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1. Derivation (including intermediate steps) for Section “Inappropriate Common Factor 

Models Threaten Validity and Produce Bias” 

Let M be a unit-weighted composite of p components, 
1 pm m , such that 
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Let Y be a variable with unit variance and  cov ,im Y b  for all 
im . For the sake of simplicity, 

assume all 
im  have unit variance and  cov ,i jm m c  for all 

i jm 
. The correlation between M 

and Y is thus:  
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When a reflective indicator model is imposed on the set of components im  such that 

*

i i im M    , this model will perfectly reproduce the covariance matrix m  when 1i   , 

 *var M c , and  var 1i c   . The value of  *cov ,M Y  that reproduces the covariances 

between each component im  and Y is b. The correlation between *M  and Y then becomes: 

  
 

   

*

*

*

cov ,
,

var var

M Y b
cor M Y

cM Y
   (2) 



By dividing Equation (1) by Equation (2), we get an inflation factor that shows how 

much bigger the latent variable model correlation is compared to the composite variable 

correlation:   
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This inflation factor is a function of the number of components, p, and the covariance 

among the components, c. Figure 1 (top left) displays the degree of over-estimation as a function 

of c (along the x-axis) and p (separate lines).  

This result is precisely the opposite of the classic attenuation due to measurement error 

effect (Spearman, 1904). Whereas the attenuation effect is that using error-laden variables (e.g., a 

sum score based on a set of congeneric items) rather than reliable variables (e.g., a latent variable 

indicated by a set of congeneric items) results in under-estimation of correlations, we have just 

shown that using a latent variable measurement model when a sum score is true results in 

misdisattenuation: Correlations are disattenuated of measurement error that does not exist, 

producing over-estimation bias.  

We can extend this finding to the case in which the components are measured with error. 

Let 
1 px x  be unreliable indicators of 

1 pm m , such that i i ix m e   and  var 1ie   . 

Thus,   is the reliability of each unit-variance indicator. Let  
1

p

i

i

X x


  be the composite of 

these unreliable observed variables. The correlation between X and Y is thus:  

 

 
 

   

 

  

 

 

 

cov ,
,

var var

cov ,

var 1

cov ,

1

1

i

i

i

X Y
cor X Y

X Y

x Y

x

p x Y

p p p c

pb

p p p c












 


 




  (4) 



When a reflective indicator model is imposed on the set of observed variables ix  such 

that **

i i ix M    , this model will perfectly reproduce the covariance matrix m  when 1i   , 

 *var M c , and  var 1i c   . The value of  **cov ,M Y  that reproduces the covariances 

between each component ix  and Y is b  . The correlation between **M  and Y then becomes: 
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Note that item reliability drops out of this equation, making it identical to Equation (2). 

That is,    ** *, ,cor M Y cor M Y . In contrast to its effect on the observed composite score, 

measurement error does not affect structural correlations in the latent variable model.  

By dividing Equation (1) by Equation (4), we get a multiplier that shows how much 

smaller the unreliable composite correlation is compared to the perfectly reliable composite 

variable correlation:   
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This inflation factor is a function of the number of components, p, the covariance among 

the (perfectly reliable) components, c, and the reliability,   . Figure 1 (right column) displays 

the degree of under-estimation as a function of c and p (top-right, holding   constant at .8) and 

  and p (bottom-right, holding c constant at .5). The bottom-left figure displays the degree of 

over-estimation that occurs when the latent variable model is fit, as a function of  (x-axis; as 

shown in Equation (5) this over-estimation is not affected by  ) and p (separate lines).  

 



 

Figure 1. The factor by which a correlation coefficient is over- or under-estimated as a 

consequence of the model applied when the true construct is defined as a composite of 

variables that are perfectly measured. Left column: the inflation factor describing the 

over-estimation of the latent variable correlation as a function of the correlation between 

indicators, c, the number of indicators, p, and the reliability of the observed measures of 

each component,  . Right column: the multiplier describing the under-estimation of the 

observed composite correlation as a function of c, p, and  . Top row:   is held 

constant at .8. Bottom row: c is held constant at .5.  

  



2. Parameter Generalizations 

To assess the generalizability of the results from Examples 1-3, we examined bias and 

misfit resulting from the full range of possible parameter values for each model under a set of 

limiting constraints. This supplement presents methodological details and plots for all 3 

examples. R code is available on https://osf.io/f8g4d/. 

 

Figure 2. Fitted Models. In the composite measurement models (left column), 𝑚1 − 𝑚4 

are summed to form CM . In the common factor measurement models (right column), 

𝑚1 − 𝑚4 are modeled as reflective indicators of LM .  

 

R (R Development Core Team, 2016) was used to generate the population covariance 

matrices. The models shown in Figure 2 were fit to each population matrix using lavaan 0.5-23 

(Rosseel, 2012). All R code for generating and fitting models is available at https://osf.io/f8g4d/. 

