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In this supplemental material, we will explain how we calculate the maximum attainable
variability for bounded measurements. In all situations, we assume N data points in a vector
x = (x1, ..., xN) with sample average x̄. Each measurement is bounded between a and b (i.e.,
a ≤ xi ≤ b for each xi). Next, we seek to find the maximum variability (e.g., variance, range)
given a certain sample average x̄ = c. First, we will discuss the variance (and the standard
deviation), next the (root) mean squared successive difference and finally the inter percentile
distance (including the range and the interquartile range).

A Maximum variance

Formally, the problem can be defined as a so-called constrained optimization problem:

maximize
x

var(x) =

∑
(xi − x̄)2

N − 1

subject to the constraints a ≤ xi ≤ b, i = 1, . . . , N.∑
xi

N
= x̄ = c,

(1)

the maximization of the sample variance of x = (x1, ..., xN) for a given x̄ = c, where xi is
bounded between a and b. Obviously, also x̄ = c lies in between a and b. So this means, we
are free to change the values of x = (x1, ..., xN) in order to maximize the variance, as long
as we satisfy the constraints. In the next steps, we will show the following:
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1. Structure of the maximum: If the data set x has not the properties of a certain
structure S, one can always increase the variance by converging to this structure.

2. Uniqueness of this structure: There is only one possible realization for this struc-
ture.

It logically follows that x will be the solution to the optimization problem (Equation 1) if
and only if it possesses structure S. If the data points do not have this structure, one can
always bring them in this unique structure to increase the variance. Note that a very similar
proof can be constructed using Bauer’s maximum principle [2].

A.1 Structure of the maximum

Assume that, for a certain feasible x (satisfying all equality and inequality constraints of
Equation 1), there are two elements, say xi and xj that are not equal to neither a nor b:
a < xi < b and a < xj < b. We can now create a second data set x′ set equal to x except
for elements i and j: x′

i = xi+∆i and x′
j = xj +∆j. To ensure feasibility of x′ we must first

ensure that x̄′ = c. Therefore it is necessary that ∆i = −∆j. Second, we must have that
a ≤ x′

i ≤ b and a ≤ x′
j ≤ b.

The obtained change in variance is now:

var(x′)− var(x) =
1

N − 1

(
(x′

i − c)2 + (x′
j − c)2 − (xi − c)2 − (xj − c)2

)
=

1

N − 1

(
(xi +∆i − c)2 + (xj +∆j − c)2 − (xi − c)2 − (xj − c)2

)
=

1

N − 1

(
(xi +∆i − c)2 + (xj −∆i − c)2 − (xi − c)2 − (xj − c)2

)
=

1

N − 1

(
2∆2

i +∆i(xi − c)−∆i(xj − c)
)

(2)

As this is a convex function of ∆i, the maximum of this increase in variance is only
limited by the fact that ∆i is limited by a ≤ xi +∆i ≤ b and a ≤ xj −∆i ≤ b. This means
that the maximum increase always results in x′

i = a, x′
i = b, x′

j = a or x′
j = b (meaning that

one or more of the elements are moved to the bounds). As both xi and xj do not have values
equal to neither a nor b the maximum increase is strictly positive.

We now have shown that we can increase var(x) if more than one data point lies between
a and b. We can repeat this procedure, step by step, until we have a data set with structure
S. Structure S has the following property: At most one of the data points lies strictly in
between a and b (a < xi < b) and all the other data points are exactly equal to one of the
constraints a or b. If we violate this structure one will always be able to change data points
to increase the variance until structure S is achieved again.

A.2 Uniqueness of structure S

A feasible data set with structure S and N elements has na elements with values equal to
a, nb elements with values equal to b and one element with value m for which we have that
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a ≤ m ≤ b. We know that
naa+ nbb+m = Nx̄ = Nc, (3)

with na, nb ∈ N and
na + nb = N − 1. (4)

If c = a we must have that na = N − 1, nb = 0 and m = a and if c = b we must have that
nb = N − 1, na = 0 and m = b. In other cases, where a < c < b we can rewrite Equation 3
and 4 as

