R script

#Packages Required
library(foreign)
library(dplyr)
library(bootnet)
library(qgraph)
library(NetworkComparisonTest)
library(networktools)
library(mice)
library(psych)
library(readxl)

#Data Sets Import
Data_set <- read_excel("Data set.xlsx")
Data_set = as.data.frame(Data_set, stringsAsFactors = FALSE)

Data_set = map_df(Data_set, as.numeric) %>% . - 1,

#Replace -99 and 99 with NA (missing data)
Data_set[Data_set == -99] = NA
Data_set[Data_set == 99] = NA

#Select adolescents younger that 13 years or 13 years old.
Data_set = Data_set %>% filter(., Varsta_ani <= 13 | is.na(Varsta_ani))

######### descriptive statistics

table(Data_set$Gen)
table(Data_set$Clasa)

table(Data_set$Etnie)

table(Data_set$Rural_urban)

describe(Data_set$Varsta_ani)

Revers scoring APQ involvement and positive parenting

Data_set[, c('apq_01', 'apq_04', 'apq_07', 'apq_09', 'apq_11', 'apq_14',
 'apq_15', 'apq_20', 'apq_23', 'apq_26',
 'apq_02', 'apq_05', 'apq_13', 'apq_16', 'apq_18', 'apq_27')] = 6
-
Data_set[, c('apq_01', 'apq_04', 'apq_07', 'apq_09', 'apq_11', 'apq_14',
 'apq_15', 'apq_20', 'apq_23', 'apq_26',
 'apq_02', 'apq_05', 'apq_13', 'apq_16', 'apq_18', 'apq_27')]

###

Missing data APQ

------------------Data Screening-------------------------------

The APQ Items for the Five Parenting Domains

APQ <- subset(Data_set, select = c('Gen', 'apq_01', 'apq_02', 'apq_03',
 'apq_04', 'apq_05', 'apq_06', 'apq_07', 'apq_08',
 'apq_13', 'apq_14', 'apq_15',
 'apq_16', 'apq_17', 'apq_18', 'apq_19',
 'apq_20', 'apq_21', 'apq_22',
 'apq_23', 'apq_24', 'apq_25', 'apq_26', 'apq_27', 'apq_28', 'apq_29',
 'apq_30',
 'apq_31', 'apq_32', 'apq_33', 'apq_35',
 'apq_38'))

Missing data APQ
```r
table(is.na(APQ))

missing_percent = function(x){sum(is.na(x))/ length(x)*100}

apply(APQ, 2, missing_percent)

# Multivariate assumptions test

## Linearity assumptions test

random = rchisq(nrow(APQ[, -1]), 14)

fake = lm(random~., data = APQ[, -1])

standardizedResiduals = rstudent(fake)

qqnorm(standardizedResiduals)

abline(0,1)

## Normality assumption test

describe(APQ[, -1])

hist(standardizedResiduals, breaks = 44)

describe(standardizedResiduals)

########################## Network Estimation ##########################

Network <- estimateNetwork(APQ[, -c(1, 36)], default = "EBICglasso", corMethod = "cor_auto", tuning = 0.5)

parenting_practices <- c("Parental involvement", "Positive parenting", "Inconsistent discipline", "Parental involvement",
```
"Positive parenting", "Poor monitoring", "Parental involvement", "Inconsistent discipline",
"Parental involvement", "Poor monitoring", "Parental involvement", "Inconsistent discipline",
"Positive parenting", "Parental involvement", "Positive parenting",
"Poor monitoring", "Positive parenting", "Poor monitoring",
"Inconsistent discipline", "Parental involvement", "Poor monitoring",
"Parental involvement", "Positive parenting", "Poor monitoring",
"Inconsistent discipline", "Poor monitoring",
"Corporal punishment", "Corporal punishment")

items <- c("apq_1", "apq_2", "apq_3", "apq_4", "apq_5", "apq_6", "apq_7",
 "apq_8", "apq_9", "apq_10", "apq_11", "apq_12",
 "apq_13", "apq_14", "apq_15",
 "apq_25", "apq_26", "apq_27", "apq_28", "apq_29", "apq_30", "apq_31", "apq_32", "apq_33", "apq_35")

plot and save high resolution graph
tiff("Fig. 1.tif", family = "ArialMT", units = "cm",
 width = 24, height = 16, pointsize = 12, res = 500)
plot(Network, layout = "spring", labels = items, groups = parenting_practices)

dev.off()

