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Model derivation

Using Lagrange multipliers to find the optimal Q

We find a form of Q(s′ | s) chosen to minimize the expected loss between an input s and its

representation s′,

E [L(s, s′)] =
∑
s∈R

P (s)
∑
s′∈R

Q(s′ | s) · L(s, s′). (1)

Here P (s) is the prior probability of encountering the scene s. Assuming that B is the maximum

allowable information, we optimize (1) subject to a bound on the KL-divergence between Q

and P ,

DKL [Q( · | s) ∥ P ( · )] =
∑
s′∈R

Q(s′ | s) · log Q(s′ | s)
P (s′)

≤ B ∀s ∈ R. (2)

where R is the set of all possible scenes.

Since Q is a distribution, we also have a constraint that
∑

s′∈R Q(s′ | s) = 1 for all s.

To apply the method of Lagrange multipliers, we encode the objective function and con-

straints into a single equation,

F [Q(s′ | s)] =
∑
s∈R

P (s)
∑
s′∈R

Q(s′ | s) · L(s, s′)

+
∑
s∈R

λs ·

(
B −

∑
s′∈R

Q(s′ | s) log Q(s′ | s)
P (s′)

)

+
∑
s∈R

γs ·

(
1−

∑
s′∈R

Q(s′ | s)

)
.

We then solve for the of the zeroes of the derivative of F with respect to Q(s′ | s) (i.e. treating
“Q(s′ | s)” as a separate variable for each s and s′). These zeros occur when

P (s) · L(s, s′) + λs ·
(
1 + log

Q(s′ | s)
P (s′)

)
+ γs = 0 (3)
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or

Q(s′ | s) ∝ P (s′) · exp
(
−P (s)

λs

· L(s, s′)
)
. (4)

Here, λs is chosen to satisfy the bound in (2).

Finding λs using numerical approximation

We solve for λs using numerical methods. Specifically, given an information bound, we used

gradient descent to find λs that allows the maximum DKL [Q( · |s) ∥ P ( · )] that satisfies the

constraint. This optimizer was run for 5,000 steps for each λs, which is sufficient to find

KL-divergences within a millionth of a bit of the bound.

One complication is that the representational space in our experiments was very large —

there are 49 grid cells so there are 249 possible grid states (≈ 1015). Memory and runtime

constraints therefore make it impossible to represent the prior and posterior of each possible

grid state independently. Luckily, for every scene s, there are many representations that are

“equivalent” in that they have equal prior probabilities and losses. For a given representation

s′, we define the loss as a function of the number (or proportion) of false positives and false

negatives between s and s′. To get the number of false negatives fn(s
′ | s) and false positives

fp(s
′ | s), we can write,

fn(s
′ | s) =

∑
i

∑
j

sij · (1− s′ij), (5)

and

fp(s
′ | s) =

∑
i

∑
j

(1− sij) · s′ij, (6)

where i and j are the rows and columns of the grid.

We can count the number of representations that have fn(· | s) = rn and fp(· | s) = rp. This

is the product of all the ways to make n − rp true positives in given that s in n on cells and

k− rn true negatives in M −n off cells, where n is again the cardinality of the scene s, k is the

cardinality of the representation s′, and M is the total number of grid cells. So we therefore

can write the total number of equivalent states S as,

S =

(
n

n− rp

)(
k − rn
M − n

)
. (7)

In this way, we can collapse the representational space into only individual instances of each

equivalence class and when calculating the KL-divergence multiply each term by S.
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Change-localization task

We assume that subjects choose in the change-localization task proportionally to their belief

that a cell has changed. In disappearing trials, subjects are only allowed to respond with a

zero cells, and in this case the probability that the cell changed is the belief that the cell was

initially 1. This means that the probability of responding ij out of only the other zeros is,

P (choose ij) ∝
∑
s′∈R

Q(s′ | s) · 1s′ij=1. (8)

To compute the probability that subjects answer accurately, P (choose ij) is computed for the

correct disappearing cell relative to all of the other zero cells in the final display. Appearing

trials are defined analogously.

Numerical estimation task

To compute the probability the model believes that the scene contained k′ objects, we can sum

across the model’s posterior for all scenes containing k′ objects. More formally,

p(k = k′ | s) =
∑
s′∈R

Q(s′ | s) · 1|s′|=k′ (9)

where |s′| represents the cardinality of representation s′ (i.e. the number of objects in s′), and

1x=y is 1 when x = y and 0 otherwise.

