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Supplementary Material of “A Comparison of Bayesian and Frequentist Model Selection

Methods for Factor Analysis Models”

The main scripts are as follows. First, we loaded some R packages, sourced some R

functions, and defined some constants of dimensions. We simulated data from factor

analysis model with Simulation.R, which can be changed for different settings. Then we

inputted data, defined hyperparameters, identification conditions, and initial values of

parameters, which were stored as lists to be used by the function for Bayesian factor

analysis. The MCMC sampling was handled by the function BFA. The MCMC samples

were stored in a list, which was used to calculate the Bayesian MCC and posterior model

probabilities based on SSP.

1 # Load some libraries and R functions

2 install . packages (" mvtnorm ")

3 install . packages ("loo")

4

5

6 library (stats)

7 library (MASS)

8 library ( mvtnorm )

9 library (loo)

10

11

12 source (" Routine .R",local=T)

13 source ("BFA.R")

14 source (" MCCRoutine .R")

15

16 # Dimension Setting

17 NMCMC <- 8000 # Number of MCMC samples generated

18 NBurn <- 4000 # Number of MCMC samples discarded as burn -in samples



MODEL SELECTION METHODS FOR FACTOR ANALYSIS MODELS S3

19 Nthin <- 1 # thinning of MCMC sample , the number of MCMC

iterations is NMCMC * Nthin

20 N <- 100 # Number of subjects

21 NY <- 9 # Number of items

22 NK <- 3 # Number of factors

23 NZ <- NK

24

25 # Simulate data

26

27 set.seed (1000)

28

29 source (" SimulateData .R")

30

31

32 #set.seed (1000)

33

34 # Input data

35 DataMat <-read.table(" SimulatedData .txt",header =F)

36 # Define the hyperparameters of prior distributions

37 source ("Prior.R",local=T)

38 # Define the identification conditions

39 source ("ind.R",local=T)

40 # Define the initial values of parameters and latent factors

41 source ("init1.R",local=T)

42

43 #set.seed (10)

44 # Generate MCMC samples for the factor analysis model

45 # The results is a list containing MCMC samples of parameters and

latent factors
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46 BFAResult <- BFA(DataMat , InitialValues , Identification ,Hyperpara ,

NMCMC=NMCMC ,NBurn=NBurn ,Nthin=Nthin , StoreLatentVariables = T)

47

48 #dump(c(" BFAResult "),file =" MCMCSamples .R")

49 save(" BFAResult ",file=" MCMCSamples .RData")

50

51 # Calculate posterior mean , SE and posterior inclusion probabilities

of the parameters stored in a list

52 MCMCSummary ( BFAResult )

53

54 #set.seed (10)

55 # Calculate the model comparison statistics

56 MCCResults <- BayesianMCC (BFAResult ,DataMat ,Hyperpara , Identification

, BridgeSamplerMargLik =T,BIC=T,DIC=T,LOO=T)

57

58

59 # Only use if SSP is used

60 # Store the structure of the candidate models in a list

CandidateModels

61 source (" CandidateModelsIdentification .R")

62 # Calculate the estimated marginal model probability by SSP

63 MMP <- MMP_SSP( BFAResult $PIP , CandidateModels )

A. MCMC Sampling

The full conditional distributions of the parameters and factors used in the MCMC

sampling may be found in the literature (Lee, 2007; Lu, Chow, & Loken, 2016; Press, 2002)

and other papers in this issue. We outline the key R codes used to implement the sampling
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of these conditional distributions. The complete code will be posted on

https://github.com/zhaohualu/BSEM_SSP. We refer the readers to Lee (2007) for the

derivation and mathematical expression of these distributions. We will directly refer to the

equations in Lee (2007) with prefix L.

Sampling the factors

The factors can be generated from their full conditional distribution which is a

multivariate normal distribution. The derivation can be found in equation (L4.24) on p.

