

Supplemental Materials

Supplemental Analyses

Discovery Awards (2009-2023)

Year-by-Year Analyses for Discovery Awards (2009-2023)

We analyzed data from the period after the 2015–2016 fiscal year to investigate changes since the publication of *Titone et al. (2018)*. As such, we performed a linear regression investigating award amounts by fiscal year, as well as year-by-year chi-squared goodness-of-fit tests to examine if there were significant changes in award distribution between women and men.

Amounts. We conducted a linear regression model, predicting award amount from year (categorical) and gender. To compare changes in grant amounts, we took the average award amount (by gender) from 2009 to 2016 to be the reference level in the model.

There was a significant main effect of gender such that men received higher amounts than women, $b = 3896.5$, $SE = 558.8$, $t(6831) = 6.97$, $p < .001$ (*Figure 4*). In addition, relative to the “Before” period, all subsequent fiscal years showed significant increases in amount. However, none of the interactions between gender and year group were significant, suggesting that the effect of year group on amount was similar for both genders (see Appendix *Table A11* for full model output).

Counts. We performed year-by-year chi-squared goodness-of-fit tests to examine if there were significant changes in Discovery award distribution between women and men. In these analyses, we take the baseline to be the proportion of women and men receiving awards prior to the 2015–2016 fiscal year, allowing us to analyze any significant changes in subsequent years. Chi-squared goodness-of-fit tests revealed that, for submissions starting in 2019–2020 and onwards, women received significantly more awards than the baseline (men: 62.7%, women:

37.3%) of all prior years of analysis (see Appendix *Table A7*). This indicates that the number of awards given to women increased over time since the analysis done by *Titone et al. (2018)*.

Early Career versus Established Researchers – An Analysis of Discovery Awards Via Discovery Launch Supplements (2018 to 2023)

The stated objective of the Discovery Launch Supplements is to “provide timely resources to support ECRs as they establish a Discovery Grant-funded research program” (*Natural Sciences and Engineering Research Council of Canada, 2022*). This supplement is automatically awarded to all ECRs who receive their first Discovery Grant. According to the Natural Sciences and Engineering Research Council of Canada (NSERC), ECR are defined as applicants who have held their first independent academic position within the last 5 years (*Government of Canada, Natural Sciences and Engineering Research Council of Canada, 2025*). The Launch Supplement is a one-time payment of \$12,500 for all eligible ECRs.

The first Launch Supplements were awarded in the 2018–2019 fiscal year. We chose to analyze the Launch Supplement awardees because their introduction aligns with the start of the Tri-Agency’s EDI action plan. This alignment allows us to examine the direct impacts of EDI policies on new researchers in our field, as well as the distribution of Discovery Grants among ECRs, by filtering through the names of those who received the Launch Supplement. *Figure A1* shows the number of Discovery Grants awarded and the average grant amount to ECRs, both as a function of gender. When examining the number of Discovery awards among ECRs across all years, men and women did not receive these awards equally, $\chi^2(1, N = 320) = 7.8125, p < .007802, d = 0.38$, such that women received more overall. Finally, an independent samples *t* test indicated that, among ECRs, women ($F = \$30642.09$) and men ($M = \30214.81) did receive the

same mean Discovery Grant amount collapsed across all years; $t(318) = 0.65133, p = .5153, d = 0.07$.

One possibility is that current EDI policies may not be sufficient to address the historical disparities that women have faced in the Canadian cognitive science fields. To explore this further, we analyzed data on all non-ECR, or established, researchers since the Launch Supplement was introduced. A chi-squared test of goodness-of-fit revealed that for non-ECR researchers, men and women did not equally receive Discovery awards from the fiscal year 2018–2019 to 2022–2023, $\chi^2(1, N = 2,207) = 69.271, p < 3.187e - 14, d = 0.36$, with men receiving more awards (*Figure A2*).

An independent samples *t* test indicated that women ($F = \$40499.92$) and men ($M = \41095.84) did receive the same mean Discovery Grant amount; $t(2205) = -0.76672, p = .3058, d = -0.04$. Overall, this suggests that among established researchers, women receive fewer Discovery Grants, but among those that do, they receive equivalent amounts to successful men applicants.

It is important to note that due to COVID-related extensions and delays, there were fewer established researchers during competition years 2021–2023, and ECRs made up a greater proportion of the total Discovery Grant application pool and awardees. While we acknowledge that the COVID-19 pandemic and related policy changes may have played a role as it relates to application rates, we believe that the core patterns we observe are not solely artefacts of the pandemic, as they are consistent across various analyses. Furthermore, while ECR eligibility was expanded from 3 years in 2018 to 5 years in 2019, our filtration method matched the names of researchers across fiscal years 2018–2023. As such, any ECRs who were not eligible in 2018 and were re-eligible in 2019 were still included in our analysis.

Discovery Awards by Field (2009 to 2023)

We examined whether gender parity varied by subfield within cognitive science. The NSERC funding data included a range of areas, and we replicated the keyword search used by Titone et al. (2018) to categorize Discovery Grants by their titles. This process resulted in three sub-disciplines: cognitive science, developmental, and neuroscience. Figure A3 presents gender differences across these research areas, aggregated across all years, showing Discovery Grant counts and average grant amounts in the sub-disciplines of Cognitive, Developmental, and Neuroscience research, respectively.

We conducted global analyses, collapsing across all years, for an overall understanding of how award results have changed since Titone et al. (2018). In addition, we conducted a comparison of the years contained in Titone et al.'s (2018) analysis (entitled *Before*), and the years following (entitled *After*). Finally, we conducted year-by-year analyses for all Discovery awards, allowing for a fine-grained understanding of changes in funding allocation over time. We did this for both *amount* (total value of award) as well as *count* (number of awards).

Global Analyses Across Years of Discovery Awards by Field (2009 to 2023)

Cognitive. A chi-squared test of goodness-of-fit revealed that men and women did not equally receive Discovery awards in cognitive research, collapsed across all years, with men receiving more awards, $\chi^2(1, N = 2,650) = 147.88, p < 2.2\text{e-}16, d = 0.49$. In addition, an independent samples *t* test indicated that women ($F = \$32930.59$) and men ($M = \36816.11) in cognitive research did not receive the same mean Discovery Grant amount collapsed across all years; $t(2648) = -5.7255, p = 1.147\text{e-}08, d = -0.23$. Thus, women in cognitive research obtained significantly fewer Discovery Grants and had smaller average awarded grant amounts.

