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Appendix B
Modeling game and role-conditional heterogeneity in heuristic use
Our attention will focus on analyzing the tournament data using the 7s-model due to its performance
in the tournament. Our analysis is also informed by our “submissions” for the tournament, the
conclusions of which are interesting. We examine whether heuristics use is conditional on game
classes and on the player’s role in a game (as a first- or second-mover). Finally, we compare how
well our models can predict human behavior for each game class and role.

Let g € G denote the game class, r € R = {Player 1, Player 2} denote the role of a subject,
and A, denote the action choice sets for a player in role r, where A1 = {In, Out} and Ay =
{Left, Right}. The structure of the dataset made available by EER consists of a set of observations,
indexed by ; each observation is comprised of the proportion of subjects who chose the In (or
Right) action for a given game and role p(a;), and the remaining variables are the payoffs of the
game (which uniquely determine the game that is being played) and the role of the subjects within
that game. Therefore, each observation corresponds to subjects’ behavior for a unique combination
of a specific game (note, not game class) and role within that game. Let the estimated coefficients
for each of the seven strategies s € S, as presented in Table A3, be given by 5.9.
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Since the model does not have a constant and the sum of all coefficients is constrained to equal
one, the estimated coefficients can be interpreted as the proportion use of a strategy in the subject
pool. The objective function in Eq. 1 is the RMSD of the observed and predicted probabilities of
the choices given the chosen training dataset €2, which is a subset of the whole dataset.
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The model presented above permits different heuristic use according to game class and role.
The assumption of game and role conditional heterogeneity can be tested empirically by comparing
the performance of the unrestricted model to that of three nested models created by imposing the
following restrictions on coefficients:
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1. Subjects use heuristics in the same proportions regardless of the game class Vg € G : 59 =
or.

2. Subjects use heuristics in the same proportions regardless of their role in the game Vr €
R:pro = pg.

3. Subjects use heuristics in the same proportions regardless of the game class and their role
Vr e R,Vg e G: B9 =ps.
The robustness of the estimation procedure for these models with respect to data partitioning will
be examined using different cross-validation regimes. Let the chosen training and cross-validation
datasets be denoted as  and € respectively, then Q — Q' is a specific regime. The first two
regimes involve training the model on the tournament’s estimation dataset, and cross-validating
on the tournament’s prediction dataset (est — pred) and vice-versa, using the pred dataset as the
training dataset and the est dataset as the cross-validation dataset (pred — est)—this is 2-fold
cross-validation. For a specific regime, the cross-validation performance criterion CVy_, ¢ is given
by Eq. 3 where ﬁ(a%) is evaluated at the values of 399 estimated from the set Q—ideally, the
results from the two regimes (est — pred) and (pred — est) should be very similar.

Voo = | Y [pla) —ilay)]” (3)
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Another regime uses the combined data from the estimation and prediction datasets, without
distinction, and performs leave-one-out cross-validation (referred to as [10), which is a special case
of k-fold cross-validation. For general k-fold cross-validation, let €2}, denote the cross-validation set
for the kth fold. The cross-validation performance criterion averaged over all folds, to take into
account all possible data-partitioning decisions, is given by Eq. 4 where ﬁ(a%) is evaluated at the

values of 329 estimated from the set .

ov= 13 gy 2 [ptag) —stey)] (4)

Specifically in the case of [10, a single observation is excluded from the training sample and
the model is estimated on the remaining 239 games—performance is estimated on the test set
comprised of the single observation. This is repeated for each of 240 possible partitions of the
dataset into training and cross-validation datasets; therefore, the cross-validation criterion in this
case is created by averaging over all the possible cross-validation sets k = 240.

In order to estimate these models, there are some additional assumptions that need to be
made regarding special cases where heuristics are perfectly correlated or the sample size of games
for a given game class is too small to reliably estimate coefficients.