Alternatively, we can sample the factors using Metropolis-Hastings (MH) algorithm.

We chose this approach as it leads to faster R code implementation. The derivation can be

found in Equations (L8.11) - (L8.13).

1. First, we calculated the covariance matrix (L8.12) of the proposal distribution in the

MH algorithm. This is a simplified version compared to (L8.12) as there is no

endogenous latent variable (dependent latent variable in SEM) in the factor analysis

model.

1 ISG <- crossprod (inv.sqrt.PSX * LY)

2 if (NZ > 0){

3 ISG [(NM + 1):NK , (NM + 1):NK] <- ISG [(NM + 1):NK , (NM + 1):NK

] + inv.PHI

4 }

5 ISG <- ISG

6 SIG <- chol2inv (chol(ISG))

2. Then we generate proposal samples (OMEN) for the factors by add a random

pertubation to the current values of the factors (Omega).

1 cSIG <-chol(SIG)
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2 OMEN <-Omega+ crossprod (cSIG , matrix (rnorm(N*NK ,0 ,1) ,nrow=NK ,

ncol=N))

3. The proposal sample is accepted as the new values of the factors with probability

equal to exp(−0.5(r2− r1)), where r2 and r1 are the log likelihood values of the

existing and proposal values of the factor.

1 r1 <- log. likelihood (Y - Ycen , LY , Omega , inv.sqrt.PSX ,

2 c.inv.PHI)

3 r2 <- log. likelihood (Y - Ycen , LY , OMEN , inv.sqrt.PSX ,

4 c.inv.PHI)

5 r <- exp (0.5 * (r1 - r2))

6 comr <- runif(N)

7 crit <- (comr < r)

8 COV [(2 + NANA):(1 + NANA + NK), crit] <- Omega[, crit] <-

OMEN[, crit]

Sampling µ, Λ, Ψ and R

Given the prior distributions of Λ, Λ, and Ψ, they are sampled together. The

samples are generated from the full conditional distributions in pp. 83 - 85 of Lee (2007).

In case SSP is assigned to certain elements in the loading matrix, the corresponding

elements in R is sampled from the full conditional distributions are derived in Lu et al.

(2016).

1 # Sampleing the indicator in SSP , intercepts , loading matrix and

2 # unique variance for every item

3
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4 XX <- tcrossprod (COV)

5

6 for (j in 1:NY) {

7

8 # Sampling the R for SSP in case some elements assigned SSP

9

10 subs <- ICE[j, ] == 0 # fixed item

11 Ycen <- as. vector (Y[j, , drop = FALSE] - COE[j,

12 (subs), drop = F] %*% COV [( subs), , drop = F])

13 XY <- COV %*% Ycen

14 Ycens2 <- sum(Ycen ^2)

15

16 iPSigb0 <- diag(PPCOE[j, ])

17 Pmean <- PCOE[j, ]

18

19 idx0 <- IDE[j, ] > 0 # current !=0 components

20

21 idxtmp <- which(ICE[j, ] == 2)

22 for (k in idxtmp ) {

23 if (IDE[j, k] > 0) {

24 idx1 <- idx0

25 idx2 <- idx0

26 idx2[k] <- F

27 } else {

28 idx1 <- idx0

29 idx2 <- idx0

30 idx1[k] <- T

31 }

32
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33 iPSigb1 <- iPSigb0 [idx1 , idx1 , drop = F]

34 Pb1 <- Pmean[idx1]

35 iSigb1 <- XX[idx1 , idx1] + iPSigb1

36 Sigb1 <- solve( iSigb1 )

37 bets1 <- Sigb1 %*% (XY[idx1] + iPSigb1 %*% Pb1)

38

39 # Calcualte the posterior proability of the indicators

40

41 logR <- log(pr[j, k]/(1 - pr[j, k]))

42

43 if (sum(idx2) > 0) {

44 iPSigb2 <- iPSigb0 [idx2 , idx2 , drop = F]