Developmental. A chi-squared test of goodness-of-fit revealed that men and women did not equally receive Discovery awards in developmental research, collapsed across all years, $\chi^2(1, N = 641) = 147.03, p < 2.2e - 16, d = 1.10$, with women receiving more awards. In addition, an independent samples t-test indicated that women ($F = \$35,529.83$) and men ($M = \$31,603.77$) in developmental research did not receive the same mean Discovery Grant amount collapsed across all years; $t(639) = 2.7723 p = 0.0057, d=0.25$. Thus, women in developmental science research obtained significantly higher Discovery Grants, and had larger average awarded grant amounts.

Neuroscience. A chi-squared test of goodness-of-fit revealed that men and women did not equally receive Discovery awards in neuroscience, collapsed across all years, $\chi^2(1, N = 3556) = 325.58, p < 2.2e - 16, d = 0.66$, with men receiving more awards. In addition, an independent samples t-test indicated that women ($F = \$35,479.31$) and men ($M = \$37,181.53$) in the neuroscience field did not receive the same mean Discovery Grant amount collapsed across all years; $t(3,554) = -3.1387 p = 0.0017, , d=-0.11$. Thus, women in neuroscience not only obtained significantly fewer Discovery Grants, but also had lower average awarded grant amounts.

Discovery Awards Before (2009 to 2016) Versus After (2016 to 2023).

To further understand the distribution of Discovery awards by field in the years since Titone et al. (2018) concluded their study, we split the analysis into two separate time groups, pre-2016 (Before) and post-2016 (After), to understand changes in grant amounts and the number of awards given to men and women.

Cognitive. We conducted a linear regression model, predicting the award value (CAD\$) as a function of analysis group (Before versus After) and gender (See Figure A4). There was a main effect of gender, such that men received significantly higher amounts than women ($b = 4,463.9$, $SE = 925.0$, $t(2646) = 4.83$, $p < .001$). In addition, there was a main effect of Analysis Group, such that there were significantly higher award amounts in the *After* year group ($b = 7,460.5$, $SE = 1,044.5$, $t(2646) = 7.14$, $p < .001$). The interaction between gender and year group was not significant ($b = -731.1$, $SE = 1,329.9$, $t(2646) = -0.55$, $p = .583$), indicating that the effects of year of analysis did not differ by gender (See Appendix Table A13).

In addition, we performed two chi-square goodness-of-fit tests to determine whether women and men received awards equally. One test replicated the original study period (2009–2016), and the other examined the new period (2016–2023). We found that women and men did not receive awards equally in either time-period: women received significantly less awards (see Appendix Table A3) overall.

Developmental. We conducted a linear regression model, predicting the award value (CAD\$) as a function of analysis group (Before versus After) and gender (See Figure A4). The main effect of gender was not significant ($b = -1,941$, $SE = 1,976$, $t(637) = -0.98$, $p = .33$). We found that analysis group was significant, such that award amounts were higher in the *After* period ($b = 3,997$, $SE = 1,439$, $t(637) = 2.78$, $p = .006$). The interaction between gender and analysis group was not significant ($b = -3,917$, $SE = 2,821$, $t(637) = -1.39$, $p = .17$) (See Appendix Table A13).

We performed two chi-square goodness-of-fit tests to determine whether women and men received awards equally. One test replicated the original study period (2009–2016), and the other examined the new period (2016–2023). We found that women and men did not receive awards

equally, such that women received significantly more awards in both time periods (see Appendix Table A3) overall.

Neuroscience. We conducted a linear regression model, predicting the award value (CAD\$) as a function of analysis group (Before versus After) and gender (See Figure A4). We found a main effect of gender. Men on average, received \$4,529.4 more in average grant funding than women (SE = 803.3, $t = 5.64$, $p < .001$). There was also a significant main effect of Analysis Group (). The interaction between gender and analysis group was significant ($b = -4,469.5$, SE = 1081.0, $t = -4.14$, $p < .001$). This indicates that the gender difference in amount awarded was smaller in the *After* analysis group compared to the *Before* group, suggesting that the increase in amount associated with the After period was less pronounced for men relative to women (See Appendix Table A14).

We performed two chi-square goodness-of-fit tests to determine whether women and men received awards equally. One test replicated the original study period (2009–2016), and the other examined the new period (2016–2023). We found that women and men did not receive awards equally, such that women received significantly less awards in both time periods (see Appendix Table A3) overall.

Year-by-Year Analyses of Discovery Awards by Field (2016 to 2023)

We analyzed Discovery Award data by subdiscipline starting with 2015-2016 fiscal year, which was the last period examined by Titone et al. (2018), to explore whether any changes have occurred since. Here, we performed a linear regression investigating award amounts by fiscal year, as well as year-by-year chi-squared goodness-of-fit tests to examine if there were significant changes in award distribution between women and men.

Cognitive. We conducted a linear regression model, predicting award amount from year (categorical) and gender (Figure A5). In order to compare changes in grant amounts, we took the average award amount (by gender) from 2009-2016 to be the reference level in the model. There was a significant main effect of gender such that men received higher average grant amounts than women by \$4,463.90 (SE = 918.5, $t(2634) = 4.86$, $p < .001$). In addition, from 2018-onwards, average grant amounts were significantly higher than the baseline. The interactions between gender and analysis group were not statistically significant, indicating that the differences in amount across the year groups did not vary by gender (See Figure A5 and Appendix Table A17 for full model output).

Chi-squared goodness-of-fit tests revealed that there were no changes in the number of Discovery awards to cognitive science research from the baseline (men: 63.2%, women: 36.8%) of all prior years of analysis (see Appendix Table A9). This indicates that the proportion of awards given to women has not changed since the analysis done by Titone et al. (2018).

Developmental. We conducted a linear regression model, predicting award amount from year (categorical) and gender (Figure A5). In order to compare changes in grant amounts, we took the average award amount (by gender) from 2009-2016 to be the reference level in the model. There was no main effect of gender ($b = -1,941$, $SE = 1,986$, $t(625) = -0.98$, $p = .329$), indicating that men did not differ significantly from women. When investigating by year, only fiscal year 2022–2023 was significant ($b = 7,927$, $SE = 2,820$, $t(625) = 2.81$, $p = .005$), suggesting that awards in 2022–2023 had higher amounts the average amount from 2009-2016. We found no significant interactions with gender, indicating that the effect of fiscal year on amount did not differ by gender (See Figure A5, Appendix Table A17).