Model fitting

For both experiments, we used a Markov Chain Monte Carlo (MCMC) algorithm to fit four

parameters to the data: a) power law functions for how the information capacity changes over

time, of the form a · tk, with a and k as free parameters and t representing time in seconds; b)

the loss function parameter α, which weights the cost of false negatives and false positives; and

c) a guessing parameter pg which captured the rate of choosing randomly. Because α and pg

represented probabilities and thus were constrained to be between 0 and 1, we parameterized

these through transformations α′ = logit(α) and p′g = logit(pg). We fit these parameters in a

hierarchical Bayesian network, with partial pooling of parameter estimates across participants.

We used uninformative group-level priors for the means of each parameter, which we believed

would not exert a strong influence in any case given the large amount of data collected. We

drew group-level standard deviations from HalfNormal(σ = 10). Subjects’ parameters were

drawn from the distributions,
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as ∼ Normal(µa,g, σa,g), (10)

ks ∼ Normal(µk,g, σk,g), (11)

α′
s ∼ Normal(µα′,g, σα′,g), (12)

p′gs ∼ Normal(µp′g ,g, σp′g ,g), (13)

where group-level parameters are denoted µ.,g and σ.,g and subject-level parameters are denoted

with subscript s.

We used the Metroplolis-Hastings algorithm to jointly fit the posterior distributions of each

group-level and subject-level parameter. Because there is a high runtime cost to compute the

model’s posterior distribution, we rounded the information bounds given by samples of a and

k to the nearest 0.1, and each α to the nearest 0.01, and cached the results. This can only have

a negative impact on the fit of the model and so it could not impact (e.g.) model comparisons

in our model’s favor. We ran two chains of Metropolis-Hastings for 50,000 steps, with 10,000

steps of burn-in, storing every 10th value to avoid auto-correlation of samples. We checked for

convergence of the chains using the Gelman-Rubin statistic (63), and found in both tasks that

r̂ < 1.05 for all group-level parameters and r̂ < 1.1 for all subject-level parameters, indicating

that the chains converged.

Alternative loss functions

In the main text, we used a loss function that combined a weighted proportion of false negatives

and false positives relative to the number of locations with objects and locations without

objects respectively. We had pre-registered this choice, however, it is not the only plausible

loss function. One alternative choice would be the total number of places the representation

s′ differs from the scene a; another would be a possibly weighted combination of the number

rather than proportion of false negatives and false positives. Here we show that while the choice

of loss function somewhat influences the form of the resulting psychophysics, the outcomes are

qualitatively very similar and preserve the core properties of the model in the paper.

To consider these loss functions, here we will define terms slightly differently than in the

main text. For a given scene s and representation s′ we will define a function for the number

of false negatives fn(s
′ | s) and false positives fp(s

′ | s). We can write,
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(a)

(b)

Fig. S1: These two plots illustrate the number psychophysics produced by various formulations of the loss
function. Each line shows the estimates produced for a different number n = 1...20. We assume an information
bound of 25 bits. (a) These panels illustrate the psychophysics produced by different parameterizations of the
loss function assumed in the main text, weighting the proportion of false negatives out of true positives by alpha
and weighting the proportion of false positives out of the true negatives by one minus alpha. Each panel shows
a different possible weighting, with α = 0.3, α = 0.5, and α = 0.7. (b) These panels illustrate the psychophysics
assuming a loss function that is an analogous weighted combination of the number rather than proportion of
false negatives and false positives.

fn(s
′ | s) =

∑
i

∑
j

sij · (1− s′ij), (14)

and

fp(s
′ | s) =

∑
i

∑
j

(1− sij) · s′ij. (15)

Then we can write the loss function assumed in the paper (using proportions) as,
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Lproportion(s, s
′) = α · fn(s

′ | s)
k

+ (1− α) · fp(s
′ | s)

n− k
. (16)

The loss function that is a weighted combination of the number, rather than proportion, can

be written as,

Labsolute(s, s
′) = α · fn(s′ | s) + (1− α) · fp(s′ | s). (17)

Figure S1 shows predicted number psychophysics using both loss functions under different

values of α, with Figure S1a showing the proportional loss function used in the main text

and Figure 1b showing the absolute numeric loss function. At α = 0.5 (middle panels), the

weighting of both false negatives and false positives (either by proportion or absolute value)

is equal; false negatives are under-weighted on the left panels and over-weighted on the right

panels. Comparing the loss functions at each value of α, the psychophysics look very similar,

particularly for low values of α. At higher values of α, the proportional loss function over-

weights false negatives more strongly than the numeric counterparts for large numbers, and so

ends up over-estimating.