45 Pb2 <- Pmean[idx2]

46 iSigb2 <- XX[idx2 , idx2] + iPSigb2

47 Sigb2 <- solve( iSigb2 )

48 bets2 <- Sigb2 %*% (XY[idx2] + iPSigb2 %*% Pb2)

49

50 logR <- logR - log(sqrt(det(Sigb2))) #*det( iPSigb2 )

51 logR <- logR + (N/2 + alphax [j]) * log( Ycens2 +

52 sum(Pb2 * ( iPSigb2 %*% Pb2)) - sum(bets2 *

53 ( iSigb2 %*% bets2)))

54 }

55

56

57 logR <- logR - (N/2 + alphax [j]) * log( Ycens2 +

58 sum(Pb1 * ( iPSigb1 %*% Pb1)) - sum(bets1 * ( iSigb1 %*%

59 bets1)))

60 logR <- logR + log(sqrt(det(Sigb1))) #det( iPSigb1 )

61 if (PPCOE[j, k] > 0)
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62 logR <- logR + log(sqrt(PPCOE[j, k]))

63 R <- exp(logR)

64 p <- 1 - 1/(1 + R)

65 itmp <- rbinom (1, 1, p)

66 IDE[j, k] <- itmp

67 idx0 <- IDE[j, ] > 0 # current !=0 components

68 }

69 idx1 <- IDE[j, ] == 0 & ICE[j, ] == 2

70 COE[j, idx1] <- 0

71

72 # Sampling the intercepts , loadings and unique variances

73

74 subs <- IDE[j, ] > 0 # current active components to be optimized .

75 Ycen <- COE[j, (!subs), drop = F] %*% COV [(!subs),

76 , drop = F]

77

78 omesub <- COV[subs , , drop = FALSE]

79 ssubs <- sum(subs)

80 iPSiginv <- diag(PPCOE[j, subs], ssubs)

81 Pmean1 <- PCOE[j, subs]

82

83 # Sampling unique variances

84 Ycen <- as. vector (Y[j, , drop = FALSE] - Ycen)

85 alphastar <- alphax [j] + N/2

86 betastar <- betax[j] + 1/2 * sum(Ycen ^2)

87 if (ssubs > 0) {

88 calsmnpsx <- chol2inv (chol ((XX[subs , subs , drop = F] +

89 iPSiginv )))

90 temp <- ( omesub %*% Ycen + iPSiginv %*% Pmean1 )
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91 LYnpsx <- calsmnpsx %*% temp

92 betastar <- betastar + 1/2 * (sum( Pmean1 * iPSiginv *

93 Pmean1 ) - sum(temp * LYnpsx ))

94 }

95 iPSX[j] <- rgamma (1, shape = alphastar , rate = betastar )

96 PSX[j] <- 1/iPSX[j]

97 inv.sqrt.PSX[j] <- sqrt(iPSX[j])

98

99 # Sampling the intercepts and loadings

100 if (ssubs > 0) {

101 COE[j, idx0] <- mvrnorm (1, LYnpsx , PSX[j] * calsmnpsx )

102 }

103 }

Sampling Φ

The covariance matrix is generated from Inverse-Wishart distribution (L4.30).

1 inv.PHI[, ] <- rWishart (1, RouZero + N, solve( tcrossprod (Omega [(NM +

2 1):NK , , drop = F]) + IWMat))

3 c.inv.PHI <- chol(inv.PHI)

4 PHI <- chol2inv (c.inv.PHI)

B. Calculation of MCC

The calculation is handled by the function BayesianMCC. Some code in the function

are listed below.
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B.1. Calculate the marginal probability for Bayes Factor

1 #### LOG LIKELIHOOD BASED ON MCMC SAMPLES ( mlfytk )

2 Y1 <- DataMat

3 mlfytk <- numeric (nrow(mcmc.lam))