(N − nb − 1)a+ nbb = Nc−m

⇔ (b− a)nb = Nc−m− (N − 1)a

⇔ nb =
Nc−m− (N − 1)a

b− a

⇔ Nc−Na

b− a
− 1 ≤ nb ≤

Nc−Na

b− a

In the last step we use that a ≤ m ≤ b.
Now there are two possibilities. First, if Nc−Na

b−a
is not a natural number, then nb is

uniquely defined (because nb ∈ N) as

nb =

⌊
Nc−Na

b− a

⌋
, (5)

where ⌊⌋ is the flooring sign. One can then find na using Equation 4 as

na = N − 1− nb (6)

and m using Equation 3 as
m = Nc− naa− nbb. (7)

Second, if Nc−Na
b−a

is a natural number and a < c < b two solutions are possible. One where
m = a and one when m = b. Choosing m = a instead of m = b increases nb by one and
logically also decreases na by one. In the end, the same number of points have a value equal
to a or b. This solution is also found by using Equation 5.

As we can uniquely define the value for each data point, given structure S, structure S
is unique.

A.3 The maximum

The maximum variance is given by

max(var(x)) =
na(a− c)2 + nb(b− c)2 + (m− c)2

N − 1
(8)

with m, nm, na and nb found as previously described.
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A.4 A special case: Only bounded at one side

We only handle the case where measurements are bounded by a lower bound (the case where
they are bound by only an upper bound can be handled similarly). When measurements are
not bounded from above then b = +∞. Again, if c = a we have that na = N − 1, nb = 0
and m = a. When this is not the case we have that

nb =

⌊
Nc−Na

b− a

⌋
=

⌊
Nc−Na

∞

⌋
= 0,

so that na = N − 1 and m = Nc− (N − 1)a = N(c− a) + a. This gives the following result:

max(var(x)) =
(N − 1)(a− c)2 + (N(c− a) + a− c)2

N − 1
= N(a− c)2.

If we further assume that a = 0, then the maximum variance is given by max(var(x)) =
Nc2. In such a case, the relative standard deviation, SD∗, is

SD∗ =
SD√
Nc

=
CV√
N

where CV is the coefficient of variation.

A.5 The relative standard deviation and its relation to other dis-
tributions.

If N goes to infinity there are some interesting relations with existing indices. Because
most bounded distributions are originally defined between 0 and 1 (and every measurement
instrument can be rescaled to this interval), also we will adopt these bounds in the following
paragraphs, leading to a = 0 and b = 1. If N is going to infinity and a = 0 and b = 1, we
find, using Equations 5 and 6, that

nb = Nc

and that
na = N − 1−Nc = N(1− c).

Using this results in Equation 8 gives us that

lim
N→∞

max(var(x)) =
N(1− c)c2 +Nc(1− c)2 + (m− c)2

N − 1

=
N((1− c)c2 + c(1− c)2) + (m− c)2

N − 1

= (1− c)c2 + c(1− c)2

= (1− c)c

= (1− x̄)x̄

(9)

We can now use this result in combination with existing indices.
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A.5.1 The Bernouilli distribution

The probability distribution defined by a Bernoulli distribution is given by

Pr(xi = 1) = p

Pr(xi = 0) = 1− p

For the mean of the Bernouilli distribution one has that

E(x̄) = p

while, as Nx̄ is the number ones in x, the variance var(x) is given by

var(x) =

∑
(xi − x̄)2

N − 1

=
Nx̄(1− x̄)2 + (N −Nx̄)(0− x̄)2

N − 1

=
Nx̄(1− x̄)2 +N(1− x̄)(x̄)2

N − 1

=
Nx̄(1− x̄)(1− x̄+ x̄)

N − 1

= x̄(1− x̄)
N

N − 1

There is an exact mathematical relation between the sample average and the sample variance.
In the Bernoulli distribution all data points are equal to one of the bounds, 0 or 1. As we
have shown this means that the variance is always equal to the maximum possible variance
given the mean. The relative standard deviation (and the relative variance) is therefore
always equal to one:

SD∗ = 1

A.5.2 The Binomial distribution

The Binomial distribution is a generalization of the Bernoulli distribution and is given by

Pr(xi = m) =

(
n

m

)
pm(1− p)(n−m)

where n is the number of trials (which is different from N the number data points in a vector
x = (x1, ..., xN)) and m is the number of successes. To scale these distributions between the
bounds of a = 0 and b = 1 we define the Binomial proportion distribution as

Pr(xi =
m

n
) =

(
n

m

)
pm(1− p)(n−m).