We evaluated the performance of the six models according to the accuracy of parameter 

estimates and model fit.  

Accuracy. We examined the accuracy of the model-estimated a and b paths, which reflect 

the estimated effect of X on M, and of M on Y. Accuracy is assessed by plotting the observed 

estimates resulting from each model.  



Model Fit. We examined model fit to determine whether larger bias in the estimated 

paths can be detected using fit statistics. We used the population RMSEA, ˆ
MLRMSEA F df , 

to indicate the degree of model misspecification in each generated population. 

 

Example 1 

 

Figure 3. Population model for Example 1. Each set of parameters was randomly drawn, 

subject to the following constraints: 1 4a a  path values were drawn from   0,.8U ; the 

value of   was chosen to ensure that the total indirect effect of X on M was .6; all 

bivariate correlations among 1 4m m  were equivalent and chosen so that the total 

variance of M would be 1.  

 

We fit the 6 models in Figure 2 to 20,000 population covariance matrices. Each 

population was based on a randomly generated set of values of 𝑎1 - 𝑎4 (i.e., the paths from X to 

each causal indicator, see Figure 3) from  0,.8U . The value of   (i.e., the path coefficient from 

each indicator to M, which was the same for all indicators) and the correlation between each pair 

of causal indicators (which was held equal for all pairs) was selected so that the total effect of X 

on the composite M was always .6a   and the variances of 
1 4m m  and M were 1. The residual 

covariance among each pair of causal indicators was computed based on the total correlation 

between each pair of indicators, subtracting the correlation implied by the 1 4a a  paths. Thus, 

though the marginal correlation among each pair of indicators was identical, their residual 

covariances differed as a function of their different 1 4a a  paths. The regression coefficient of Y 

on M was .6b  . 



 

 

Figure 4. Standardized coefficients for Example 1 across range of parameter values. 

Purple points (which appear as a line) correspond to estimates from the composite 

model. Red points correspond to the common factor model. The dark-to-light red colour 

gradient indicates the variance in the four iX m  path values: Darker indicates more 

homogeneity in these values. The black line at .6 indicates the parameter value in the true 

model. 

 



 

Figure 5. Example 1 results: Model fit. Red points correspond to the latent variable 

model and purple points correspond to the composite model. The composite predictor-

only and outcome-only models have perfect fit due to having no constrained paths; the 

latent variable outcome-only models also have perfect fit due to the proportionality 

constraint being met in these models. The dark-to-light colour gradient indicates the 

variance in the four iX m  path values: Darker points indicate more homogeneity in 

these values.  

 

Example 2 

 

Figure 6. Population model for Example 2. Each set of parameters was randomly drawn, 

subject to the following constraints: 1a  and 2a  path values were drawn from   0,.8U ; 

1  and 2  values were drawn from  .3,1U , and the value of   was chosen to ensure 

that the total indirect effect of X on M was .6; the correlation between 1m  and 2m  was 

chosen so that the total variance of M would be 1.  

 



We fit the 6 models in Figure 2 to 20,000 population covariance matrices. The population 

generating model is shown in Figure 6. We generated random values of 1a  and 2a  (i.e., the paths 

from X to each causal indicator) from  .3,.8U , and values of  1  and 2  were drawn from 

 .3,1U . The residual variance of M was .25. The value of 𝛾 (i.e., the path coefficient from 1m  

and 2m  to M) and the correlation between 1m  and 2m  was selected so that the total effect of X 

on M was always .6a   and the total variance of all variables (except residuals) was 1.  

Results. Figure 7 displays the estimated a and b paths for the six fitted models across the range 

of parameter values. These results follow a similar pattern to Example 1. As in Example 1, the 

reflective latent variable model estimates of the a path are typically more biased and 

substantially more variable than those of the composite model.  

When the true model is a MIMIC model, both the composite and the latent variable 

models are wrong, though they are both theoretically appropriate models for two out of the 4 

indicators. Perhaps counterintuitively, including two reflective indicators m3 and m4 in the 

composite score actually makes the composite model perform better than in the case where all 

indicators were causal, because the composite now includes some variance of ζ (i.e., the 

reflective indicators reflect all of M, including ζ). Having a couple of truly reflective indicators 

also substantially improves the performance of the latent variable model estimates, which are 

now less biased overall than in the Example 1.  

As in the Example 1, the latent variable model estimates – especially the estimate of the b 

path – are affected by whether the model includes X, Y, or both. The composite model estimates 

do not change.  



 

Figure 7. Example 2 results: Standardized path values. Purple points correspond to 

estimates from the composite model; red points correspond to the common factor model. 

The dark-to-light red colour gradient indicates the variance in the two iX m  path 

values: Darker indicates more homogeneity in these values. The black line at .6 indicates 

the parameter value in the true model.   