Chi-squared goodness-of-fit tests revealed that there were no changes in the number of Discovery awards to developmental science research from the baseline (men: 26.9 %, women: 73.1%) of all prior years of analysis (see Appendix Table A9). This indicates that the proportion of awards given to women and men has not changed since the analysis done by Titone et al. (2018).

Neuroscience. We conducted a linear regression model, predicting award amount from year (categorical) and gender (Figure A5). In order to compare changes in grant amounts, we took the average award amount (by gender) from 2009-2016 to be the reference level in the model. There was a significant main effect of gender; men had, on average, \$4,529.4 higher grant amounts than women ($SE = 794.9$, $t(3540) = 5.70$, $p < .001$). In addition, from 2018-onwards, all years showed significantly higher grant amounts when compared to the Before average amount. The interactions between gender and year group were non-significant for 2016–2019. However, significant interactions emerged from 2019-onwards, indicating that the difference in award amounts decreased in later years (see Figure A5 and Appendix Table A18 for full model output).

Chi-squared goodness-of-fit tests revealed that there were significant changes in the number of Discovery awards to neuroscience research from the baseline (men: 69.1%, women: 30.9%) from 2018 onwards (see Appendix Table A1). This indicates that the proportion of awards given to women has significantly increased from the baseline since the analysis done by Titone et al. (2018).

Supplementary Figures and Tables

Chi-Squared Goodness of Fit Tests

Table S1

Chi-Squared Goodness-of-Fit Tests for Student Awards

Award Level	Comparison Year	Women	Men	χ^2	p	Significance	Effect Size (d)
Undergraduate	Before	926	542	100.45	< 2.2e-16	***	0.54
	After	1071	494	212.73	< 2.2e-16		0.79
Graduate	Before	981	626	78.423	< 2.2e-16	***	0.45
	After	934	611	67.527	< 2.2e-16		0.42
Postdoctoral	Before	64	86	3.2267	0.07245		0.29
	After	93	79	1.1395	0.2858		0.16

Note. Before represents the period from 2009 to 2016. After represents the period from 2016 to 2023. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$.

Table S2

Chi-Squared Goodness-of-Fit Tests for Discovery Awards

Award Level	Comparison Year	Women	Men	χ^2	p	Significance	Effect Size (d)
Discovery	Before	1264	2127	219.63	<2.2e-16	***	0.53
	After	1994	1462	81.894	<2.2e-16		0.31

Note. Before represents the period from 2009 to 2016. After represents the period from 2016 to 2023. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$.

Table S3

Chi-Squared Goodness-of-Fit Tests for Discovery Award by Discipline

Award Level	Comparison Year	Women	Men	χ^2	p	Significance	Effect Size (d)
Cognitive	Before	510	878	97.568	<2.2e-16	***	0.55
	After	502	760	52.745	3.80E-13	***	0.42
Developmental	Before	234	86	68.45	< 2.2e-16	***	1.04
	After	240	81	78.757	< 2.2e-16	***	1.14
Neuroscience	Before	520	1163	245.66	< 2.2e-16	***	0.82
	After	720	1153	100.1	< 2.2e-16	***	0.48

Note. Before represents the period from 2009 to 2016. After represents the period from 2016 to 2023. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$.

Year-By-Year Chi-Squared Analysis

Table S4

Chi-Squared Goodness-of-Fit Tests for Undergraduate Awards

Comparison Year	Women	Men	χ^2	p	Significance	Effect Size (d)
2016-2017	142	71	1.1637	0.2807		0.15
2017-2018	163	82	1.2384	0.2658		0.14
2018-2019	174	72	6.1535	0.01312	*	0.32
2019-2020	155	89	0.018892	0.8907		0.02
2020-2021	147	67	2.8736	0.09004		0.23
2021-2022	144	60	4.9128	0.02666	*	0.31
2022-2023	146	53	9.0089	0.002687	**	0.44

Note. Baseline men: 36.9%, women: 63.1%. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$.

Table S5

Chi-Squared Goodness of Fit Tests for Graduate Awards

Comparison Year	Women	Men	χ^2	p	Significance	Effect Size (d)
2016-2017	117	85	0.85901	0.354		0.13
2017-2018	107	93	4.8603	0.02748	*	0.32
2018-2019	113	91	2.7963	0.09448		0.31
2019-2020	138	95	0.34373	0.5577		0.08
2020-2021	150	94	0.0144468	0.9043		0.02
2021-2022	151	84	0.98438	0.3211		0.13
2022-2023	158	69	6.9061	0.00859	**	0.35

Note. Baseline men: 38.9%, women: 61.1%. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$.

Table S6

Chi-Squared Goodness-of-Fit Tests for Postdoctoral Awards

Comparison Year	Women	Men	χ^2	p	Significance	Effect Size (d)
2016-2017	10	14	0.010474	0.9185		0.04
2017-2018	9	15	0.26524	0.6065		0.21
2018-2019	10	18	0.55847	0.4549		0.29
2019-2020	11	17	0.13341	0.7149		0.14
2020-2021	10	10	0.43561	0.5093		0.30
2021-2022	12	11	0.84373	0.3583		0.39
2022-2023	17	8	6.5403	0.01055	*	1.19

Note. Baseline men: 57.3%, women: 42.7%. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$.

Table S7

Chi-Squared Goodness-of-Fit Tests for Discovery Awards

Comparison Year	Women	Men	χ^2	p	Significance	Effect Size(d)
2016-2017	184	291	0.41931	0.1549		0.06
2017-2018	184	270	2.0236	0.1549		0.13
2018-2019	196	280	3.0585	0.08032		0.16
2019-2020	212	290	5.2193	0.02234	*	0.21
2020-2021	217	280	8.6013	0.003359	**	0.27
2021-2022	245	306	12.094	0.0005059	***	0.30
2022-2023	224	277	11.764	0.0006038	***	0.31

Note. Baseline men: 62.7%, women: 37.3%. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$.