4 for (j in 1: nrow(mcmc.lam)) {

5 Lambj <- matrix (mcmc.lam[j, ], nrow = NY , ncol = NK ,

6 byrow = T)

7 PHIj <- matrix (mcmc.phx[j, ], nrow = NZ , ncol = NZ ,

8 byrow = T)

9 Sigmaj <- diag(mcmc.sigma[j, ])

10

11 mlfytk [j] <- LFYTK(Y1 , mcmc.mu[j, ], Lambj , Sigmaj ,

12 PHIj)

13 }

14

15 #### LOG PRIOR DENSITY FOR MCMC SAMPLES (SLPT)

16 tPLY <- t(PLY)

17 tPPLY <- t(PPLY)

18 # Prior density of Intercept

19 SLPT0 <- apply(mcmc.mu , FUN = LPT1 , MAR = 1, MLam = PMU ,

20 VLam = 1/(PPMU))

21 # Prior density of free elements in the loading matrix

22 SLPT1 <- apply(mcmc.lam[, lamfreeidx ], FUN = LPT1 , MAR = 1,

23 MLam = tPLY[ lamfreeidx ], VLam = 1/(tPPLY[ lamfreeidx ]))

24

25 SLPT2 <- numeric (Nrec)

26 SLPT3 <- numeric (Nrec)

27 for (j in 1: Nrec) {
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28 # Prior density of unique variance

29 SLPT2[j] <- LPT2(mcmc.sigma[j, ], a = alphax , b = betax)

30 # Prior density of factor covariance matrix

31 PHItmp <- matrix (mcmc.phx[j, ], NZ , NZ , byrow = F)

32 SLPT3[j] <- diwish (PHItmp , RouZero , IWMat , logflag = T)

33 }

34 SLPT <- SLPT0 + SLPT1 + SLPT2 + SLPT3

35

36

37

38 ### Calculate the parameters of the g distibutions

39

40 # Mean and Covariance of multivariate normal distribution for

41 # the Intercepts

42 mmu <- colMeans (mcmc.mu)

43 vmu <- cov(mcmc.mu)

44

45 # Mean and Covariance of multivariate normal distribution for

46 # the free elements in the loading matrix

47 mLam <- colMeans (mcmc.lam[, lamfreeidx ])

48 vLam <- cov(mcmc.lam[, lamfreeidx ])

49

50 # Shape and rate parameters of inverse gamma distribution for

51 # the unique variances

52 pm <- colMeans (mcmc.sigma)

53 pv <- apply(mcmc.sigma , FUN = var , MAR = 2)

54 pa <- as. numeric (pm^2/pv + 2)

55 pb <- as. numeric ((pa - 1) * pm)

56
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57 # Parameters of the inverse Wishart distribution for the factor

58 # covariance matrix

59 Exiv <- colMeans (mcmc.omega)

60 Exi <- matrix (Exiv , nrow = NK , ncol = N)

61 Exi2 <- tcrossprod (Exi) + IWMat

62 Erho <- mean (( Exi2)/Ephx) + NZ + 1

63 if (Erho <= 0) {

64 Erho <- mean(diag(Exi2)/diag(Ephx)) + NZ + 1

65 }

66

67 ## Denominator

68

69 ### LOG DENSITY FUNCTION of proposal g distributions OF MCMC

70 ### SAMPLES (Sgf)

71

72 Sgf0 <- gf1(mcmc.mu , mmu , vmu)

73 Sgf1 <- gf1(mcmc.lam[, lamfreeidx ], mLam , vLam)

74 Sgf2 <- apply(mcmc.sigma , FUN = gf2 , MAR = 1, pa , pb)

75 Sgf3 <- numeric (Nrec)

76 for (j in 1: Nrec) {

77 PHItmp <- matrix (mcmc.phx[j, ], NZ , NZ , byrow = F)

78 Sgf3[j] <- diwish (PHItmp , Erho , Exi2 , logflag = T)

79 }

80 Sgf <- Sgf0 + Sgf1 + Sgf2 + Sgf3

81

82

83

84

85 #### GENERATE ADDITIONAL SAMPLES from the g density FOR BRIDGE
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86 #### SAMPLER

