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Supplementary Material 
 

Accuracy and stability estimation  
To assess the accuracy and stability of the SINMs, we used two main analyses of the R- package 
bootnet (Epskamp & Fried, 2017). First, to estimate the accuracy of the edge weights of the 
SINMs, we bootstrapped the 95% confidence intervals of the edge weights of the networks. 
Secondly, to examine the stability of the centrality indices, we used a method called subsetting 
bootstrap, in which the network is re-estimated multiple times after dropping a number of 
participants. The order of the centrality indices is then correlated to that of the original 
network, so that the centrality indices can be considered stable if the correlation is large. We 
therefore estimated the centrality stability coefficient (CS-coefficient), which should be at least 
0.25 for a centrality index to be seen as stable, but preferably above 0.5. We applied the edge 
weight bootstrap as well as the subsetting bootstrap on the Dutch as well as the Colombian 
SINMs. For more information on these methods, please see Epskamp’s and colleagues tutorial 
on the accuracy and stability of psychological networks and the use of the R-package bootnet 
(2017).  
Dutch SINM. The results of the accuracy and stability estimations of the Dutch SINM are 
displayed in Figure S1a for the accuracy of edge weights and Figure S1b for the stability of the 
centrality indices. The edge weight bootstrap revealed that the Dutch SINM is moderately 
accurately estimated, as that there is considerable overlap among the 95% CIs of the edge 
weights. Especially the 95% CIs of the strongest edges do not have much overlap with the other 
CIs, so that they can be considered to be indeed stronger than the other edges. The subset 
bootstrap (Figure S1b) showed that the order of node strength is most stable, followed by 
closeness, with betweenness being considerably unstable. This is supported by the CS- 
coefficient, which was 0.75 for strength, 0.36 for closeness and 0 for betweenness. As the CS-
coefficient should preferably be above 0.5, we only considered strength when looking at the 
centrality indices of the Dutch SINM.  
Colombian SINM. The results of the accuracy and stability estimations of the Colombian SINM 
are displayed in Figure S2a for the accuracy of edge weights and Figure S2b for the stability of 
the centrality indices. The edge weight bootstrap revealed that the Colombian SINM is 
moderately accurately estimated, as that there is considerable overlap among the 95% CIs of 
the edge weights. Especially the 95% CIs of the strongest edges do not have much overlap with 
the other CIs, so that they can be considered to be indeed stronger than the other edges. The 
subset bootstrap (Figure S2b) showed that the order of node strength is most stable, followed 
by closeness, with betweenness being considerably unstable. This is supported by the CS-
coefficient, which was 0.75 for strength, 0.21 for closeness and 0 for betweenness. As the CS-
coefficient should preferably be above 0.5, we only considered strength when looking at the 
centrality indices of the Colombian SINM.  
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Figure S1. Panel A: Bootstrapped 95% CIs of all edges of the Dutch SINM. The red line indicates 
the estimated edge weights in the Dutch SINM, with the grey area surrounding it indicating the 
bootstrapped CIs per edge. The x-axis represents the strength of the edge weights, whereas all 
possible edges between two nodes are listed on the y-axis, ordered from highest edge weight 
(top) to lowest edge weight (bottom). Panel B: Subsetting bootstrap for the Dutch SINM, 
showing the average correlation between the three centrality indices of the original network 
(full data set) with networks estimated on smaller subsamples of the data set.  
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Figure S2. Panel A: Bootstrapped 95% CIs of all edges of the Colombian SINM. The red line 
indicates the estimated edge weights in the Colombian SINM, with the grey area surrounding it 
indicating the bootstrapped CIs per edge. The x-axis represents the strength of the edge 
weights, whereas all possible edges between two nodes are listed on the y-axis, ordered from 
highest edge weight (top) to lowest edge weight (bottom). Panel B: Subsetting bootstrap for 
the Colombian SINM, showing the average correlation between the three centrality indices of 
the original network (full data set) with networks estimated on smaller subsamples of the data 
set.  
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Table S1.  
 
Results of the network comparison test (NCT) of subgroups of the Dutch and Colombian 
sample.  
 

Subgroups N Structure Specific Edges Global Strength 

  M p-value  S p-value 
Netherlands       
HAVO vs.  
VWO 

688 
688 

1.42 0.17  1.30 0.77 

HAVO/VWO vs. MBO 2129 
2012 

1.21 0.05 Ibi-Imf; Vwl-Vdo; 
Ipd-Vcp; Bbo-Bsn; 
Sne-Sea; Slm-Sfr; 
Sea-Kce; Eil-Ksl 