##Computing Centrality Indices##

plot and save high resolution graph
tiff("Fig. 2.tif", family = "ArialMT", units = "cm",
 width = 24, height = 16, pointsize = 12, res = 500)
centralityPlot(Network, include = c("Strength", "Closeness", "Betweenness"))
dev.off()

###

boot0 <- bootnet(Network, nBoots = 2500, nCores = 8)

tiff("Fig. S1.tif", family = "ArialMT", units = "cm",
 width = 30, height = 16, pointsize = 12, res = 230)
plot(boot0, labels = FALSE, order = "sample")
dev.off()

###

boot2 <- bootnet(Network, nBoots = 2500, type = "case", nCores = 8,
 statistics = c("strength", "closeness", "betweenness"))
plot(boot2, statistics = c("strength", "closeness", "betweenness"))
corStability(boot2)

###

boot1 <- bootnet(Network, nBoots = 2500, nCores = 8, statistics =
 c("strength", "closeness", "betweenness"))

tiff("Fig. S2.tif", family = "ArialMT", units = "cm",
 width = 30, height = 16, pointsize = 12, res = 230)
plot(boot1, labels = TRUE, order = "sample", statistics = c("strength",
 "closeness", "betweenness"))
dev.off()

###

bridge_APQ_network <- getWmat(Network)
qgraph(bridge_APQ_network, groups=parenting_practices, layout="spring")

bridge_centrality <- bridge(bridge_APQ_network,
 communities=parenting_practices)
tiff("Fig. S3.tif", family = "ArialMT", units = "cm",
 width = 30, height = 16, pointsize = 12, res = 230)
plot(bridge_centrality, include=c("Bridge Strength", "Bridge Betweenness",
 'Bridge Closeness',
 'Bridge Expected Influence (1-step)'),
 order="value")
dev.off()

plot(bridge_centrality, include=c("Bridge Strength", "Bridge Betweenness",
 'Bridge Closeness', 'Bridge Expected Influence (1-step)'), zscore=TRUE,
 order="value")

bridge_strength <- bridge_centrality$`Bridge Strength`

top_bridges <- names(bridge_strength[bridge_strength>quantile(bridge_strength, probs=0.80,
 na.rm=TRUE)])
top_bridges

bridge_num_w1 <- which(names(bridge_strength) %in% top_bridges)

new_communities <- vector()
for(i in 1:length(bridge_strength)) {
 if(i %in% bridge_num_w1) {
 new_communities[i] <- "Bridge"
 } else {new_communities[i] <- parenting_practices[i]}
}

qgraph(bridge_APQ_network, layout="spring", legend = TRUE,
groups=new_communities,
 color = c('red', 'orange', 'gold', 'green', 'blue', 'brown'))

###############################APQ Males-Females Differences Test###############################

APQ_males = APQ %>% filter(., Gen == 1)

APQ_females = APQ %>% filter(., Gen == 2)

Network_males <- estimateNetwork(APQ_males[, -c(1, 36)], corMethod =
 'cor_auto', default = "EBICglasso")
Network_females <- estimateNetwork(APQ_females[, -c(1, 36)], corMethod = 'cor_auto', default = "EBICglasso")
plot(Network_females, layout = "spring", labels = items, groups = parenting_practices)
plot(Network_males, layout = "spring", labels = items, groups = parenting_practices)