For N going to infinity we have that
x̄ = p
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and

var(x) =
p(1− p)

n
As the maximum variance is given by Equation 9. The standard deviation and the relative
standard deviation are given by.

SD =

√
p(1− p)

n

SD∗ =
1√
n

The relative standard deviation is no function of p (or indirectly of x̄) as opposed to the
normal standard deviation. This is illustrated in Figure 1.

A.5.3 The Beta distribution

Another well-known, somewhat related bounded distribution, is the beta distribution. Here
the probability density function is mostly parametrized using α and β and is given by

f(xi) =
1

B(α, β)
xα−1(1− x)β−1

Another way to parametrize this is by using the mean µ and the concentration or precision
v (in Bayesian statistics, this parameter can also be seen as the sample size, the number of
trials) [3, 1]. This precision v is a measure of how concentrated the distribution is around a
certain mean µ. The relation between this parametrization and the original parametrization
is the following:

µ =
α

α + β

v = α + β

For N going to infinity we have that the sample mean and sample standard deviation are
given by

x̄ = µ

SD =

√
αβ

(α + β)2(α + β + 1)

=

√
µ(1− µ)

1 + v

Using Equation 9 we find that the relative standard deviation is given by

SD∗ =
1√
1 + v

.

While the standard deviation is a function of the mean µ and the concentration v, the relative
standard deviation is only a function of the concentration v. This can also be seen in Figure
1.
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Figure 1: Simulations of variability measures of different series x = (x1, ..., xN) where N is
going to infinity. Top panels: Samples from binomial distributions with random p (points
with the same color come from a distribution with the same number of trials n). Note that
we display the proportions (number of successes m divided by number of trials n). The
top distributions in blue are the Bernoulli distributions (i.e., a binomial with a single trial,
n = 1). Middle panels: beta distributions with random µ and different concentrations or
precisions v (same color refers to panels with same concentration).

B Maximum mean squared successive difference

If we have one long uninterrupted time series, the mean squared successive difference (MSSD)
of time series data x = (x1, ..., xN) is given by

MSSD(x) =

∑N−1
i=1 (xi+1 − xi)

2

N − 1
.

However, in psychological studies, these time series are often divided in P parts, with Np

elements for part p, because of missing data or day-night interruptions (as is commonly the
case in experience sampling). In this case, the MSSD is given by

MSSD(x) =

∑P
p=1

∑Np−1
i=1 (xp,i+1 − xp,i)

2∑P
p=1 (Np − 1)

, (10)
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where xp,i is time point i of part p of the time series. Here we will find the solution to the
following optimization problem:

maximize
x

MSSD(x) =

∑p=P
p=1

∑Np−1
i=1 (xp,i+1 − xp,i)

2∑P
p=1 (Np − 1)

subject to a ≤ xp,i ≤ b, p = i . . . P and i = 1, . . . , N.∑p=P
p=1

∑Np

i=1 xp,i∑P
p=1 (Np)

= x̄ = c.

(11)

For this optimization problem, not only the values of elements xp,i are important, but also
the order. First we will discuss how the values of elements xp,i can be found independently
of the order and then we will discuss the order of these elements.

B.1 Value of the elements of the maximum

The values of the elements xp,i which solve the optimization problem can be found in the same
way as for the maximum variance (or by using Bauer’s maximum principle [2]). Assume again
that for a certain feasible x (satisfying all equality and inequality constraints of Equation
11), there are two elements, say xp,i and xq,j that are not equal to neither a nor b: a < xp,i < b
and a < xq,j < b. We can now create a second data set x′ set equal to x except for elements
(p, i) and (q, j): x′

p,i = xp,i + ∆i and x′
q,j = xq,j + ∆j. To ensure feasibility of x′ we must

first ensure that x̄′ = c. Therefore it is necessary that ∆i = −∆j.
As the formula to compute the MSSD (Equation 10) is a convex function of the elements

of x, it follows that also the change in MSSD: MSSD(x′)−MSSD(x) is a convex function
of ∆i (as in Equation 2). This means that the maximum of this increase in MSSD is only
limited by the fact that ∆i is limited by a ≤ xp,i+∆i ≤ b and a ≤ xq,j −∆i ≤ b. This means
that the maximum increase always results in x′

p,i = a, x′
p,i = b, x′

q,j = a or x′
q,j = b (meaning

that one or more of the elements are moved to the bounds). As b oth xp,i and xq,j do not
have values equal to neither a nor b the maximum increase is strictly positive.

