 Accuracy 

Hard-Medium Fast-Silence 0.05 -0.06 0.16 Accuracy 

Medium-Easy Fast-Silence 0.10 -0.07 0.26 Accuracy 

Hard-Easy Fast-Slow 0.02 -0.13 0.17 Accuracy 

Hard-Medium Fast-Slow -0.04 -0.15 0.07 Accuracy 

Medium-Easy Fast-Slow 0.06 -0.10 0.22 Accuracy 

 

Primary results indicated are RT and accuracy (dep.var) median values (median) of the 

posterior difference between difficulties (difficulty.effect) for each music condition contrast 

(music.effect) and the corresponding lower (.lower) and upper (.upper) 95% credible interval 

bounds.   
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Table S2. Estimated conditional (by task) and marginal (across tasks) coefficients for the effect 

of arousal on decision RT and accuracy. 

task beta.arousal lower.HPD upper.HPD dep.var 

RDK -0.1 -0.25 0.063 RT 

MRB 0.089 -0.085 0.267 RT 

CTY -0.088 -0.191 0.027 RT 

LEX -0.119 -0.321 0.055 RT 

SNK 0.03 -0.11 0.178 RT 

overall -0.038 -0.13 0.053 RT 

RDK 0.14 -0.294 0.589 Accuracy 

MRB -0.028 -0.647 0.628 Accuracy 

CTY -0.282 -0.804 0.281 Accuracy 

LEX 0.209 -0.582 0.989 Accuracy 

SNK -0.062 -0.826 0.685 Accuracy 

overall -0.008 -0.33 0.31 Accuracy 

 

Primary results indicated are median values (beta.arousal) and the lower (lower.HPD) and 

upper (upper.HPD) 95% credible interval bounds.   
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Table S3. DDM selection by Deviance information criterion (DIC).  

●: predictor included in the model 

(●): only intercept term included in the model 

Trial: chronological predictor (trial number, centered and scaled) 

v: evidence-accumulation rate 

a: evidence threshold 

t: non-decision time 

sv: evidence-accumulation rate inter-trial variability 

In all cases, starting point (z) was fixed at middle-point (unbiased z = 0.5) 

Note: Divided columns indicate interaction terms and colors are only used as visual aid to 

identify and distinguish between model parameters’ linear dependencies.  
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