87

88 gpsx <- matrix (1/ rgamma (Nrec * length (pa), rep(pa , each = Nrec),

89 rate = rep(pb , each = Nrec)), nrow = Nrec , ncol = length (pm))

90 gmu <- mvrnorm (Nrec , mmu , vmu)

91 gLam <- mvrnorm (Nrec , mLam , vLam)

92 giPHI <- rWishart (Nrec , Erho , solve(Exi2))

93 gPHI <- array (0, dim = dim(giPHI))

94 for (j in 1: Nrec) {

95 gPHI[, , j] <- solve(giPHI[, , j])

96 }

97

98 #### Log LIKELIHOOD BASED ON ADDITIONAL (g) SAMPLES ( gmlfytk )

99 gmlfytk <- numeric (Nrec)

100 for (j in 1: Nrec) {

101 tLambj <- matrix (mcmc.lam [1, ], nrow = NK , ncol = NY)

102 # tLambj [ lamfixidx ] = lamfixval

103 tLambj [ lamfreeidx ] <- gLam[j, ]

104 Lambj <- t( tLambj )

105 PHIj <- gPHI[, , j]

106 Sigmaj <- diag(gpsx[j, ])

107

108 gmlfytk [j] <- LFYTK(Y1 , gmu[j, ], Lambj , Sigmaj , PHIj)

109 }

110

111 #### Log PRIOR FOR ADDITIONAL (g) SAMPLES (SLPT)

112 tPLY <- t(PLY)

113 tPPLY <- t(PPLY)

114 # Prior density of Intercept
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115 gSLPT0 <- apply(gmu , FUN = LPT1 , MAR = 1, MLam = PMU , VLam = 1/(PPMU

))

116 # Prior density of free elements in the loading matrix

117 gSLPT1 <- apply(gLam , FUN = LPT1 , MAR = 1, MLam = tPLY[ lamfreeidx ],

118 VLam = 1/(tPPLY[ lamfreeidx ]))

119 gSLPT2 <- numeric (Nrec)

120 gSLPT3 <- numeric (Nrec)

121

122 for (j in 1: Nrec) {

123 # Prior density of unique variance

124 gSLPT2 [j] <- LPT2(gpsx[j, ], a = alphax , b = betax)

125 # Prior density of factor covariance matrix

126 PHItmp <- gPHI[, , j]

127 gSLPT3 [j] <- diwish (PHItmp , RouZero , IWMat , logflag = T)

128 }

129 gSLPT <- gSLPT0 + gSLPT1 + gSLPT2 + gSLPT3

130

131

132 # g LOG DENSITY OF g SAMPLES (Sgf) Intercept

133 gSgf0 <- gf1(gmu , mmu , vmu)

134 # Free loading elements

135 gSgf1 <- gf1(gLam , mLam , vLam)

136 # Unique Variance

137 gSgf2 <- apply(gpsx , FUN = gf2 , MAR = 1, pa , pb)

138 # Factor Covariance

139 gSgf3 <- numeric (Nrec)

140 for (j in 1: Nrec) {

141 PHItmp <- gPHI[, , j]

142 gSgf3[j] <- diwish (PHItmp , Erho , Exi2 , logflag = T)



MODEL SELECTION METHODS FOR FACTOR ANALYSIS MODELS S16

143 }

144 #

145 gSgf <- gSgf0 + gSgf1 + gSgf2 + gSgf3

146

147 # Bridge Sampler

148 lN <- 0.5 * ( gmlfytk + gSLPT - gSgf)

149 lD <- -0.5 * ( mlfytk + SLPT - Sgf)

150 mlN <- mean(lN)

151 mlD <- mean(lD)