Females_males_APQ_comparison <- NCT(Network_males, Network_females, it = 1000, binary.data=FALSE, paired=FALSE, weighted=TRUE, AND=TRUE, abs=TRUE, test.edges=TRUE, edges = 'all', make.positive.definite=TRUE, p.adjust.methods = "BH", test.centrality=TRUE, centrality=c("strength","expectedInfluence"), nodes="all", communities=parenting_practices, useCommunities="all", verbose = TRUE)

plot(Females_males_APQ_comparison, what = 'network')
plot(Females_males_APQ_comparison, what = 'centrality')
plot(Females_males_APQ_comparison, what = 'edge')
plot(Females_males_APQ_comparison, what = 'strength')
print(Females_males_APQ_comparison)

centralityPlot(list(Males = Network_males, Females = Network_females), include = c("Strength", "Closeness", "Betweenness", "expectedInfluence"), labels = items)

##########Screening APQ_YSR Subscales Data####################################
##Compute Total Scores on Sub scales

APQ_YSR <- Data_set %>%
 mutate(Involvement = apq_01 + apq_04 + apq_07 + apq_09 + apq_11 + apq_14 + apq_15 + apq_20 + apq_23 + apq_26)
 mutate(Positive_Parenting = apq_02 + apq_05 + apq_13 + apq_16 + apq_18 + apq_27)
 mutate(Poor_Monitoring = apq_06 + apq_10 + apq_17 + apq_19 + apq_21 + apq_24 + apq_28 + apq_29 + apq_30 + apq_32)
 mutate(Inconsistent_Discipline = apq_03 + apq_08 + apq_12 + apq_22 + apq_25 + apq_31)
 mutate(Corporal_Punishment = apq_33 + apq_35 + apq_38)
 mutate(Affective_Problems = ysr_05 + ysr_14 + ysr_18 + ysr_24 + ysr_35 + ysr_52 + ysr_54 + ysr_76 + ysr_77 +
ysr_91 + ysr_100 + ysr_102 + ysr_103) %>%
 mutate(Anxiety_Problems = ysr_11 + ysr_29 + ysr_30 + ysr_45 + ysr_50 +
 ysr_112) %>%
 mutate(Somatic_Problems = ysr_56a + ysr_56b + ysr_56c + ysr_56d + ysr_56e +
 ysr_56f + ysr_56g) %>%
 mutate(Attention_Deficit_Hyperactivity_Problems = ysr_04 + ysr_08 + ysr_10 +
 ysr_41 + ysr_78 + ysr_93 + ysr_104) %>%
 mutate(Oppositional_Defiant_Problems = ysr_03 + ysr_22 + ysr_23 + ysr_86 +
 ysr_95) %>%
 mutate(Conduct_Problems = ysr_16 + ysr_21 + ysr_26 + ysr_28 + ysr_37 +
 ysr_39 + ysr_43 + ysr_57 + ysr_67 +
 ysr_72 + ysr_81 + ysr_82 + ysr_90 + ysr_97 + ysr_101) %>%
 select(Varsta_ani, Gen, Involvement, Positive_Parenting, Poor_Monitoring,
 Inconsistent_Discipline, Corporal_Punishment, Affective_Problems,
 Anxiety_Problems, Somatic_Problems,
 Attention_Deficit_Hyperactivity_Problems,
 Oppositional_Defiant_Problems, Conduct_Problems)

Reliability

#parental involvement
APQ[, c('apq_01', 'apq_04', 'apq_07', 'apq_09', 'apq_11', 'apq_14', 'apq_15',
 'apq_20', 'apq_23', 'apq_26')] %>% polychoric() %>% $rho %>% alpha() %>%
 $total

#positive parenting
APQ[, c('apq_02', 'apq_05', 'apq_13', 'apq_16', 'apq_18', 'apq_27')] %>% polychoric() %>% $rho %>% alpha() %>% $total