Table S8

Chi-Squared Goodness-of-Fit Tests for Cognitive Discovery Awards

Comparison Year	Women	Men	χ^2	p	Significance	Effect Size (d)
2016-2017	64	110	2.53E-05	0.996		0.0008
2017-2018	71	101	1.4837	0.2232		0.19
2018-2019	66	113	0.00039355	0.9842		0.003
2019-2020	76	110	1.3184	0.2509		0.17
2020-2021	71	104	1.0702	0.3009		0.16
2021-2022	82	117	1.6611	0.1975		0.18
2022-2023	72	105	1.1445	0.2847		0.16

*Note. Baseline men: 26.9%, women: 73.1%. *p < 0.05; **p < 0.01; ***p < 0.001.*

Table S9

Chi-Squared Goodness-of-Fit Tests for Developmental Discovery Awards

Comparison Year	Women	Men	χ^2	p	Significance	Effect Size (d)
2016-2017	35	10	5.01E-01	0.4792		0.21
2017-2018	32	10	0.204	0.6515		0.14
2018-2019	33	9	0.63941	0.4239		0.25
2019-2020	31	7	1.3893	0.2385		0.39
2020-2021	33	14	0.19925	0.6553		0.31
2021-2022	40	16	0.07956	0.7779		0.08
2022-2023	36	15	0.16363	0.6858		0.11

*Note. Baseline men: 69.1%, women: 30.9%. *p < 0.05; **p < 0.01; ***p < 0.001.*

Table S10

Chi-Squared Goodness-of-Fit Tests for Neuroscience Discovery Awards

Comparison Year	Women	Men	χ^2	p	Significance	Effect Size (d)
2016-2017	85	171	6.36E-01	0.4252		0.10
2017-2018	81	159	0.91299	0.3393		0.12
2018-2019	97	158	6.087	0.01362	*	0.31
2019-2020	105	173	6.1446	0.01318	*	0.30
2020-2021	113	162	13.376	0.0002549	***	0.45
2021-2022	123	173	15.736	7.28E-05	***	0.47
2022-2023	116	157	17.177	3.41E-05	***	0.52

*Note. Baseline men 69.1%, women 30.9%. *p < 0.05; **p < 0.01; ***p < 0.001.*

Linear Regression Model Results

Table S11

Discovery Award Linear Regression Model Results by Analysis Period

Term	Estimate	Std. Error	t value	Pr(> t)	Significance
(Intercept)	37729.1	415.1	90.896	< 2e-16	***
gendermale	1276.7	546.5	2.336	0.019500	*
year_groupBefore	-6873.5	609.6	-11.276	< 2e-16	***
gendermale:year_groupBefore	2619.8	785.1	3.337	0.000851	***

Multiple R2 = 0.03315

Adjusted R2 = 0.03272

*Note. Discovery award amount predicted by analysis group and gender (lm(amount ~ gender × analysis_group)). Before represents the period from 2009 to 2016. After represents the period from 2016 to 2023. SE = standard error. * p < 0.05; ** p < 0.01; *** p < 0.001.*

Table S12

Cognitive Discovery Award Linear Regression Model Results by Analysis Period

Term	Estimate	Std. Error	t value	Pr(> t)	Significance
(Intercept)	29229.9	735.7	39.733	< 2e-16	***
gendermale	4463.9	925	4.826	1.47e-06	***
year_groupAfter	7460.5	1044.5	7.143	1.18e-12	***
gendermale:year_groupAfter	-731.1	1329.9	-0.55	0.583	

Multiple R2 = 0.05435

Adjusted R2 = 0.05328

*Note. Cognitive Discovery award amount predicted by analysis group and gender (lm(amount ~ gender × analysis_group)). Before represents the period from 2009 to 2016. After represents the period from 2016 to 2023. SE = standard error. * p < 0.05; ** p < 0.01; *** p < 0.001.*

Table S13

Development Discovery Award Linear Regression Model Results by Analysis Period

Term	Estimate	Std. Error	t value	Pr(> t)	Significance
(Intercept)	33506	1024	32.713	< 2e-16	***
gendermale	-1941	1976	-0.982	0.32626	
year_groupAfter	3997	1439	2.777	0.00565	**
gendermale:year_groupAfter	-3917	2821	-1.389	0.16543	

Multiple R2 = 0.0237
 Adjusted R2 = 0.0191

*Note. Development Discovery award amount predicted by analysis group and gender (lm(amount ~ gender × analysis_group)). Before represents the period from 2009 to 2016. After represents the period from 2016 to 2023. SE = standard error. * p < 0.05; ** p < 0.01; *** p < 0.001.*

Table S14

Neuroscience Discovery Award Linear Regression Model Results by Analysis Period

Term	Estimate	Std. Error	t value	Pr(> t)	Significance
(Intercept)	31257.1	667.8	46.806	< 2e-16	***
gendermale	4529.4	803.3	5.638	1.85e-08	***
year_groupAfter	7271.6	876.4	8.297	< 2e-16	***
gendermale:year_groupAfter	-4469.5	1081	-4.135	3.64e-05	***

Multiple R2 = 0.02699

Adjusted R2 = 0.02617

*Note. Neuroscience Discovery award amount predicted by analysis group and gender (lm(amount ~ gender × analysis_group)). Before represents the period from 2009 to 2016. After represents the period from 2016 to 2023. SE = standard error. * p < 0.05; ** p < 0.01; *** p < 0.001.*

Table S15
Discovery Award Linear Regression Model Results by Year

Term	Estimate	Std. Error	t value	Pr(> t)	Significance
(Intercept)	30855.5	442.5	69.724	< 2e-16	***
gendermale	3896.5	558.8	6.973	3.38E-12	***
new_year2016-2017	3837.5	1241.4	3.091	0.002002	**
new_year2017-2018	3360.1	1241.4	2.707	0.006815	**
new_year2018-2019	4661.5	1207.8	3.859	0.000115	***
new_year2019-2020	5756	1167.7	4.929	8.44e-07	***
new_year2020-2021	6626.6	1156.1	5.732	1.04e-08	***
new_year2021-2022	9506.5	1098.3	8.656	< 2e-16	***
new_year2022-2023	12606.2	1140.6	11.052	< 2e-16	***
gendermale:new_year2016-2017	-1916.7	1583.7	-1.21	0.226228	
gendermale:new_year2017-2018	-2255.5	1604.5	-1.406	0.159845	
gendermale:new_year2018-2019	-2677.4	1568.2	-1.707	0.087814	.
gendermale:new_year2019-2020	-2416.6	1527.6	-1.582	0.113700	
gendermale:new_year2020-2021	-2743.9	1528.7	-1.795	0.072721	.
gendermale:new_year2021-2022	-2421.2	1460	-1.658	0.097282	.
gendermale:new_year2022-2023	-2333.2	1520.2	-1.535	0.124875	

Multiple R2 = 0.05151

Adjusted R2 = 0.04943

*Note. Discovery award amount predicted by year and gender ($lm(amount \sim gender \times year)$). SE = standard error. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$.*