152 Marglik _BS <- log(mean(exp(lN - mlN))/mean(exp(lD - mlD))) +

153 (mlN - mlD)

B.2. Calculate BIC

1 Emu <- colMeans (mcmc.mu)

2 ELam <- matrix ( colMeans (mcmc.lam), nrow = NY , ncol = NK ,

3 byrow = T)

4 Esigma <- colMeans (mcmc.sigma)

5 Ephx <- matrix ( colMeans (mcmc.phx), nrow = NZ , ncol = NZ ,

6 byrow = T)

7

8 library ( mvtnorm )

9 # BIC , log likelihood and number of parameters

10 BIC <- -2 * sum( dmvnorm (DataMat , Emu , ELam %*% Ephx %*%

11 t(ELam) + diag( Esigma ), log = T)) + ( length ( lamfreeidx ) +

12 NY + NY + NZ * (NZ + 1)/2) * log(N)
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B.3. Calculate DIC

1 # Log likelihood at posterior mean

2 dbt <- -2 * sum( dmvnorm (DataMat , Emu , ELam %*% Ephx %*%

3 t(ELam) + diag( Esigma ), log = T))

4 dtb <- 0

5 # Posterior mean of log likelihood

6 for (j in 1: Nrec) {

7 Lambj <- matrix (mcmc.lam[j, ], nrow = NY , ncol = NK ,

8 byrow = T)

9 PHIj <- matrix (mcmc.phx[j, ], nrow = NZ , ncol = NZ ,

10 byrow = T)

11 Sigmaj <- diag(mcmc.sigma[j, ])

12

13 dtb <- dtb + (-2 * sum( dmvnorm (DataMat , mcmc.mu[j, ],

14 Lambj %*% PHIj %*% t(Lambj) + ( Sigmaj ), log = T)))

15 }

16 dtb <- dtb/Nrec

17 pd <- dtb - dbt

18 DIC <- dtb + 2 * pd

B.4. Calculate LOO-PSIS

1 ## Calculate LOO with the the loo function in the loo package

2 ## Create a matrix recording the log likelihood of each subject

3 ## givenparameters in each MCMC iteration , # of row is number of

4 ## MCMC sample , # of column if # of subject

5 LogLikMcMat <- matrix (nrow = Nrec , ncol = nrow( DataMat ))

6 for (j in 1: Nrec) {
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7 Lambj <- matrix (mcmc.lam[j, ], nrow = NY , ncol = NK ,

8 byrow = T)

9 PHIj <- matrix (mcmc.phx[j, ], nrow = NZ , ncol = NZ ,

10 byrow = T)

11 Sigmaj <- diag(mcmc.sigma[j, ])

12

13 LogLikMcMat [j, ] <- dmvnorm (DataMat , mcmc.mu[j, ], Lambj %*%

14 PHIj %*% t(Lambj) + ( Sigmaj ), log = T)

15 }

16 lootmp <- loo( LogLikMcMat )

17 LooEst <- lootmp $looic

B.5. Calculate posterior model probability with SSP

1 MMP_SSP <- function (PIP , CandidateModels ) {

2

3 # A vector record the estimated marginal model probability by

4 # SSP

5 TrueModPostProb <- numeric ( length ( CandidateModels ))

6 names( TrueModPostProb ) <- names( CandidateModels )

7 for (mcrep in 1: dim(PIP)[1]) {

8 EILYtmp <- PIP[mcrep , , ]

9

10 # Count the number of iteration where the candidate model is the

11 # selected model

12 for (j in 1: length ( CandidateModels )) {

13 # Index of free parameters to be compared

14 Tidx <- CandidateModels [[j]] == 3
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15 # Index of fixed parameters to be compared

16 Fidx <- CandidateModels [[j]] == 2

17 # Count

18 TrueModPostProb [j] <- TrueModPostProb [j] + (all( EILYtmp [Tidx] ==

19 1) & all( EILYtmp [Fidx] == 0))