#poor monitoring
APQ[, c('apq_06', 'apq_10', 'apq_17', 'apq_19', 'apq_21', 'apq_24', 'apq_28',
 'apq_29', 'apq_30', 'apq_32')] %>% polychoric() %>% $rho %>% alpha() %>%
 $total

#inconsistent discipline
APQ[, c('apq_03', 'apq_08', 'apq_12', 'apq_22', 'apq_25', 'apq_31')] %>% polychoric() %>% $rho %>% alpha() %>% $total

#corporal punishment
APQ[, c('apq_33', 'apq_35', 'apq_38')] %>% polychoric() %>% $rho %>% alpha() %>%
 $total

Affective problems
Data_set[, c('ysr_05', 'ysr_14', 'ysr_18', 'ysr_24', 'ysr_35', 'ysr_52', 'ysr_54', 'ysr_76', 'ysr_77', 'ysr_91', 'ysr_100', 'ysr_102', 'ysr_103')] %>% polychoric() %>% .rho %>% alpha() %>% .total

Anxiety problems
Data_set[, c('ysr_11', 'ysr_29', 'ysr_30', 'ysr_45', 'ysr_50', 'ysr_112')] %>% polychoric() %>% .rho %>% alpha() %>% .total

Somatic Problems
Data_set[, c('ysr_56a', 'ysr_56b', 'ysr_56c', 'ysr_56d', 'ysr_56e', 'ysr_56f', 'ysr_56g')] %>% polychoric() %>% .rho %>% alpha() %>% .total

Attention_Deficit_Hyperactivity_Problems
Data_set[, c('ysr_04', 'ysr_08', 'ysr_10', 'ysr_41', 'ysr_78', 'ysr_93', 'ysr_104')] %>% polychoric() %>% .rho %>% alpha() %>% .total

Oppositional_Defiant_Problems
Data_set[, c('ysr_03', 'ysr_22', 'ysr_23', 'ysr_86', 'ysr_95')] %>% polychoric() %>% .rho %>% alpha() %>% .total

Conduct_Problems
Data_set[, c('ysr_16', 'ysr_21', 'ysr_26', 'ysr_28', 'ysr_37', 'ysr_39', 'ysr_43', 'ysr_57', 'ysr_67', 'ysr_72', 'ysr_81', 'ysr_82', 'ysr_90', 'ysr_97', 'ysr_101')] %>% polychoric() %>% .rho %>% alpha() %>% .total

Missing data APQ_YSR

table(is.na(APQ_YSR))

random2 = rchisq(nrow(APQ_YSR[, -c(1,2)]), 14)
fake2 = lm(random2~., data = APQ_YSR[, -c(1,2)])
standardizedResiduals2 = rstudent(fake2)
qqnorm(standardizedResiduals2)
abline(0,1)

Normality assumtion test

describe(APQ_YSR)
hist(standardizedResiduals2, breaks = 44)
describe(standardizedResiduals2)
Multiple imputation APQ_YSR

```r
table(is.na(APQ_YSR))
imputed_APQ_YSR <- mice(APQ_YSR, m=50, maxit = 50, method = 'pmm', seed = 4014)
summary(imputed_APQ_YSR)
imputed_APQ_YSR$imp$Positive_Parenting
APQ_YSR_Complete <- complete(imputed_APQ_YSR)
which(is.na(APQ_YSR$Gen) == T)
APQ_YSR_Complete = APQ_YSR_Complete[-c(947, 950),]
```