Table S16
Cognitive Discovery Award Linear Regression Model Results by Year

Term	Estimate	Std. Error	t value	Pr(> t)	Significance
(Intercept)	29229.9	730.5	40.013	< 2e-16	***
gendermale	4463.9	918.5	4.86	1.24e-06	***
new_year2016-2017	4196.7	2187.7	1.918	0.055182	.
new_year2017-2018	4058.3	2089.7	1.942	0.052239	.
new_year2018-2019	6510.4	2158.1	3.017	0.002579	**
new_year2019-2020	6751.3	2028.5	3.328	0.000886	***
new_year2020-2021	6676.6	2089.7	3.195	0.001415	**
new_year2021-2022	9762.3	1962.8	4.974	6.99e-07	***
new_year2022-2023	13487.3	2076.9	6.494	9.96e-11	***
gendermale:new_year2016-2017	-484.4	2751.4	-0.176	0.860257	
gendermale:new_year2017-2018	-364.3	2715	-0.134	0.893271	
gendermale:new_year2018-2019	-2826.6	2715.8	-1.041	0.298070	
gendermale:new_year2019-2020	-1116.9	2626.6	-0.425	0.670714	
gendermale:new_year2020-2021	212.3	2700.7	0.079	0.937363	
gendermale:new_year2021-2022	719.9	2547.3	0.283	0.777491	
gendermale:new_year2022-2023	-592.4	2686.2	-0.221	0.825482	

Multiple R2 = 0.07176

Adjusted R2 = 0.06648

Note. Cognitive Discovery award amount predicted by year and gender ($\text{lm}(\text{amount} \sim \text{gender} \times \text{year})$). SE = standard error. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$.

Table S17

Development Discovery Award Linear Regression Model Results by Year

Term	Estimate	Std. Error	t value	Pr(> t)	Significance
(Intercept)	33506	1030	32.545	< 2e-16	***
gendermale	-1941	1986	-0.977	0.32876	
new_year2016-2017	2940	2854	1.03	0.30346	
new_year2017-2018	3169	2968	1.068	0.28614	
new_year2018-2019	2452	2928	0.837	0.40284	
new_year2019-2020	2675	3010	0.889	0.37457	
new_year2020-2021	2967	2928	1.013	0.31141	
new_year2021-2022	5195	2695	1.928	0.05430	.
new_year2022-2023	7927	2820	2.812	0.00508	**
gendermale:new_year2016-2017	-4505	5986	-0.753	0.45202	
gendermale:new_year2017-2018	-7234	6041	-1.197	0.23160	
gendermale:new_year2018-2019	-3214	6246	-0.514	0.60709	
gendermale:new_year2019-2020	-5383	6883	-0.782	0.43450	
gendermale:new_year2020-2021	-2818	5402	-0.522	0.60210	
gendermale:new_year2021-2022	-3198	5064	-0.631	0.52797	
gendermale:new_year2022-2023	-4293	5232	-0.821	0.41224	

Multiple R2 = 0.03214

Adjusted R2 = 0.008907

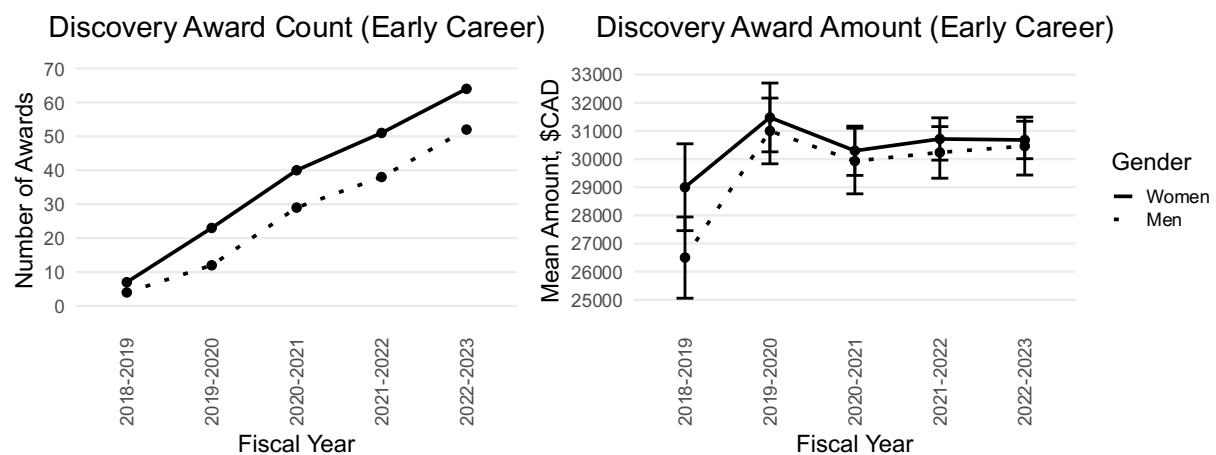
Note. Developmental Discovery award amount predicted by year and gender ($lm(amount \sim gender \times year)$). SE = standard error. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$.

Table S18

Neuroscience Discovery Award Linear Regression Model Results by Year

Term	Estimate	Std. Error	t value	Pr(> t)	Significance
(Intercept)	31257.1	660.8	47.303	< 2e-16	***
gendermale	4529.4	794.9	5.698	1.31e-08	***
new_year2016-2017	3667.7	1762.9	2.08	0.037552	*
new_year2017-2018	2799.8	1799.9	1.556	0.119915	
new_year2018-2019	3958	1666.5	2.375	0.017602	*
new_year2019-2020	5937.8	1612.1	3.683	0.000234	***
new_year2020-2021	7509.7	1563.9	4.802	1.64e-06	***
new_year2021-2022	10558.2	1510.8	6.988	3.31e-12	***
new_year2022-2023	13296.1	1547.2	8.593	< 2e-16	***
gendermale:new_year2016-2017	-2863	2151.9	-1.33	0.183467	
gendermale:new_year2017-2018	-3176.8	2205.2	-1.441	0.149783	
gendermale:new_year2018-2019	-3129.3	2099.9	-1.49	0.136259	
gendermale:new_year2019-2020	-4045.7	2026.5	-1.996	0.045966	*
gendermale:new_year2020-2021	-5313.9	2010.6	-2.643	0.008256	**
gendermale:new_year2021-2022	-5323.8	1946.8	-2.735	0.006277	**
gendermale:new_year2022-2023	-4164.8	2008.8	-2.073	0.038219	*

Multiple R2 = 0.05055


Adjusted R2 = 0.04653

Note. Neuroscience Discovery award amount predicted by year and gender ($lm(amount \sim gender \times year)$). SE = standard error. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$.