Parameter recovery

In order to determine that the model parameters are recoverable, we simulated data from 200

“participants” with different values of the information-rate parameters a and k and different

loss function parameters α. The a parameters were randomly sampled from Uniform(10, 90);

the k parameters were randomly sampled from Uniform(0.01, 0.99); and the α parameters were

randomly sampled from Uniform(0.1, 0.9). The guessing rate was fixed to 0.01. Data was

then generated by sampling estimates and localization guesses for each trial from Experiment

3 and maximum likelihood fitting was performed to recover the parameters separately for the

estimation data and localization data.

Each parameter could be recovered with relatively high fidelity. For the estimation data,

there were correlations of r = 0.92 for a and inferred â; r = 0.87 for k and inferred k̂; and

r = 0.96 for α and inferred α̂. For the localization data, there were correlations of r = 0.91

for a and inferred â; r = 0.76 for k and inferred k̂; and r = 0.87 for α and inferred α̂. Figure

S2 shows the true parameters versus recovered parameters for the estimation task (a-c) and

localization task (d-f). These plots show that recovered parameters largely lie on the y = x

line, meaning there is not significant bias in parameter estimates.
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â l
oc

(d)

r = 0.76

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
k

k̂ l
oc

(e)

r = 0.87

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
α

α̂ l
oc

(f)

Fig. S2: Parameter recovery for simulated data. Panels a-c show maximum likelihood fits from simulated
participants who each performed 45 trials of the estimation task, with (a) showing inferred a relative to inferred

â, (b) showing inferred k relative to k̂; and (c) showing α relative to inferred α̂. Panels d − f show analogous
comparisons of inferred parameters relative to simulated parameters for the localization task.

Comparison of model fit with and without α

Model fitting recovered relatively low values of α (0.31-0.35) in all experiments (see Main Text).

When we performed fits that constrained α to 0.5, the model did not fit as well overall or for

most participants. In Experiment 1 (change-localization), the sum ∆AIC was 223 in favor of the

model with freely varying α; 62/100 participants had lower AIC when α was fit. In Experiment

2 (estimation), the sum ∆AIC was 1,410; and 99/100 participants had lower AIC values when

α was allowed to freely vary. Similarly, in Experiment 3, the sum ∆AIC was 855 in favor of

the freely-varying model; all participants had lower AIC values when α was allowed to freely

vary. In Experiment 3, 83 of the 100 participants had lower ∆AIC in the change-localization

task and 100/100 had lower ∆AIC in the estimation task.
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The effect of the prior

In the Cheyette & Piantadosi (2020) model, the decreasing prior over numerosities plays the

central role in determining the noise and bias of estimates as a function of magnitude. That

model would therefore predict that if a large number, say 75, happened to be high in the prior,

people should be able to accurately represent sets of 75 items. But this seems perceptually

implausible — could people really represent 75 items with higher fidelity than 2 items? One

possible way of understanding the intuition that large groups of objects are intrinsically more

difficult to represent precisely than smaller groups is that there is a lot more spatial information

to represent about large groups.

If we take the simple method used in this paper of dividing the world up into a grid with

M possible locations, then there are
(
M
n

)
ways to represent n objects in space. There are M

places to put a single object, meaning it takes only logM bits to represent scenes when n = 1.

However, there are many more ways to place n items when n grows larger (as it approaches

its zenith at M
2
). Using Stirling’s approximation of the Binomial, it takes about log 4n√

πn
bits

to represent M
2
objects. To put this in perspective, if M = 50, it would take log 50 ≈ 5.6 bits

to represent n = 1 object’s location but about log 425√
25π

≈ 47 bits to represent the location of

n = 25 objects.

