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Online Supplement for Study 1 

Modeling power and power disparity 

As early as March (1966) and French (1956), researchers have used mechanical analogies 

of power. This modeling choice agrees with the theoretical conceptualizations of early scholars 

in power research, such as Hobbes, Locke, and Dahl, who make an analogy between power and 

mechanical forces (Clegg, 1989, p. 41). For example, according to Hobbes, power is an 

“extension and elaboration of metaphors drawn from Galilean mechanics.” Similarly, Locke 

illustrates power in terms of mechanics, as exemplified by the motion of billiard balls (Clegg, 

1989, p. 41). Dahl (1963, p. 7) argues that power is “very similar to those on which the idea of 

force rests in mechanics.” Following this tradition, we model an individual’s power with her/his 

mass. 

Let an individual j be located at a point with its coordinates given by the D × 1 vector xj, 

where D is the dimensionality of the cognitive task space that defines the domain of all solutions 

in which individuals search for the best solution. S/he has a mass mj that can represent power as a 

capacity stemming from her/his hierarchical position. Individual i with mass mi exerts a force on 

another individual in relation to her/his power. Because the power of individual j can only be 
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interpreted relative to the power of another individual, considering mj as individual j’s share of 

the overall power in the group suffices, such that 
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This force acts along xi and xj and causes a change in the position of i, such that the 

individual at xi is accelerated toward the individual at xj. That is, the power embedded in the size 

of the mass is exercised through a force that affects the desired change in the other individual’s 

position. A similar force acts on individual j in the opposite direction. Consequently, both 

individuals move towards mi xi + mj xj. This point is known as the center of gravity. For a group 

of N individuals, the center of gravity at time t is defined as follows: 
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Equation (1) implies that the center of the mass will be closer to the individuals with high power 

and further away from the individuals with low power.  

Modeling the problem space 

To compare the performances of groups with varying power disparity modes, we need to 

“produce an arbitrarily large number of statistically identical [tasks] for the simulated agents to 

solve” (Lazer & Friedman, 2007, p. 673). We utilized the Gaussian landscape generator 

(Gallagher & Yuan, 2006) to generate task landscapes. The landscape generator consists of a 

preselected number of multivariate normal distributions (i.e., Gaussian functions) with uniformly 

distributed means over a fixed D-dimensional space and varying covariance matrices. The height 

of each Gaussian is also random, except for the best one, the value of which is set at ψ
*
, and the 

ratio, r, of the best to the second best is rψ
*
. Then, this landscape generator is simply defined as 



Online supplement 3 

 

the maximum value over all Gaussians. Each position on the landscape has a performance value,

f( )ix , represented as the height of individual i’s position.  

Task complexity has been highlighted as an important contingency in power research 

(Sturm & Antonakis, 2015). Therefore, we compare the groups under varying degrees of 

complexity. Various meanings have been attributed to complexity (Siggelkow & Rivkin, 2005). 

We support the view that a complex task is one that “has many plausible solutions although it is 

difficult at the outset to judge which approach will yield good results” (Lazer & Friedman, 2007: 

673). For example, complex tasks with many plausible solutions include the strategic 

management of a group or an organization, new drug or software development, new video game 

design, and fraud investigations, as in Study 3. By contrast, a simple task has a single solution 

that is easy to find. However, for complex tasks, finding good solutions becomes more difficult 

because of multiple sub-optimal solutions. In our model, task complexity is represented by the 

landscape’s ruggedness.  

The Gaussian landscape generator allowed us to create landscapes with varying 

complexities with a single parameter, defined as the number of Gaussians. The complexity level 

of each landscape, γ, is defined as the number of Gaussians. Note that when γ = 1, a rather simple 

unimodal landscape (only one global optimum with no local optima) is created. The number of 

peaks, that is, the number of local optima, increases with γ, such that the actual number of local 

optima will be less than or equal to γ due to the possibly overlapping Gaussian components. 

Figure S1 illustrates two landscapes with varying complexities. Clearly, finding the optimum in 

the left panel is much easier than doing so in a complex task, such as that depicted in the right 

panel of Figure S1, where there are many local optima and irregular ridges. 
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Modeling group search 

The objective of the particle swarm optimization (PSO) is to search for the optimum of a 

fitness function over a D-dimensional search space through a group of several individuals. Note 

that our aim is not to develop a superior optimization algorithm but to simulate group interaction 

and to compare the performance of different power disparity models from a search perspective. 

In the PSO, each individual moves at a velocity that is updated in each period and remembers the 

best position that s/he has ever visited. Individuals in the search space are attracted to the best 

location found individually and the best location found by any of the group members. The 

success of the PSO depends on the number of individuals participating in the search, the 

landscape’s complexity, and a few tuning parameters (Poli, Kennedy, & Blackwell, 2007).  