Supplemental Figures**Figure S1**

Early Career Researcher (Left) Discovery Award Count by Gender; (Right) Mean Discovery Award Amount by Gender

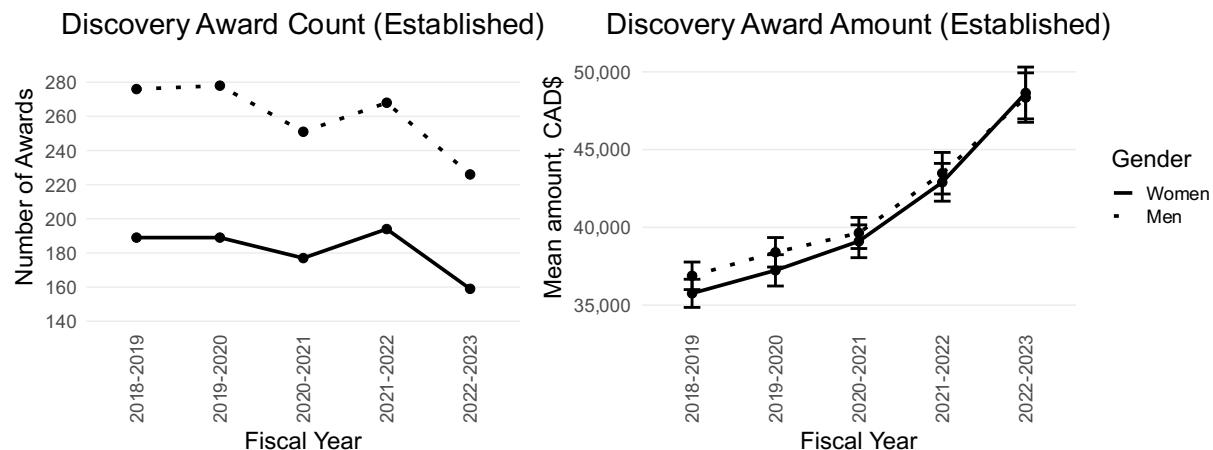
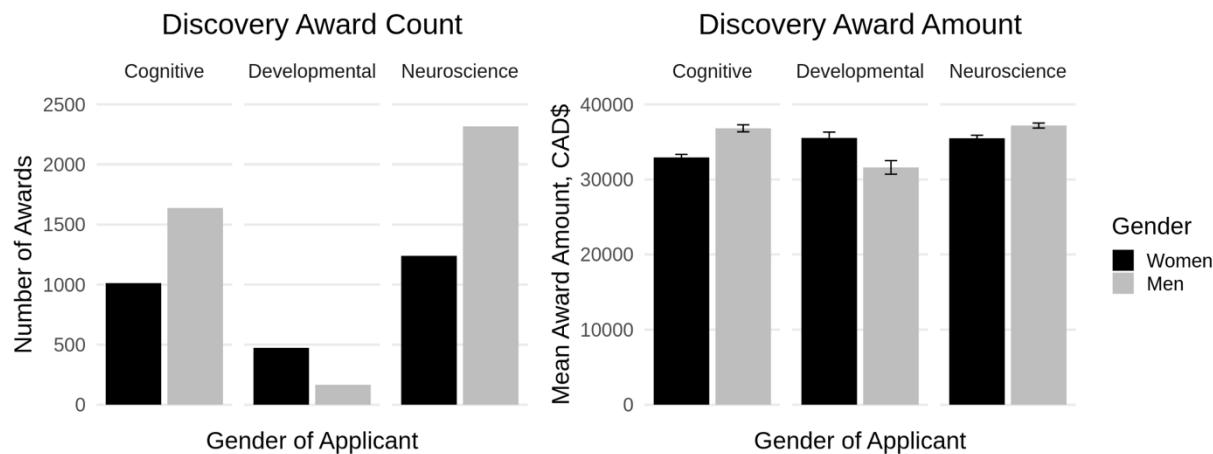

Note. Error bars represent the standard error of the mean. \$CAD represents the Canadian Dollar Amount.

Figure S2


Established Researcher (Left) Discovery Award Count by Gender; (Right) Mean Discovery Award Amount by Gender

Note. Error bars represent the standard error of the mean. \$CAD represents the Canadian Dollar Amount.

Figure S3

(Left) Discovery Award Count by Subdiscipline and by Gender; (Right) Mean Discovery Award Amount by Subdiscipline and by Gender

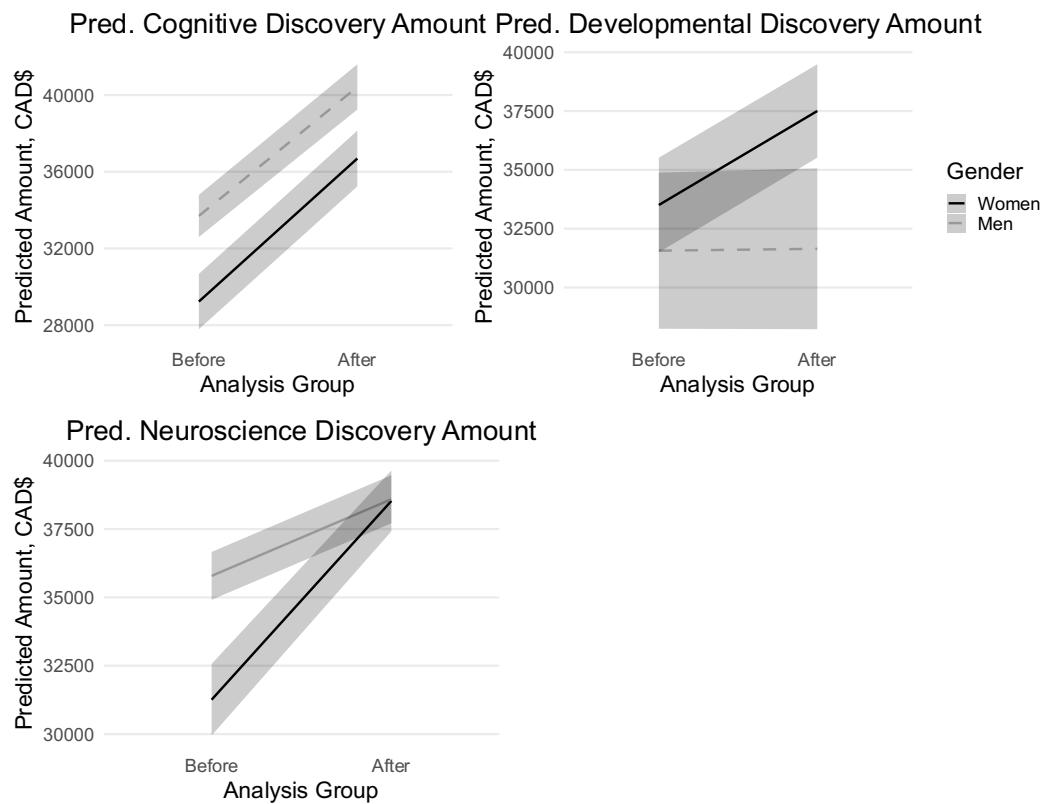

Note. Error bars represent the standard error of the mean. \$CAD represents the Canadian Dollar Amount.