Unlike Cheyette & Piantadosi (2020), the model we present in this paper accords with the

intuition that more numerous sets are intrinsically more difficult to process perceptually. Even

if there were a uniform prior over numerosities, small numerosities would be represented with

significantly higher fidelity. In fact, the shape of the prior has much less of an impact on

either mean estimates or the standard deviation of estimates relative to the loss function. We

demonstrate this property in Figures S3-S5.

Suppose the prior on a scene s with n objects is given by the function P (s | |s| = n) ∝
1/
(
nβ ·

(
M
n

))
, where β is a free parameter controlling the numerical bias. So β = 2 here

is the naturalistic need frequency of number used in the paper (P (n) ∝ 1/n2) and β = 0

corresponds to a uniform prior over numerosities. Figures S3-S5 give the model’s predictions

for mean estimates and standard deviations under these two distributions (β = 0 and β = 2), at

different values of the loss function parameter α (controlling how much the model cares about

false positives versus false negatives).

Figure S3 demonstrates that the bias in the model’s mean estimates is affected much more

strongly by α than by β — i.e., the loss function, rather than the prior, mostly determines the

patterns of under- or over-estimation. Figure S4 shows, analogously, the model’s predictions

for the coefficient of variation (CV) as a function of numerosity (CV = σ
µ
). Crucially, Fig-
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Fig. S3: Predicted mean estimates as a function of the number of objects shown (x-axis) and the information
bound (color). The columns give predictions under different loss function parameters (α) and the rows show
predictions for a uniform prior distribution (β = 0) and naturalistic need frequency (β = 2) used in the main
text.

Fig. S4: Predicted coefficient of variation (CV = σ
µ ) as a function of the number of objects shown (x-axis) and

the information bound (color). The columns give predictions under different loss function parameters (α) and
the rows show predictions for a uniform prior distribution (β = 0) and naturalistic need frequency (β = 2) used
in the main text.
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Fig. S5: Predicted change in the coefficient of variation (δCV = CVn − CVn−1) as a function of the number
of objects shown (x-axis) and the information bound (color). The columns give predictions under different loss
function parameters (α) and the rows show predictions for a uniform prior distribution (β = 0) and naturalistic
need frequency (β = 2) used in the main text.

ure S4 illustrates that even with a uniform prior (β = 0), the model precisely represents small

numerosities but not larger ones. In fact, the point of transition from subitizing to estimation

is essentially entirely determined by the information bound, with α and β only having any

significant influence on the standard deviation of estimates beyond the subitizing range.

Finally, Figure S5 demonstrates that the change in CV converges to 0 for larger numerosities,

across different choices of the prior and loss function. This indicates that the model recovers

Weber’s law in estimation — which predicts a constant CV across numerosities above the

subtizing range — without requiring fine-tuning of any parameters. A further demonstration

that the model recovers Weber’s law in estimation is given in the section below.

Weber’s law

In addition to an estimation task, the model can be extended to a numerical discrimination

task. For two numbers n1 and n2, we make model predictions for n1 and n2 independently and

subsequently compute the probability that the model believes that n2 was greater in magnitude
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Fig. S6: Model predictions for numerical discrimination on (a) 1:2 ratios and (b) 2:3 ratios. The model was
parameterized with α = 1/3 and the prior used in the main text.

than n1,

P (n2 > n1) =
M−1∑
k=1

M∑
j=k+1

P (k | n1) · P (j | n2). (18)

Figure S6 shows model predictions for discrimination performance on 1:2 ratios for numerosities

1:2 through 10:20 (a) and 2:3 ratios for numerosities 2:3 through 14:21 (b) across information

capacity bounds. Weber’s law implies that performance should be constant across ratios, which

is true for the model somewhat beyond the subitizing range.

The relationship between subitizing and estimation

As discussed in the main text, previous work has shown that the relationship between subitizing

and estimation is not straightforward. For instance, subitizing seems to be more greatly affected

by attentional load than estimation (64); other studies have found little or no correlation

between one’s subitizing range and their estimation acuity (e.g. 2). One possible explanation

afforded by the model is that small changes in capacity can lead to sharp changes in the

subitizing range. Conversely, changes in capacity can lead to no changes in the subitizing range

whatsoever. This could lead to puzzling results — subitizing and estimation will sometimes

seem related but sometimes not. But, as we show, the model actually predicts that large

changes in capacity are necessary for the relationship to become apparent.