The models estimated for each player role do not use the full range of the defined strategies
for the following reasons: Nrtnl does not make a prediction for Player 1, whilst for player 2 the
Ritnl, Mxmn and L1 strategies are perfectly correlated. The affected coefficients are automatically
dropped from the estimation procedure.

Although some games belong to more than one class, in our estimation procedures we assign
games to one class using the following rules. If two classes overlap, but neither is a subset of the
other, then we add the intersection of the game classes as a new game class, for example, we include
a game class ssci, which is the overlap of ss and ci. If one game class is a complete subset of another
class (or union of classes), we assign games as belonging to the subsumed set whenever possible
(e.g., trust games), which are a subset of costly help, are assigned to the ¢r class and not the ch
class.
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Sometimes the number of free parameters are too few compared to the number of observations
within each game classes to efficiently estimate a model permitting game conditional heterogeneity.
For robustness, we solve this problem in two different ways; however, since significant differences
are not found, the results of the first solution are presented in the main discussion in Appendix
B—results of the second solution are presented for comparison in Tables B4 and B5.

1. The game classes with less than twenty observations, fp, rp, fh, ch and tg, are pooled into
a new single class, denoted by po. Admittedly, this is arbitrary, as there is no particular reason to
believe that these game classes are related to justify this categorization. However, this approach
does not throw any of the data away as the next approach does—this leads to seven games classes,
G = {ci,nd, ss, cp, po, ssci, nt}.

2. Simply drop the fp, rp, fh, ch and tg game classes from the estimation procedure and

use only the remaining game classes, G = {ci, nd, ss, cp, ssci, nt }—we refer to this as the reduced
dataset.
Finally, a remaining issue when estimating a model with imposed player role homogeneity is the
fact that Nrtnl does not make any prediction for player 1. We assume that players using the Nrinl
strategy as a second player would use the Ritnl strategy when moving first. Note, that although
some of the heuristics were perfectly correlated for player 2 choices, this is not the case for player 1
choices; therefore, when estimating jointly both player roles these heuristics are no longer perfectly
correlated.

Results

The estimation results for the models with various restrictions on heterogeneity and combi-
nations of estimation and prediction sets are provided in Table B1. Within each of the three cross-
validation regimes, the best performing model assumes no game class heterogeneity but permits role
heterogeneity. However, the maximum difference in the cross-validation RMSD in all these cases
compared to a model with game and role homogeneity is only equal to 0.001—roughly one addi-
tional correct prediction per one thousand. This is neither economically significant nor statistically
significant at the 5% level, as determined by a paired Wilcoxon signed rank (z = 0.508,p = 0.61)
and a sign test (p = 0.37) on the CV for each observation in the [1o procedure. We conclude that
subjects in the experiment did not significantly condition their heuristic use on the game class or
on their role in the game. This result is surprising in light of the existing literature that finds signif-
icant strategic adaptation (Payne, Bettman, & Johnson, 1988, 1993; Rieskamp, 2008; Rieskamp
& Hoffrage, 1999)—this discrepancy is likely the result of the implementation details of the EER
tournament, discussed in Section Implementation and the Duhem-Quine problem.

Comparing the two cross-validation regimes est — pred and pred — est, will shed light on
the robustness of tournament results in light of the random sampling of games and subjects. The
cross-validation RMSD for all subjects and roles are clearly smaller in the est — pred procedure
compared to pred — est for all combinations of game and role heterogeneity. Closer inspection
of this result by disaggregating the CV by player role reveals that this large difference can be
attributed to the player 1 role. Comparing the model with no game or role heterogeneity across
the two procedures reveals a moderately large difference in CV for player 1 (0.018), but a small
difference for player 2 (0.003). We believe that such a procedure should be carried out for any
tournament as it provides an indication of the magnitude of the random effects occurring due to
sampling (either game or subject sampling)—differences in models should be interpreted relative
to these sampling errors. For example, for player 1, the difference between the best performing
model and the 7s-model is 0.006 a value that is three times smaller than the induced change in
performance by switching the cross-validation regime. We conclude that the submitted models are
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not significantly different from the 7s-model. The difference between the best performing player 2
model and the baseline is 0.005 compared to an induced change of 0.003—this results seems more
robust to the partitioning of the data into training and cross-validation sets.