Figure S4

Predicted Discovery Award Amounts by Discipline (before versus after)

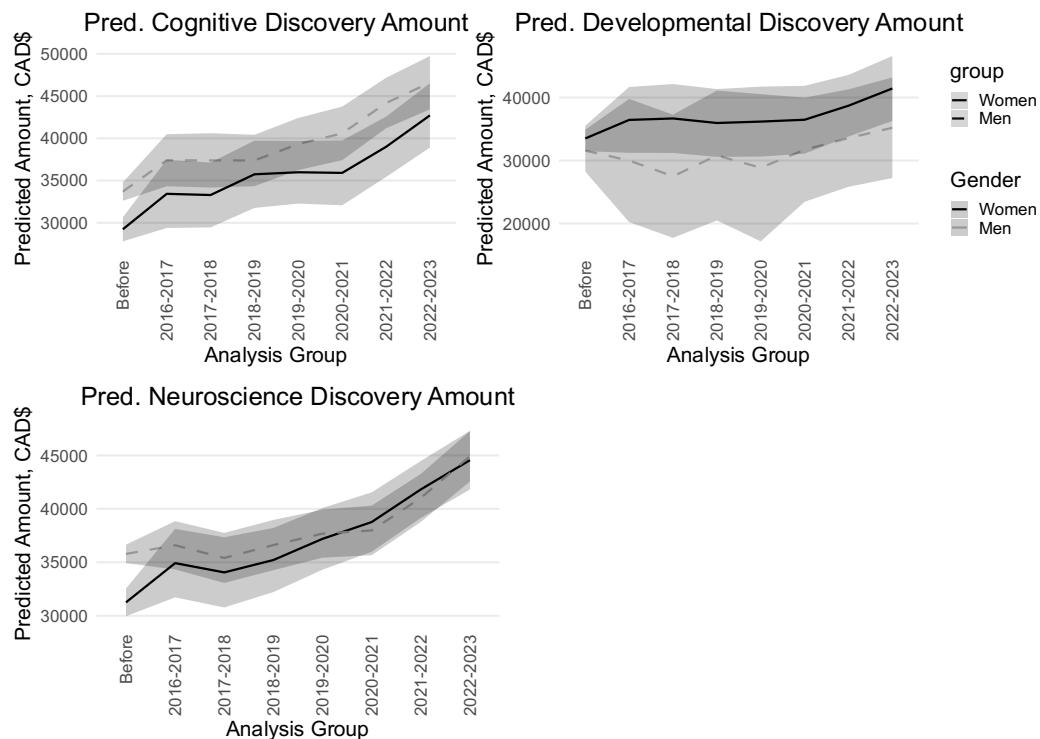

Note. (Top left) Predicted Cognitive Discovery Award amount by year and by gender; (top right) predicted Developmental Discovery Award amount by year and by gender; (bottom left) predicted Neuroscience Discovery Award amount by year and by gender. Confidence bands represent 95% confidence intervals. \$CAD represents the Canadian Dollar Amount.

Figure S5

Predicted Discovery Award Amount by Discipline (year-by-year)

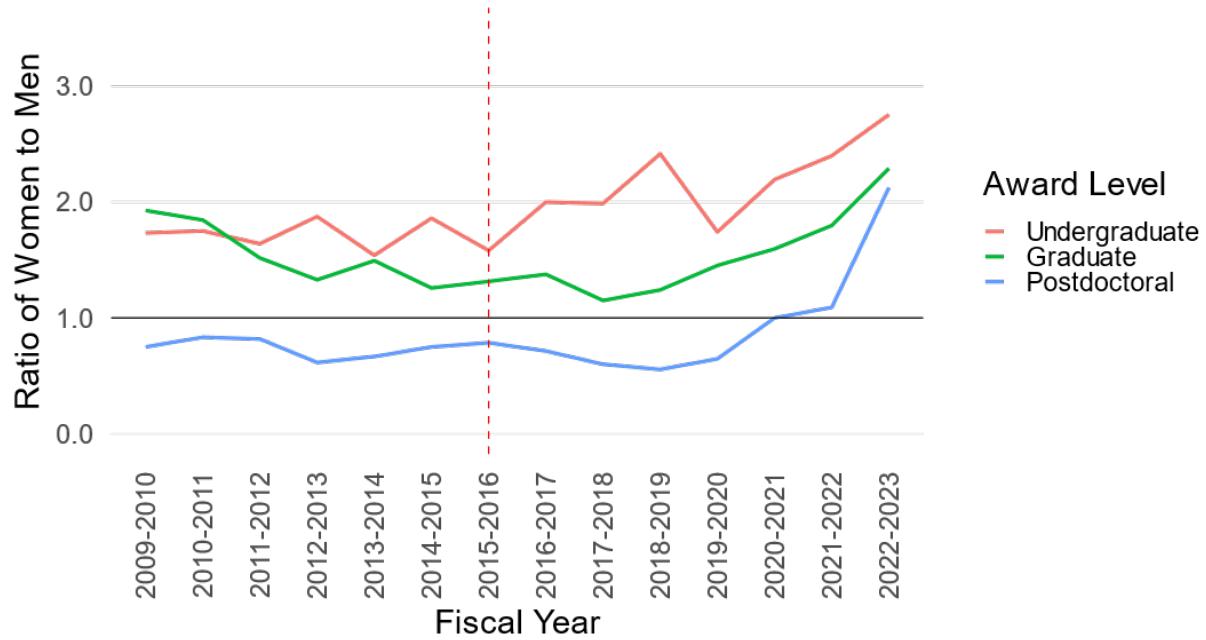

Note. (Top left) Predicted Cognitive Discovery Award amount by year and by gender; (top right) Predicted Developmental Discovery Award amount by year and by gender; (bottom left) Predicted Neuroscience Discovery Award amount by year and by gender. Confidence bands represent 95% confidence intervals. \$CAD represents the Canadian Dollar Amount.