Therefore, we achieve the same conclusion as with the maximum variance. One can
always increase the MSSD(x), independent of the order of the elements, until we have a
data set with structure S. Structure S has the following property: At most one of the data
points lies strictly in between a and b (a < xp,i < b) and all the other data points are exactly
equal to one of the constraints a or b. If we violate this structure one will always be able
to change data points to increase the MSSD until structure S is achieved again. As this
structure S is unique (see Section ‘Uniqueness of structure S’), it follows that x can only
maximize the MSSD if it possesses structure S.

B.2 Order of the maximum

This does however not mean that any x with structure S is a solution to Equation 11.
Structure S defines only the values of the elements the maximum, but not the order. The
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order of the elements is more difficult. We do not provide any analytical expression to solve
this problem. In Matlab and R we solve this using a brute force algorithm.

B.3 Bounded at one side

We only handle the case where measurements are bounded by a lower bound (the case where
they are bound by only an upper bound can be handled similarly). When measurements are
not bounded from above then b = +∞. Again, if c = a we have that na = N − 1, nb = 0
and m = a. When this is not the case we have that

nb =

⌊
Nc−Na

b− a

⌋
=

⌊
Nc−Na

∞

⌋
= 0,

so that na = N − 1 and m = Nc− (N − 1)a = N(c− a) + a. If there exists at least one part
with Np > 2, the optimal order of the elements will be one where m is neighboring a at two
sides so that the maximum MSSD is given by

max(MSSD(x)) =
2(N(c− a) + a− a)2∑p=P

p=1 (Np − 1)
=

2N2(c− a)2∑p=P
p=1 (Np − 1)

If a = 0, the RMSSD =
√
MSSD becomes

max(RMSSD(x)) =

√
2N√∑p=P

p=1 (Np − 1)
c.

Also for the RMSSD∗, where one has to divide the RMSSD by this function of c = x̄, the
link with the CV is obvious.

C Interpercentile distance

In this section we will find the solution of the following problem:

maximize
x

p1, p2 interpercentile distance(x) = xn2 − xn1

subject to a ≤ xi ≤ xi+1 ≤ b, i = 1, . . . , N.

n1 = ⌈p1N⌉
n2 = ⌈p2N⌉∑

xi

N
= x̄ = c,

(12)

The maximum distance between percentile p2 and p1 for an ordered set x = x1, ..., xN

where a ≤ xi ≤ xi+1 ≤ b, for a given x̄ = c. This is obviously only possible if also c lies in
between a and b. In the following proof, it is not important how n1 and n2 are computed.
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Therefore, this proof will also hold for other methods that define a percentile differently (e.g.
n1 = ⌊p1N⌋).

The maximum interpercentile distance is always bounded by b−a. If this distance (b−a)
is achieved, at least n1 elements have values equal to a and at least N − n2 + 1 elements
have values equal to b. In such a case, for a feasible x̄ this means that we can write that

Nc = Nx̄ = n1a+ (N − n2 + 1)b+
n2−1∑

i=n1+1

xi. (13)

Because a ≤ xi ≤ b we can look at the range of possible c for which this maximum distance
is possible:

n1a+ (N − n2 + 1)b+ (n2 − n1 − 1)a ≤ Nc ≤ n1a+ (N − n2 + 1)b+ (n2 − n1 − 1)b

⇔ (n2 − 1)a+ (N − n2 + 1)b ≤ Nc ≤ n1a+ (N − n1)b
(14)

This means that when Nc satisfies Equation 14, the maximum interpercentile distance will
be b−a. For example, when Nc = (n2−1)a+(N−n2+1)b the maximum distance (b−a) will
be reached when the first (n2 − 1) elements have values equal to a and the last (N − n2 +1)
elements have values equal to b. All data points are equal to one of the constraints. Now lets
look at the case where Nc < (n2−1)a+(N −n2+1)b (the case where Nc > n1a+(N −n1)b
is exactly symmetrical and will not be discussed here). We will show the following:

1. Structure of the maximum: If the data set x has not the properties of a certain
structure T , one can always increase the interpercentile range by converging to this
structure.