20 }

21 }

22 print(" Marginal model probability calculated by SSP")

23 print( TrueModPostProb )

24 return ( TrueModPostProb )

25 }

The point mass function in the SSP requires the use of specific Gibbs sampler (Liu,

1994) to generate MCMC samples. We implemented the collapsed Gibbs sampler (Liu,

1994) in R. The R code is available at [website address to be provided upon the acceptance

of this manuscript]. A variant of the SSP is the hierarchical normal mixture prior (George

& McCulloch, 1993) which replaces the point mass function with a normal distribution

with a very small variance. This prior distribution can be implemented in JAGS through

the Gibbs sampler. However, it introduces an additional tuning parameter (the small

variance) that affects its performance and slows down the convergence of the MCMC

algorithms compared to the SSP approach we used (O’Hara & Sillanpää, 2009).

C. Definitions of Some Bayesian MCC

BIC

The BIC is expressed as:

BIC = −2 log ps(Y|θ̄s) + (2p + ||Λs||0 + q(q + 1)/2)log(n), (S1)
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where ||Λs||0 is the number of parameters in Λs in this particular context. Just as the BIC

is often used in the frequentist context for model selection, the first term in (S1) measures

goodness-of-fit and the second term characterizes the model complexity in terms of the

number of parameters in the model (1). Practically, we calculate the estimate of BIC by

replacing the posterior means in (S1) with the sample means of the posterior samples from

the MCMC algorithm. Sample code for calculating the BIC is given in Section B.2 in the

supplementary material.

DIC

DIC is computed as

DIC = −2 log ps(Y|θ̄s) + 2pD, (S2)

where the first term is the same as BIC, and the second term

pD = Eθs|Y[−2 log ps(Y|θs)] + 2 log ps(Y|θ̄s)

is a measure of model complexity known as the effective number of parameters. The

expectation in the first term is taken of the deviance, −2 log ps(Y|θs), with respect to

ps(θs|Y), and may be approximated by

1
N1

N1∑
t=1
−2 log ps(Y|θ(t)

s ), (S3)

where θ(t)
s is the tth MCMC sample from ps(θs|Y) obtained during estimation N1

represents the total number of MCMC samples generated.

Despite the DIC’s practical advantages, its theoretical justification is relatively weak

and it has known limitations in some modeling scenarios. For instance, Celeux, Forbes,

Robert, and Titterington (2006) showed that the DIC is problematic in mixture models

and compared several modified DIC for models with missing data and latent variables. For

latent variable models where the closed form of the observed likelihood, ps(Y|θ(t)
s ), is not

available, the DIC provided by software such as OpenBUGS and JAGS is usually
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problematic as shown in Celeux et al. (2006). For the CFA models considered in the

present context, if a closed form of the likelihood is not available as in Equation (3), then

the MCMC algorithm used for estimation purposes is usually based on the augmented

posterior distribution, pj(Ω, θ
(t)
j |Y), where the parameters and latent factors are treated

equally and both have to be integrated out – usually via MCMC approximations – to

obtain the likelihood function. In these cases, the resulting DIC is different from that in

(S2) and was shown to be less satisfactory. Celeux et al. (2006) derived other versions of

DIC which can not be computed directly in standard software. Here, because our model of

interest does have a likelihood expression in closed form, we calculated the DIC (S2) using

Equation (3) directly with our own R script (see Section B.3 of the supplementary

material) rather than using the DIC output from JAGS.

In addition, the DIC tends to select over-fitted models. The reason is that in

standard use of the DIC, the same observed data are used to estimate the parameters and

evaluate the model in (S2). Ideally, a set of replicated data Yrep should be used.

Modifications of the DIC have been proposed to address this problem (see, for example,

Ando, 2010), but often entail complicated posterior computations and are thus not pursued

routinely in empirical practice (for a thorough review see Spiegelhalter, Best, Carlin, &

van der Linde, 2014).
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