Figure S6

Ratio of Women to Men for Natural Sciences and Engineering Research Council of Canada Trainee Awards

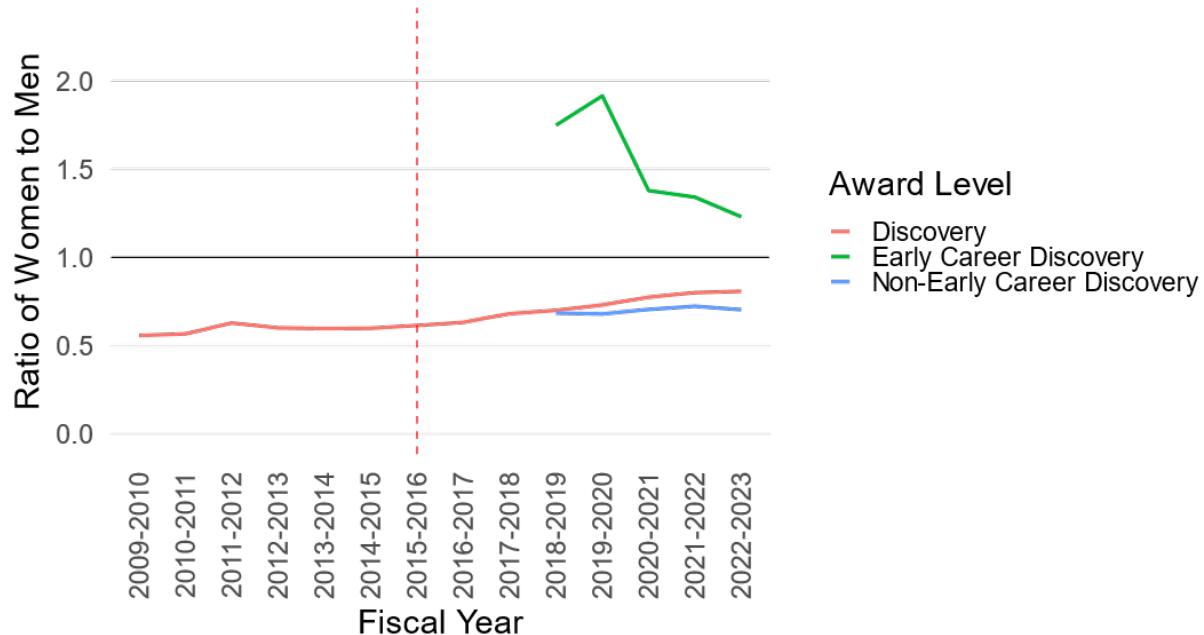

Note. 1.0 represents parity. Numbers less than 1.0 indicate more men received awards. Numbers greater than 1.0 indicate that more women received awards. The red dotted vertical line represents the final year analyzed by Titone et al. (2018). See the online article for the color version of this figure.

Figure S7

Ratio of Women to Men for Natural Sciences and Engineering Research Council of Canada Discovery Awards

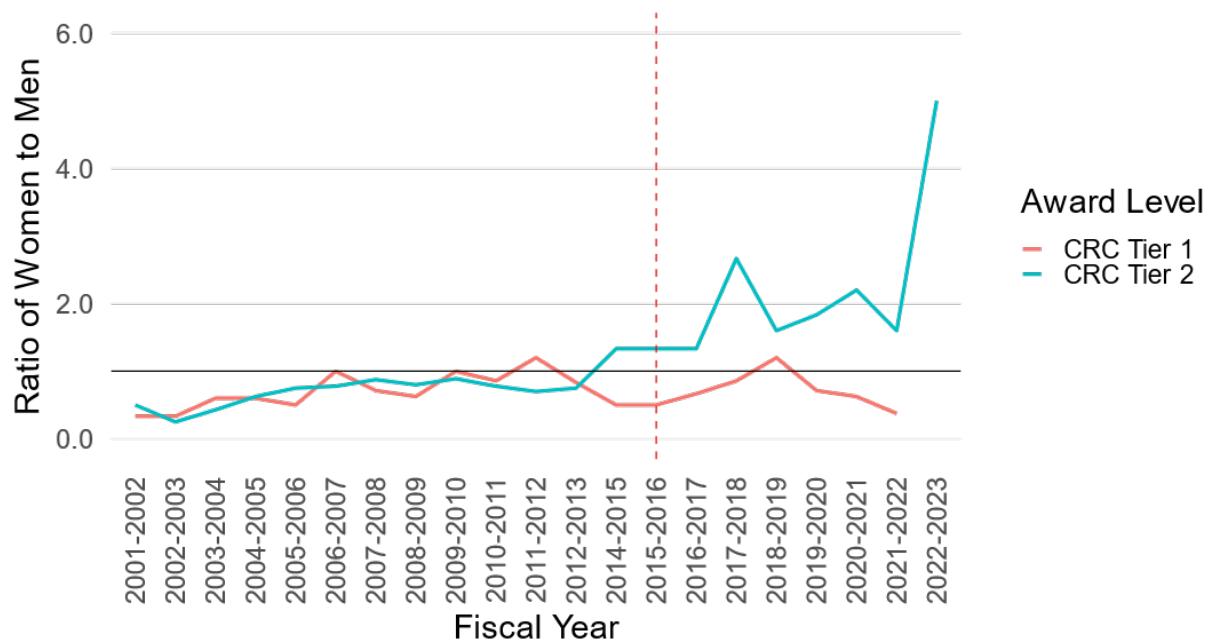

Note. 1.0 represents parity. Numbers less than 1.0 indicate more men received awards. Numbers greater than 1.0 indicate that more women received awards. The red dotted vertical line represents the final year analyzed by Titone et al. (2018). See the online article for the color version of this figure.

Figure S8

Ratio of Women to Men for CRC Appointments

Note. 1.0 represents parity. Numbers less than 1.0 indicate more men received awards. Numbers greater than 1.0 indicate that more women received awards. The red dotted vertical line represents the final year analyzed by Titone et al. (2018). CRC = Canada Research Chair. See the online article for the color version of this figure.