Let us briefly formalize the PSO. We refer the reader to Clerc and Kennedy (2002) for 

further details. At time period (iteration) {1,..., }t T , the best performance reached thus far by 

individual i due to her/his local search is defined as 
t

ipbest , with the solution located at 
t

ip . The 

value of the best performance found thus far by the group is denoted 
t

igbest  at position 
t

g . For 

the maximization of f( )ix over x, 
t

ipbest and
t

igbest  are non-decreasing because they are updated 

only if a better solution is found. Individual i changes her/his position according to the velocity 

vector 1 2( , ,..., )t t t t

i i i iDv v vv . In the PSO, each individual’s velocity and location are updated at the 

time period t + 1 as follows:  

 1
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where ϕ is the inertia weight set to some predefined value. The second term on the right-hand 

side of (2) refers to the acceleration due to individual i’s local search, and the third term is the 

acceleration due to the group search. Parameters c1 and c2 are the acceleration constants for local 

and group searches, respectively. To add randomness to the group search, φ1 and φ2 are 

independent and uniformly distributed between 0 and 1. Together with c1 and c2, they govern the 

strength by which an individual is attracted to his/her best location, 
t

ip , and to the overall best 

location, 
t

g , found thus far by the group. At iteration t, the velocity is updated according to its 

current velocity affected by inertia and to the best previously found positions by the individual 

and the group, which is multiplied by the acceleration constants and random terms. The 

individual’s position is then updated using her/his current position and newly updated velocity. 

The selection of parameters is discussed in a later section. 

Equation (3) shows that an individual movement’s is determined by his/her current 

velocity and position, the best solution found from his/her local search, and the best solution 

found by the group. To include power and power differences in the search, we extend the 

standard PSO to include a third element, which is movement due to power differences, as 

formulated in (1). Hence, when (1) is inserted into (2), the velocity update in the PSO algorithm 

becomes 

1

1 1 2 2 3 3

Inertia Attraction towards Attraction towards Attraction to the 
the personal best the best found by center of gravity 

the group of the entire 

( ) ( ) ( )t t t t t t t t

i i i i i ic c c          v v p x g x s x

group 

, 

(4) 

where s
t
 is center of gravity; c3 is the acceleration constant of the acceleration due to the total 

gravitational force exerted on an individual; and φ3 is uniformly distributed between 0 and 1. 

Parameters c1, c2 and c3 have real behavioral interpretations, such that they serve as weights for 
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personal, social, and power cues, respectively. They affect the extent to which each cue affects 

individual searches.  

Note that (4) is in line with the decision-making paradigms proposed by Eisenhardt and 

Zbaracki (1992): An individual’s movement is influenced by (a) the best solution that s/he has 

found thus far as a result of his/her personal search and the best solution found by any group 

member (i.e., the bounded rationality paradigm); (b) the social influence due to power 

differences, which is proportional to power (i.e., the politics and power paradigm); and (c) there 

is still room for pseudo-randomness in the search (i.e., the garbage can paradigm). 

Consequently, the PSO algorithm in the simulation model is constructed as follows:  

 Until the final period T is reached, repeat. 

 For each individual i = 1,…, N, do the following: 

- Pick random numbers, 1 2 3, , ~ (0,1)U   ; 

- Update the individual’s velocity according to (4); and 

- Update the individuals’ position according to (3). 

- If f( ) f( )t t

i ix p , do the following: 

 Update the individual’s best position 
t t

i ip x . 

- If f( ) f( )t t

i x g , do the following: 

 Update the group’s best position 
t t

ig x . 

Parameters used in the simulation experiments 

Online Supplement for Study 3  

Complete set of survey items 



Online supplement 7 

 

Group performance. Survey question: “Please compare the performance of your team [X] with 

the performance of teams that performed similar tasks.” Scale: 1 = much worse; 3 = average; 5 = 

much better; Cronbach’s alpha = 0.85; Rwgj = 0.95; ICC1 = 0.23; ICC2 = 0.39. 

1. Efficiency 

2. Quality 

3. Cooperation 

4. Speed 

5. Overall performance 

Team leader’s competence. Survey question: “Please indicate to what extent you agree with the 

following statements about your team leader [X].” Scale: 1 = strongly disagree; 3 = neutral; 5 = 

strongly agree; Cronbach’s alpha = 0.96; Rwgj = 0.92; ICC1 = 0.23; ICC2 = 0.82. 

My team leader…  

1. … is a good role model for creative thinking. 

2. … consistently seeks new ideas and ways to develop new solutions. 

3. … generates groundbreaking ideas. 

4. … suggests new ways to achieve goals or objectives. 

5. … is a good source of creative ideas. 

6. … often has new and innovative ideas. 

7. … suggests new ways of performing work tasks. 

8. … develops adequate plans and schedules for the implementation of new ideas. 