Further examination of the robustness of the cross-validation procedures can be performed
by comparing the parameter estimates presented in Table B2. Instability in the estimates for Rinl
and Nrinl is revealed, however this is primarily due to the high degree of collinearity of these two
heuristics, and not specifically due to the differences in the cross-validation procedures. Table B3
presents the correlation between the actions prescribed by the various heuristics. The heuristics
Rinl, Nrinl, L1 and Mxmn exhibit very high correlation for the games examined in the tournament,
therefore inference with respect to which of these heuristics best represents subjects’ behavior is
limited. Further data would be required to distinguish between these two heuristics effectively. For
the remaining parameter estimates, the largest difference occurs for L1, with the two procedures
yielding a difference in 4.5 percentage points—again the effects seem to be of moderate size.

Table B2 presents the estimated proportions of heuristic use for the model with no game
class or role heterogeneity. The most widely used heuristics are Rtnl (and Nrtnl for the second
player), followed by Mzmn and L1. These heuristics are not strongly correlated with the remaining
heuristics incorporating social preferences, permitting stronger conclusions to be drawn from such
a comparison. As noted earlier, heuristics employing social preferences are used by a significantly
smaller proportion of subjects than heuristics only incorporating own payoffs. Note that the use
of Nrtnl, implies that that subjects did care about their opponents’ payoffs but only if their own
payoffs would not be affected negatively.

Table B1
Cross-validation performance (root-mean-square deviation) for various model assumptions
l1o est — pred pred — est
Role het.? No Yes No Yes No Yes

Game het.? No Yes No Yes No Yes No Yes No Yes No Yes

Player 1 0.100 0.105 0.100 0.105 0.090 0.095 0.090 0.115 0.108 0.116 0.108 0.118
Player 2 0.061 0.064 0.060 0.067 0.066 0.071 0.064 0.071 0.063 0.069 0.062 0.076

Mean 0.083 0.087 0.083 0.088 0.079 0.084 0.078 0.096 0.089 0.095 0.088 0.099

Table B2
Estimated percentage use of strategies (%)

Dataset Rinl Nrinl L1 Mxzmn Jmz Mxwk Mndff
lio 19.6  26.8 17.7 19.7 6.7 6.1 3.3

est =+ pred 11.2 332 20.1 189 6.9 6.6 3.0
pred —est 357 12.6 15.6  20.3 6.4 5.8 3.7
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Table B3
Correlation of heuristic decisions

Rinl  Nrtnl L1 Mzmn  Jmx  Mzwk  Mndff

Rtnl  1.000 0.982 0.754 0.783 0.365 0.412  0.067
Nrtnl  0.982 1.000 0.741 0.772 0392 0.425 0.069
L1 0.754 0.741 1.000 0.826 0.393 0.399 -0.015
Mzmn 0.783 0.772 0.826 1.000 0.322 0.360 0.052
Jmz  0.365 0.392 0.393 0.322 1.000 0.650 -0.014
Mzwk 0.412 0425 0.399 0.360 0.650 1.000 0.316
Mndff 0.067 0.069 -0.015 0.052 -0.014 0.316 1.000

Table B4
Cross-validation performance (root-mean-square deviation) for various model assumptions for the
reduced dataset

l1o est — pred pred — est
Role het.? No Yes No Yes No Yes
Game het.?  No Yes No Yes No Yes No Yes No Yes No Yes
Player 1 0.095 0.098 0.095 0.097 0.084 0.083 0.085 0.098 0.102 0.104 0.102 0.103
Player 2 0.059 0.059 0.058 0.063 0.063 0.069 0.060 0.062 0.063 0.063 0.063 0.072
Mean 0.079 0.081 0.079 0.082 0.074 0.076 0.073 0.082 0.082 0.086 0.081 0.089