0.45 0.89 

Colombia       
Total sample vs. small 
sample 

5557 
2129 

0.35 1.00  7.88 0.66 

Academica vs.  
tecnica 

1782 
1782 

0.16 0.81  0.02 0.99 

Upper secondary vs. 
lower secondary 

2728 
2728 

0.68 0.17  0.45 0.81 

 
Note. The subgroups per country (i.e., HAVO vs. VWO school level of the Netherlands, 
Academica vs. tecnica school level of Colombia) were compared. If the sample sizes were 
substantially different, group sizes were made equal through random subsampling, as the NCT 
is sensitive to differences in group size. This was not done for the comparison of the total 
Colombian sample with the Colombian subsample, as we wanted to make sure that comparing 
the small Colombian sample with the Dutch SINM would be feasible.  
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Connectivity simulation 
To gain a first indication of possible differences of the dynamics of the two country networks 
we performed a simulation study. A difference in dynamics may be due to stronger synergistical 
influences (or emergence) between indicators in the Dutch network than in the Colombian 
network. To gain a first indication of the dynamics of the Dutch and Colombian network, we 
simulated the effect on external pressures on the two networks. External pressures could be 
forcing students to choose either a science or a humanities study program (Dalege, Borsboom, 
van Harreveld, Waldorp, & van der Maas, 2017; Epskamp, Maris, Waldorp & Borsboom, 2016; 
Wainwright & Jordan, 2008). Importantly, this so-called consistency pressure can be linked to 
the connectivity of a network, as connectivity grows with higher consistency pressure (i.e., 
higher external pressure on the network) (Dalege, Borsboom, van Harreveld, Waldorp, & van 
der Maas, 2017). Connectivity, in turn, is interesting to investigate, as networks may behave 
differently with different levels of connectivity: In a more highly connected network, nodes 
have stronger effects on other nodes, so that strong edges may keep nodes in check - change 
may be harder to bring by.  
 More specifically, we investigated the dynamics of the overall science interest networks 
by testing the influence of external consistency pressure on the network (Dalege, Borsboom, 
van Harreveld, & van der Maas, 2017), using the Ising-model (Ising, 1925) and changing its 
degree of connectivity (Epskamp, Maris, Waldorp, & Borsboom, 2016; Wainwright & Jordan, 
2008). While low connectivity makes the network behave in a more random manner by 
decreasing the influence of edge weights and thresholds, the opposite is true for high 
connectivity. We used the IsingSampler function, available in the R-package IsingSampler 
(Epskamp, 2015), to simulate the dynamics of the estimated SINM with three degrees of 
connectivity, that is, a low (.60), mid (1.20) and high (1.80) connectivity, while the thresholds of 
the nodes were set to 0.  
Dutch SINM. The three networks with low, mid- and high degree of connectivity and their 
associated distributions of sum scores are displayed in Figure S3 (left). As can be seen in Figure 
S3, with increasing connectivity, the distribution of the sum scores changes from a normal 
distribution to a bimodal distribution, showing the importance of network connectivity in 
determining the sum score distribution. In a weakly connected network, the sum score 
distribution is normal, indicating that such interest networks behave as dimensions (i.e., 
interest can range from low to high), whereas highly connected networks behave as categories 
(i.e., interest is either low or high). Interestingly, in the low connectivity network, three of the 
interest evaluation nodes are not connected to any other nodes, whereas the other two 
interest evaluation nodes are closely connected to the enjoyment cluster. Moreover, only with 
increasing connectivity, the different clusters start to be connected through shortcuts. Again, it 
becomes apparent that the knowledge and the value clusters are not as closely connected to 
the other clusters.  
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Colombian SINM. The three networks with low, mid- and high degree of connectivity and their 
associated distributions of sum scores are displayed in Figure S3 (right). As can be seen in Figure 
S3, with increasing connectivity, the distribution of the sum scores gradually changes from a 
normal distribution to a bimodal distribution; indicating that the sum score distribution of 
interest networks can be interpreted as the level of interest in a population. In the weakly 
connected network, the sum score distribution is normal, indicating that such interest networks 
behave as dimensions (i.e., interest can range from low to high), whereas the highly connected 
networks behave as categories (i.e., interest is either low or high), but in a less polarized 
manner than the Dutch network. Interestingly, in the low connectivity network, there are only 
three shortcuts between clusters. Moreover, even in the high connectivity network, the 
knowledge cluster is not connected to any other clusters and self-efficacy as well as value are 
only connected with the other clusters through one shortcut. It becomes apparent that the 
knowledge and the value clusters are not as closely connected to the other clusters. The 
interest-evaluation, behavior and enjoyment cluster, on the other hand, are more closely 
connected. 
 Summarizing. The two networks show some difference in their dynamic behavior with 
different levels of connectivity, as shown by the connectivity simulation. While the sum scores 
of all included indicators of weakly connected networks are normally distributed, the sum 
scores of the highly connected networks form a bimodal distribution. The sum score 
distribution of interest networks may be an indication of the level of interest in a population (cf. 
Dalege, Borsboom, van Harreveld, & van der Maas, 2017; Dalege, Borsboom, van Harreveld, 
Waldorp, & van der Maas, 2017). The results of the connectivity simulation study on the 
networks of the two countries indicate that science interest may develop differently across 
countries. More specifically, the importance of mutual interactions became apparent in the 
connectivity simulation of the Dutch interest network: In the low connectivity SINM, the sum 
scores of the network were normally distributed, meaning that science interest could be at any 
level – from low interest to high interest; whereas in the highly connected SINM, the sum 
scores were distributed bimodally, indicating that science interest was generally either low or 
high. The global connectivity in the network represents the level of the science interest and 
influences the way science is dealt with (Dalege et al., 2016). With growing connectivity, the 
different variables reinforce each other to a larger extent, that is, if one enjoys learning about 
sciences more, one will seek to read more about sciences, which will, in turn, lead to gaining 
more knowledge in the interest domain. But also, the other way around, with a negative 
science interest (i.e., a science dislike) science is avoided as much as possible. In the 
connectivity simulation on the Colombian SINM, in contrast, higher connectivity did not lead to 
a strong bimodal distribution of the network’s sum score. The reinforcing relations between the 
variables in the Colombian SINM thus seem to be weaker, which may be due to the lower 
number of connections between clusters. That is, under external pressure (for example to make 
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choices about future involvement) the Dutch interest network behaved as categories (low vs. 
high interest), whereas the Colombian network behaved in a more dimensional way (interest 
can range from low to high).  
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Figure S3. Simulation of different levels of connectivity of the Dutch (left) and Colombian (right) 
interest networks and their associated distributions of sum scores. Strikingly, the sum score 
distribution in the Dutch network (left) becomes bimodal with increasing connectivity, a trend 
which seems to be weaker in the sum score distribution of the Colombian network (right). For a 
color version, please see this figure online. 
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