APQ_YSR Network Estimation

```r
parenting_practices_children_m_h <- c('a)Parental involvement', 'b)Positive parenting', 'c)Poor monitoring', 'd)Inconsistent discipline',
    'e)Corporal punishment', 'f)Affective problems', 'g)Anxiety problems', 'h)Somatic problems',
    'i)ADHD problems', 'j)OD Problems',
    'k)Conduct Problems')

parenting_practices_children_m_h2 <- c("I", "PP", "PM", "ID", "CP",
    "Affec_P", "AP", "SP", "ADHDP", "ODP", "Con_P")

Network_APQ_YSR <- estimateNetwork(APQ_YSR_Complete[, -c(1,2)], default = "huge", tuning = 0.5)

# plot and save high resolution graph
tiff("Fig. 3.tif", family = "ArialMT", units = "cm",
    width = 24, height = 16, pointsize = 12, res = 500)
plot(Network_APQ_YSR, layout = "spring", labels = parenting_practices_children_m_h2, groups = parenting_practices_children_m_h,
    color = c("#58D3F7", '#0040FF', '#9F81F7', '#A9E2F3', '#F7819F',
    '#00FF80', '#01DF01', '#9AFE2E', '#F7FE2E', '#FAAC58', '#DC143C'))
dev.off()
```

APQ_YSR centrality indices computation

```r
tiff("Fig. S4.tif", family = "ArialMT", units = "cm",
    width = 30, height = 16, pointsize = 12, res = 230)
```
centralityPlot(Network_APQ_YSR, include = c("Strength", "Closeness", "Betweenness"), labels = parenting_practices_Children_m_h)
dev.off()

##APQ_YSR edge weight accuracy##

boot0_APQ_YSR <- bootnet(Network_APQ_YSR, nBoots = 2500, nCores = 8)
tiff("Fig. S5.tif", family = "ArialMT", units = "cm",
 width = 30, height = 16, pointsize = 12, res = 230)
plot(boot0_APQ_YSR, labels = FALSE, order = "sample")
dev.off()

############The Stability of APQ_YSR Centrality Indices stability############

boot2_APQ_YSR <- bootnet(Network_APQ_YSR, nBoots = 2500, type = "case", nCores = 8,
 statistics = c("strength", "closeness", "betweenness"))
plot(boot2_APQ_YSR, statistics = c("strength", "closeness", "betweenness"))
corStability(boot2_APQ_YSR)

############APQ_YSR Significant Differences (Edges, Centrality Indices) Test####

boot1_APQ_YSR <- bootnet(Network_APQ_YSR, nBoots = 2500, nCores = 8,
 statistics = c("strength", "closeness", "betweenness"))
tiff("Fig. S6.tif", family = "ArialMT", units = "cm",
 width = 30, height = 16, pointsize = 12, res = 230)
plot(boot1_APQ_YSR, labels = TRUE, order = "sample", statistics =
c("strength", "closeness", "betweenness"))
dev.off()

tiff("Fig. S7.tif", family = "ArialMT", units = "cm",
 width = 34, height = 24, pointsize = 12, res = 230)
plot(boot0_APQ_YSR, 'edge', plot = 'difference', onlyNonZero = TRUE, order =
 'sample')
dev.off()

######################### APQ_YSR bridges #########################
bridge_APQ_YSR_network <- getWmat(Network_APQ_YSR)

APQ_YSR_comunities <- c(rep('Parenting_Practices', 5), rep('Child_M_Health_Prob', 6))

qgraph(bridge_APQ_YSR_network, groups=APQ_YSR_comunities, layout="spring")

bridge_centrality_APQ_YSR <- bridge(bridge_APQ_YSR_network, communities = APQ_YSR_comunities, nodes = parenting_practices_Children_m_h)

plot(bridge_centrality_APQ_YSR, include=c("Bridge Strength", "Bridge Betweenness", "Bridge Expected Influence (1-step)"), order="value")

plot and save high resolution graph
tiff("Fig. 4.tif", family = "ArialMT", units = "cm",
 width = 24, height = 16, pointsize = 12, res = 500)
plot(bridge_centrality_APQ_YSR, include=c("Bridge Strength", "Bridge Closeness", "Bridge Expected Influence (1-step)"), zscore=TRUE)
dev.off()