Table B5
Estimated proportions of strategy use for the reduced dataset

Dataset Rinl Nrinl L1 Mzmn Jmz Mzwk Mndff
lio 159 299 188 19.1 6.4 6.6 3.2

est > pred 14.6 30.0 19.8 184 6.9 7.5 2.7
pred —est 19.2 28.0 183 194 5.6 5.8 3.8

Predictive power of the model per game class and role. A comparison of the pre-
dictive power of the model with no game or role heterogeneity, as measured by cross-validation
performance per game class and player role is presented in Table B6. Note, a single model is esti-
mated on all the data for all game classes and player roles; however, we report the disaggregated
performance per game class and role to allow for more informative comparisons. These results,
including confidence intervals, were also discussed briefly and presented graphically in Figure 2 in
the main text.

As expected, for all game classes except nd, the cross-validation RMSD for player 1 is higher
than for player 2—this is due to the uncertainty that the first player faces with respect to player
2’s move, which adds to the difficulty in modeling behavior. The model’s performance in predicting
behavior in each game class, aggregated over player roles, is (ordered from best performance to
worst): ssci, ss, rp, nd, nt, ci, fh, tg, cp and fp. The games fp and cp are not surprisingly the
most difficult to predict as they require beliefs about the likelihood of opponents punishing their
behavior (when it is not rational). The standard seven strategies do not incorporate beliefs about
punishment—this may be one of the limitations of the 7-s model and may have contributed to
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the poor performance for these games. Evidence that this explanation is valid are the tournament
results for player 1, where the top four models are based on the standard seven strategies with
modifications accounting for fear of punishment and beliefs about player 2.

Table B6
Cross-validation (root-mean-square deviation) prediction accuracy per game class

Game class ct nd s cp fp D fh ch tg ssci nt  All classes
Player 1 0.123 0.075 0.073 0.159 0.220 0.077 0.124 0.085 0.125 0.053 0.093 0.100
Player 2 0.042 0.079 0.060 0.046 0.164 0.053 0.042 0.073 0.051 0.038 0.066 0.061

Both players 0.092 0.077 0.067 0.117 0.194 0.066 0.092 0.079 0.095 0.046 0.081 0.083

Note.  Common-interest=ci, Near-dictator=nd, Safe-shot=ss, Strategic-dummy=sd, Costly-
punish=cp, Free-punish=fp, Rational-punish=rp, Free-help=fh, Costly-help=ch, Trust-game=tg,
Safe-shot /common-interest=ssci, Other-non-trivial=nt.

Appendix C
Robustness to environmental variation

Let an (sampling) environment, e, be uniquely defined by the probability distribution over the
set of game classes, G—this is the probability that a player would face a game of this class. We
examine the eleven game classes discussed thus far, therefore the universal set of environments F
is a standard 11-dimensional simplex, where 7€ is the probability a game of class g is drawn in a
specific environment e: E = {(m1,...,m11) € RY | S my = 1,75 > 0}.

We adopt a semi-Bayesian approach in dealing with our uncertainty regarding what the true
environmental is. Ideally, the researcher would impose a prior over the universe of possible envi-
ronments (the distribution of game classes or specific payoff sampling schemes) and run the same
experiment for each environment. The posterior probability that a model is the best performer,
accounting for the possible environments, is then easily calculated. Clearly, running the same ex-
periment many times for each possible environment is practically impossible. However, we propose
the following solution that only requires a single experiment using a unique sampling scheme. En-
vironmental variation can be approximated by simply re-weighting the importance of observations
(conditional on their game class) in the model estimation procedures. Let 74 be the proportion of
games belonging to class g in a tournament and 7y be the desired proportion of the target envi-
ronment denoted by e—the weights per game class are given by 75/x,. Models can be estimated by
the following re-weighted objective function, Eq. 5, where w,, is the weight for each observation in
the training set determined by the game class the observation belongs to—cross-validation crite-
ria are similarly adjusted.! To simultaneously control for sampling variation, the cross-validation
technique we employ here is the leave-one-out procedure discussed above.