Job complexity. Survey question: “Please indicate to what extent you agree with the following 

statements about your work.” Scale: 1 = strongly disagree; 3 = neutral; 5 = strongly agree; 

Cronbach’s alpha = 0.88; Rwgj = 0.88; ICC1 = 0.05; ICC2 = 0.42. 
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1. The job requires that I only do one task or activity at a time (reverse scored). 

2. The tasks on the job are simple and uncomplicated (reverse scored). 

3. The job comprises relatively uncomplicated tasks (reverse scored). 

4. The job involves performing relatively simple tasks (reverse scored). 

Tenure. Survey question: “How long have you worked at [X]? 

Education level. Survey question: “What is your highest level of education?” List of options: 1 = 

primary school; 2 = high school; 3 = vocational school; 4 = university education; 5 = graduate 

school or higher. 

Goal-focused leadership. Survey question: “Please indicate to what extent you agree with the 

following statements about your team leader [X].” Scale: 1 = strongly disagree; 3 = neutral; 5 = 

strongly agree; Cronbach’s alpha = 0.89; Rwgj = 0.88; ICC1 = 0.19; ICC2 = 0.77. 

My team leader…  

1. ... provides direction and defines priorities. 

2. ... clarifies specific roles and responsibilities. 

3. ... translates strategies into understandable objectives and plans. 

4. ... links the team’s mission to the mission of the company overall. 

5. ... follows up to make sure the job gets done. 

The results of the supplementary analyses 

We tested two additional extensions of our model: a three-way interaction among power 

disparity, competence and job complexity, and the curvilinear effect of power. First, job 

complexity may manifest itself in competing solutions, which can increase the need for a leader 

with high competence (cf. Aime, Humphrey, DeRue, & Paul, 2014). Second, our literature 
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review outlined the conflicting propositions of functionalist and conflict theories of power. 

Although we proposed leader competence to integrate these views, an alternative explanation 

could be that an optimum level of power disparity exists, and this disparity produces 

coordination benefits up to a certain threshold. However, after that threshold, conflict may crowd 

out the coordination benefits. The results in Table S2 exclude both the three-way interaction and 

the curvilinear effect of power disparity as alternative explanations.  
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Low complexity High complexity 

  

Figure S1. Example task landscapes created using the Gaussian landscape generatora 

a The global optimum is assigned a value of 1, and the second highest optimum is assigned a value of 

0.75. A low complexity landscape (left) is created using γ = 1 components, and γ = 20 components are 

used for the high complexity landscape (right).  
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Table S1 

Parameters Used in the Simulation Experiments 

Parameters Main 

Experiment 

Sensitivity Analyses 

Complexity Group size c3 

Varying factors     

Complexity level (γ) 10 1,…,21 10 10 

No. of individuals (N) 10 10 5,…,25 10 

High power (mhigh) 0.1,…,0.9 1 1 1 

Acceleration coefficient (c3) 0.6 0.6 0.6 0,…,0.9 

Fixed factors     

Dimensionality (D) 5 5 5 5 

Range of search space [-2,2] [-2,2] [-2,2] [-2,2] 

Value of global optimum (𝜓∗) 1 1 1 1 

Value of highest local optimum 

(r) 

0.75 0.75 0.75 0.75 

No. of landscapes per 

complexity level 

1000 1000 1000 1000 

No. of iterations (T) 100 100 100 100 

Maximum velocity (vmax) 2 2 2 2 

Acceleration coefficients (c1, c2) 0.6 0.6 0.6 0.6 

Inertia weight (𝜙) 0.5 0.5 0.5 0.5 

Bounce methoda Bounce-back Bounce-

back 

Bounce-back Bounce-back 

a When the individual reaches the limits of the search space, s/he bounces back and his/her 

velocity dampens. 
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Table S2 

Additional Analyses of the Three-way Interaction Effect and Curvilinear Relationships in Study 3 

  Model 4 

(IV) 

 Model 5 

(IV) 

 Model 6 

(OLS) 

 b SE   b SE   b SE 

Control variables         

  Constant 3.39 .07***  3.40 .07***  3.44 .08*** 

  Job complexity .11 .07  .10 .07  .11 .08 

  Education level diversity .07 .07  .09 .07  .08 .08 

  Tenure diversity .03 .06  .04 .06  .04 .07 

Main effects         

  Power disparity .09 .08  .11 .08  .13 .09 

  Competence -.05 .09  -.02 .09    

Interaction curvilinear effects         

  Power disparity × Power holder’s 

task competence 

.10 .14       

  Power disparity × Power holder’s 

task competence × Job complexity 

.03 .11  .12 .08    

  Power disparity2       -.07 .06 

         

Weak instruments test 21.76***  12.87***  —  

Wu-Hausman test .20  .12  —  

Notes: N = 46 groups. *p < 0.10; **p < 0.05; ***p < .01. b = standardized regression coefficient; SE = robust 

standard errors; IV = instrumental variable regression; OLS = ordinary least squares regression. 

 