2. Uniqueness of this structure: This structure exists if Nc < (n2−1)a+(N−n2+1)b
and is unique.

It logically follows that x will be the solution to the optimization problem (Equation 12) if
and only if it possesses structure T and Nc < (n2 − 1)a+ (N − n2 + 1)b. If the data points
do not have this structure, one can always bring them in this unique structure to increase
the interpercentile range.

C.1 Structure of the maximum

We can now define two rules which will always increase the maximum interpercentile range.
We start with ordered data set x and change it into ordered data set x′.

1. If there exists any element xi > a with i < n2 and xn2 < b 1 the interpercentile range
can be increased by making sure that x′

i < xi and x′
n2

> xn2 while x̄′ = c. This way x′

will have a higher interpercentile range as x′
n1

≤ xn1 while x′
n2

> xn2 .

1In case of Nc < (n2 − 1)a+ (N − n2 + 1)b, one always has that xn2
< b
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2. If there exists any element xj > xn2 we can increase the interpercentile range by making
sure that x′

j = x′
n2

and x′
n2

> xn2 while x̄′ = c. This way we have that x′
n1

= xn1 while
x′
n2

> xn2 .

We can not apply this rules if the data set has structure T :

∀i < n2 : xi = a

∀i, j ≥ n2 : xi = xj

In any other case we can apply one of the two rules to converge to structure T and to increase
the interpercentile range.

C.2 Uniqueness of the maximum

For a data set with structure T we have that n2 − 1 elements are equal to a and N − n2 + 1
elements are equal to m. For a feasible data set we have that

(n2 − 1)a+ (N − n2 + 1)m = Nx̄ = Nc

which uniquely defines m as

m =
Nc− (n2 − 1)a

N − n2 + 1

as long as Na ≤ Nc < (n2 − 1)a + (N − n2 + 1)b this results indeed leads to a m that is
within the constraints: a ≤ m ≤ b. The maximum interpercentile distance is

m− a =
Nc− (n2 − 1)a

N − n2 + 1
− a =

N(c− a)

N − n2 + 1

C.3 The maximum

The maximum interpercentile range is given by

range(x) =


N(c− a)

N − n2 + 1
if a ≤ Nc < (n2 − 1)a+ (N − n2 + 1)b

b− a if (n2 − 1)a+ (N − n2 + 1)b ≤ Nc ≤ n1a+ (N − n1)b

N(b− c)

n1

if n1a+ (N − n1)b < Nc ≤ b

(15)
Note that the case where a + (N − 1)b < Nc was not explicitly discussed but is exactly
symmetrical to the case where Nc < (N − 1)a+ b.
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C.4 Maximum range

In case of the maximum range, we have that n1 = 1 and n2 = N . The maximum is now
given by

range(x) =


N(c− a) if a ≤ Nc < (N − 1)a+ b

b− a if (N − 1)a+ b ≤ Nc ≤ a+ (N − 1)b

N(b− c) if a+ (N − 1)b < Nc ≤ b

C.5 Maximum interquartile range

In case of the interquartile range we have that p1 = 0.25 and p2 = 0.75. This means that
n1 = ⌈0.25N⌉ and n2 = ⌈0.75N⌉. Now we can use Equation 15 to find the maximum
interquartile range.

C.6 Bounded at one side

We only handle the case where measurements are bounded by a lower bound (the case where
they are bound by only an upper bound can be handled similarly). When measurements
are not bounded from above then b = +∞. Using Equation 15 we find the maximum using
the part where Nc ≤ (n2 − 1)a + (N − n2 + 1)b. If a = 0 the maximum becomes Nc

N−n2+1
.

A division by this maximum is again very similar to the procedure of the calculation of the
coefficient of variation.
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