bridge_strength_APQ_YSR <- bridge_centrality_APQ_YSR$`Bridge Strength`

top_bridges_APQ_YSR <- names(bridge_strength_APQ_YSR[bridge_strength_APQ_YSR>quantile(bridge_strength_APQ_YSR, probs=0.80, na.rm=TRUE)])

top_bridges_APQ_YSR

bridge_num_w1_APQ_YSR <- which(names(bridge_strength_APQ_YSR) %in% top_bridges_APQ_YSR)
new_communities_APQ_YSR <- vector()
for(s in 1:length(bridge_strength_APQ_YSR)) {
 if(s %in% bridge_num_w1_APQ_YSR) {
 new_communities_APQ_YSR[s] <- "Bridge"
 } else {new_communities_APQ_YSR[s] <- APQ_YSR_comunities[s]}
}
qgraph(bridge_APQ_YSR_network, layout="spring", legend = TRUE,
groups=new_communities_APQ_YSR, color =
 c('#F78181','#40FF00', '#2E9AFE'))

###

Difference Males-Females Test

APQ_YSR_males <- APQ_YSR_Complete %>% filter(., Gen == 1)

APQ_YSR_females <- APQ_YSR_Complete %>% filter(., Gen == 2)

Network_males_APQ_YSR <- estimateNetwork(APQ_YSR_males[, -c(1,2)],
 default = "huge", tuning = 0.5)

Network_females_APQ_YSR <- estimateNetwork(APQ_YSR_females[, -c(1,2)],
 default = "huge", tuning = 0.5)

plot(Network_females_APQ_YSR, layout = "spring", labels =
 parenting_practices_Children_m_h2, groups = parenting_practices_Children_m_h,
 color = c('#58D3F7', '#0040FF', '#9F81F7', '#A9E2F3', '#F7819F',
 '#00FF80', '#01DF01', '#9AFE2E', '#F7FE2E',
 '#FAAC58', '#F78181'))

plot(Network_males_APQ_YSR, layout = "spring", labels =
 parenting_practices_Children_m_h2, groups = parenting_practices_Children_m_h,
 color = c('#58D3F7', '#0040FF', '#9F81F7', '#A9E2F3', '#F7819F',
 '#00FF80', '#01DF01', '#9AFE2E', '#F7FE2E',
 '#FAAC58', '#F78181'))

Females_males_APQ_YSR_comparison <- NCT(Network_males_APQ_YSR,
 Network_females_APQ_YSR, it = 1000, binary.data=FALSE,
 paired=FALSE, weighted=TRUE,
 AND=TRUE, abs=TRUE, test.edges=TRUE, edges = 'all',
 make.positive.definite=TRUE,
 p.adjust.methods = "BH", test.centrality=TRUE, centrality= c("strength",
 "closeness"),
 nodes="all",
 communities=parenting_practices_Children_m_h, useCommunities="all", verbose =
 TRUE)

plot(Females_males_APQ_YSR_comparison, what = 'network')
plot(Females_males_APQ_YSR_comparison, what = 'centrality')

plot(Females_males_APQ_YSR_comparison, what = 'edge')

plot(Females_males_APQ_YSR_comparison, what = 'strength')

print(Females_males_APQ_YSR_comparison)

centralityPlot(list(Males = Network_males_APQ_YSR, Females = Network_females_APQ_YSR), include = c("Strength", "Closeness"), labels = parenting_practices_Children_m_h)

##################### Welch t-test for independent samples APQ #######

APQ_t_test = APQ_YSR %>% mutate(APQ_total = Involvement + Positive_Parenting + Inconsistent_Discipline + Corporal_Punishment + Poor_Monitoring)

describe(APQ_t_test$APQ_total)

t.test(APQ_total ~ Gen, data = APQ_t_test, var.equal = F)

cor.plot(APQ[, -c(1, 36)])

################################ END (NOT RUN)################################