We modeled the relationship between estimation acuity and subitizing range with the range

of numerosities (1-8) tested in the studies cited above (2, 64). The subitizing range was calcu-
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lated as the largest number with ϵ < 0.001 squared estimation error; and the estimation acuity

was calculated as the average coefficient of variation of numerosities beyond the subitizing

range. Figure S7 shows the results of this simulation, with the subitizing range on the x-axis,

estimation acuity acuity on the y-axis, and each point representing the model’s prediction at a

given information capacity. There are sudden changes in the subitizing range as the information

capacity increases; conversely, there are small, less dramatic effects on estimation acuity.

Fig. S7: The relationship between subitizing range (x-axis) and estimation acuity (y-axis) across information
capacities (colors). Changes in capacity always change the observed estimation acuity but only sometimes
dramatically change the subitizing range.

Because the subitizing range can change dramatically without requiring essentially any

change in estimation acuity1, it may not be altogether surprising that some studies have found

that the subitizing range is affected by an attentional manipulation when estimation acuity is

not. The relationship between the subitizing range and estimation acuity should only become

apparent with substantial changes in capacity — and even then, estimation acuity need not

change by a substantial margin. For instance, to increase the subitizing range from 2 to 4

would only require a decrease of the coefficient of variation in estimation from 0.27 to 0.21

(highlighted in Figure S7 by the dashed lines). This level of change seems insubstantial relative

1One curious thing to note is that when the subitizing capacity changes, the observed estimation acuity
actually very slightly decreases. This is because numerosities very near the subitizing range tend to have
slightly higher acuity than larger numerosities, but when the subitizing range increases to encompass that
numerosity, it is no longer counted towards the average estimation acuity.
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to the change in subitizing range — and may even be hard to detect without high statistical

power — but does not imply that the two phenomena are unrelated.

Small vs. large quantity estimation in children

● ● ● ●

●

● ●

●

● ● ● ●

●

● ●

●

● ●

● ●

● ●

●

●

● ●

● ●

● ●

●

●

0.00

0.25

0.50

0.75

1.00

1:2
(10mo)

1:2
(12mo)

2:3
(10mo)

2:3
(12mo)

3:4
(10mo)

3:4
(12mo)

2:4 3:6

Numbers compared

P
(c

or
re

ct
)

●●

●●

FHC (2002)
Model

Fig. S8: Data on infants’ success in comparing quantities from Feigenson et al. (2002) (gray bars with 95% CI)
plotted against our model fit to their data (orange points).

Several studies using habituation and manual search paradigms have found that children

succeed in comparing two small quantities (1-3) or two larger quantities (4+), but fail to

compare a small set to a larger set (Feigenson & Carey, 2003; Feigenson et al., 2002; Lipton &

Spelke, 2004; Xu, 2003). This has been taken as evidence of two separate systems: the parallel

individuation system for exactly tracking small sets and an approximate system for inexactly

representing magnitudes. This finding is not obviously compatible with our account, though

our model does have an individuation component that precedes estimation, so one potential

explanation is that children do not automatically map small sets of objects to quantities as

adults do — and once they observe a new set of objects, they can no longer perform such a

mapping if it is required and hence cannot discriminate small from large sets.

However, we note that our model — as it is, without any adjustment to explain these findings
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— is not actually incompatible with at least some of the published data that have been used

to support the claim of two independent systems. To illustrate this, we fit our model to the

data reported in Feigenson et al. (2002), in which 10-12mo infants were shown two boxes in

which they observed the researcher placing different numbers of crackers. The researchers then

recorded which box the infants first attempted to search, assuming they would reach toward

the one with the greater number of crackers if they could. They found that infants reached

toward the box with more crackers given 1 versus 2 crackers and 2 versus 3 crackers, but not on

3 versus 4 crackers, 2 versus 4 crackers or 3 versus 6 crackers. We recovered parameters of 12.9

bits of information, loss function α of 0.21, and guessing rate pg of 0.36. Figure 8 shows the

data from Feigenson et al. (2002) re-plotted against the predictions of our model. In each case,

the model predictions fall within the 95% confidence interval (all differences were insignificant

in binomial tests, ps > 0.1).
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