Figure 8 displays model fit for all three latent variable models and for the composite 

mediation model. Compared to Example 1, the latent variable model shows better fit on average, 

commensurate with its relatively better performance in terms of bias overall. Perfect fit for the 

outcome-only model when the correlation between the two causal indicators was .6 is a 

coincidence reflecting the particular way in which model parameter values were selected. The γ 

path was computed as a function of the correlation between causal indicators so that the total 



variance of M would be 1. As a result, for those particular sets of parameter values, the outcome-

only latent variable model perfectly reproduced the covariances among all four indicators.  

 

Figure 8. Example 2 results: Model fit. Red points correspond to the latent variable 

model and purple points correspond to the composite model. The composite predictor-

only and outcome-only models have perfect fit due to having no constrained paths. The 

dark-to-light colour gradient indicates the variance in the two iX m  path values: 

Darker points indicate more homogeneity in these values.  

 

Example 3 

As we did for Examples 1 and 2, we examined results for a full range of possible 

parameter values for the model in Example 3, under a set of limiting constraints. The population 

generating model is shown in Figure 2. We randomly selected sets of values of 1 4   from U{0, 

.8}. The value of aʹ was computed according to the equation  1 3 2 4.6a       , so that the 

total effect of 4X m  was .6. This was done to keep the total indirect effect of X on Y via M 

constant at .6 .6 .36  , consistent with the previous studies. Note that in this model, it is not 

possible to evaluate bias in the individual coefficients, X M  and M Y , because there is 

no single variable that represents the construct M. However, we can examine bias in the indirect 

effect of X on Y via M, and investigate whether model fit is related to the degree of bias.   



 

Figure 9. Population model for Example 3. Each set of 1 4   parameters were 

randomly drawn from U{0, .8}. All variables (with the exception of residuals) had 

variance 1.  The value of aʹ was selected such that the total effect of 4X m  was .6 and 

the indirect effect of X on Y was .36.  

 

Given the network structure of the true population model, there is no way to choose 

values of β such that a common factor model can describe the covariances among the indicators. 

Thus, a common factor model of M will necessarily fit badly, regardless of the values of the β 

paths and regardless of the presence of X or Y in the model. The structure of the directed network 

guarantees that pairs of variables connected by a single arrow (e.g., m1 and m2) will share more 

variance than those connected by two arrows (e.g., m1 and m4), and that the conditional 

independence assumption of the common factor model does not hold (e.g., m2 and m3 are 

independent conditional on m1). Thus, model misfit results directly from the measurement 

model, not only when the measurement model is embedded in a larger structural model.  

We fit the same six models (composite and common factor predictor-only, outcome-only, 

and mediation models) as in all previous studies to 20,000 sets of parameter values.  

Results. Figure 10 displays the estimated a and b paths from the six fitted models, as well as the 

ab paths (i.e., the product of the a and b paths, representing the model-implied mediated effect of 

X on Y) from the two meditation models. Along the x-axis of these plots is the value of aʹ (i.e., 

the 1X m  path value; recall that the total effect of X on m4 is always .6, but how that effect is 

partitioned across the aʹ and the four β paths differs for each population matrix). The estimated a 



and b paths are interesting to compare across measurement models, but as we noted previously, 

there is no true parameter value for these paths against which to evaluate bias.  

In the predictor-only and outcome-only models, the common factor model tends to 

produce much higher estimates of a and comparable estimates of b compared to the composite 

model. In the mediation model, the common factor model corrects for high a values by reducing 

the value of the estimated b path, consistent with previous studies. The common factor mediation 

model tended to produce the same a estimates as the common factor predictor-only model, but 

substantially lower b estimates. This behavior is consistent with the previous examples.  

Both the common factor and the composite models estimate the total mediated effect of X 

on M to be slightly higher than it is (the black line in the rightmost plot of Figure 10 shows the 

true mediated path value), and the level of bias in both models is neither very severe nor notably 

different across the two models.  

 

Figure 10. Example 3 results: Standardized path coefficient estimates. Purple points 

correspond to estimates from the composite model; red points correspond to the common 

factor model.  The four leftmost figures display the estimated a and b path estimates; 

there is no single true parameter value for these paths. The rightmost figure displays the 



product of the estimated a and b paths in the mediation model; the population value for 

this parameter (𝑎𝑏 =  .36) is indicated by a solid black line.  

 

Figure 11 displays model fit for the three latent variable models and for the composite 

mediation model. These results confirm that none of the common factor models fit well, 

reflecting the fact that the common factor measurement model cannot account for either the 

covariance structure among the network of indicators, nor can it account for the relations 

between these indicators and external variables. The composite mediation model also fits poorly 

(though less so), because the association between X and Y cannot be accounted for as the product 

of the association between X and the sum of m1-m4, and between the sum of m1-m4 and Y.  

 

 

Figure 11. Example 3 results: Model fit. Purple points correspond to estimates from the 

composite model; Red points correspond to the common factor model.  

 

 