RMSD = Jmm Z w,, [p(ay,) — play))? (5)

&7 ‘ wGQ

!An alternative approach, which could also account for sampling variation, would be to create new datasets
by repetitively sampling with replacement from the set of experimental games with probabilities defined by the
environment e. However, this would increase the computational cost to impractical levels.
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Analysis

We perform the robustness analysis by re-estimating the 7s-model and the Charness-Rabin
(CR) model—the two best performing baseline models according to ENO—and also examine the
subgame perfect Nash equilibrium. The set of environments, E, that we will examine will consist
of all possible combinations of the eleven game classes with restrictions to manage the compu-
tation costs by discretizing the linear combinations of game classes and bounding the weights:?
mg € {0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5} , 3 c; Ty = 1. We impose a uniform prior dis-
tribution over this set of 92,378 environments, p(e) =| E |~!. Our environmental variation criterion,
R, is simply the probability that a model is the best performer over the set of environments. If R
values are significantly different from 1, this implies that model performance depends strongly on
the type of environment. Therefore, further examination of the relationship between environments
and individual model performance is warranted; we believe that this is invaluable information for
guiding the development of future models.

We proceed in our analysis by using the data from both the estimation and prediction datasets
and the leave-one-out cross validation procedure discussed above. The subgame perfect Nash equi-
librium was outperformed in every single environment therefore is not mentioned further. Define
the representative environment of a model as the average game class distribution over the envi-
ronments where this model was the best performer—this permits a comparison of when specific
models perform well. Table C1 presents the result of the robustness analysis. The 7s-model out-
performs the CR model in 92% of the environments examined for the first player. Examining the
representative environments it is very clear that the CR performs better when the proportion of
free punish games is high—mnote, this confirms the evidence presented in Figure 2 that the 7s-model
exhibits its worst performance at predicting behavior for this class of games. The mean difference
in RMSD between the 7s-model and the CR model over all environments is 0.019; therefore, the
7s-model will make roughly two more correct predictions out of every one hundred. For the second
player, the 7s-model outperforms the CR model in all the environments examined, and the mean
difference in RMSD is equal to 0.0204.

The superiority of the 7s-model over the Charness-Rabin model and subgame-perfect Nash
equilibrium is confirmed for a very large space of possible environments, and is not due to the
specific sampling environment used in the tournament (although this result is of course dependent
on the auxiliary assumptions and implementation details of the tournament). With respect to
whether the top performing submissions would also be significantly different from each other for a
large proportion of the environment space we remain skeptical. As we do not have the code for these
submissions we are unable to perform these calculations. However, given that the Charness-Rabin
and 7s-models had significantly larger differences in performance for the tournament’s sampling
scheme than the differences in the top performing models (as presented in Table A5), it is likely
that this will lead to non-robust differences over the entire environment space.

2The computational cost of performing this analysis is very large and quickly gets out of control—each environ-
ment requires the estimation of a model 240 times (due to leave-one-out cross-validation) for a total of 22,170,720
optimization problems per player role.
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Table C1

Robustness to environmental variation

Representative environment

Player Model R
ct nd ss cp fo ™D fh ch tg  ssci  nt

1 7s 0.92 0.09 0.09 0.09 0.09 0.08 0.09 0.09 0.09 0.09 0.09 0.09
1 CR 008 0.08 0.08 0.07 0.06 0.22 0.08 0.08 0.08 0.09 0.08 0.07
2 s 1 - - - - - - - - - - -
2 CR 0 - - - - - - - - - - -
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