
SUPPLEMENTAL 1

Supplemental Material

The Monotonicity of Second Choices

Given a signal distribution parametrized by a parameter µ for signal

strength with density fµ and cumulative distribution function Fµ, the probabilities

of assigning rank 1 and rank 2 to the signal are given by π1(µ) =
∫
F k−1fµ and

π2(µ) = (k − 1)
∫
F k−2(1− F )fµ, respectively, where F is the cumulative

distribution function of the noise distribution with density f . Note the omission of

subscript k. Let the signal distribution’s support be an interval with lower bound

lµ that is non-decreasing in µ and upper bound u with fµ(y) > 0 for y ∈ (lµ, u), and

assume that the support for the noise distribution is the interval (l, u) with

l ≤ infµ lµ and f(y) > 0 for y ∈ (l, u), where −∞ and ∞ are admissible values for

the lower and upper bounds, respectively.

Assume furthermore that lµ is differentiable for µ with lµ > −∞, that

Fµ(z) is differentiable in µ for every z ∈ (lµ, u) and differentiable from the right for

z = lµ. Assume that for every µ there is an open interval Iµ containing µ and a

function gµ so that | ∂
∂µ
Fµ(z)|µ=ν | ≤ gµ(z) for all ν ∈ Iµ and for all z ∈ [lµ, u) and so

that
∫ u
lI
gµ(z)f(z)dz <∞, where lI = inf Iµ. This is, for example, satisfied if

∂
∂µ
Fµ(z) considered as a function in (µ, z) is bounded on the set of (ν, z) with

ν ∈ Iµ and z ∈ [lν , u). The condition states that the functions z → ∂
∂µ
Fµ(z)f(z) are

dominated by an integrable function gµ(z)f(z) locally in an interval around each µ.

Let c2(µ) be the conditional probability of assigning rank 2 to the signal,

given that rank 1 was not assigned to the signal: c2(µ) = π2(µ)
1−π1(µ)

. We need to

consider the function Hµ(z) defined by

∂
∂µ
Fµ(z)

Fµ(z)
.

The following theorem will be proved:

Theorem. If Hµ(z) is monotonically increasing in z for all µ and

z ∈ (lµ, u), then c2(µ) is monotonically increasing in µ.
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Proof. All integrals range from lower bound lµ to upper bound u. We will

mostly suppress the bounds. Using integration by parts, we find that

π1(µ) = Fµ(z)F k−1(z)|z=uz=lµ − (k − 1)

∫
FµF

k−2f

= 1− (k − 1)

∫
FµF

k−2f.

Similarly, it can be shown that

π2(µ) = (k − 1)(1− π1(µ))− (k − 1)(k − 2)

∫
FµF

k−3f.

It follows that

c2(µ) = (k − 1)− (k − 2)

∫
FµF

k−3f∫
FµF k−2f

.

c2(µ) is monotonically increasing, if the fraction on the right side,

t(µ) =
∫
FµFk−3f∫
FµFk−2f

, is monotonically decreasing. The latter term is decreasing if its

derivative with respect to µ is negative. The differentiations can be performed

under the integral sign. This is ensured by the above assumption that ∂
∂µ
Fµ(z) is

locally dominated by an integrable function and the dominated convergence

theorem (Bartle, 1966, chap. 5). Note also that lµ is differentiable where lµ > −∞

and that Fµ(lµ) = 0. This yields

∂

∂µ
t(µ) =

(
∫

∂
∂µ
FµF

k−3f)(
∫
FµF

k−2f)− (
∫
FµF

k−3f)(
∫

∂
∂µ
FµF

k−2f)

(
∫
FµF k−2f)2

.

Dropping the denominator (it is always positive), converting the product of two

integrals into a double integration, making explicit the variables y and z of

integration, exchanging the roles of y and z in the second term in the numerator,

and rearranging terms yields that ∂
∂µ
t(µ) is negative if

0 >

∫ ∫
(F (z)− F (y))Hµ(y)Fµ(z)Fµ(y)F k−3(y)F k−3(z)f(y)f(z)dy dz.

Let the double integral be n(µ). Hµ(y) is assumed to be increasing in y for

y ∈ (lµ, u). F (y) is also increasing in y, because f(y) > 0 for y ∈ (lµ, u). Hence,

0 > (F (z)− F (y))(Hµ(y)−Hµ(z)) for all y and z with y 6= z. Let
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G(y, z) = Fµ(z)Fµ(y)F k−3(y)F k−3(z)f(y)f(z) and note that G(y, z) = G(z, y). It

follows that

0 >

∫ ∫
(F (z)− F (y))(Hµ(y)−Hµ(z))G(y, z)dy dz

=

∫ ∫
(F (z)− F (y))Hµ(y)G(y, z)dydz −

∫ ∫
(F (z)− F (y))Hµ(z)G(y, z)dy dz

= 2n(µ),

by exchanging the variables of integration y and z in the last double integral.

The function Hµ(z) is related to the signal distribution’s hazard function

and can be shown to be increasing for many common distributions. For example,

for shift distributions with fµ(y) = f(y − µ), the following corollary relates Hµ to

the reverse hazard (Chechile, 2011), given by rµ(y) = fµ(y)

Fµ(y)
:

Corollary. For a family of shift distributions, Hµ(y) is monotonically

increasing in y for all µ, if the reverse hazard is monotonically decreasing in y for

all µ under the assumptions of the above theorem.

This follows from the fact that for a shift distribution Hµ(y) = −rµ(y) as is

easy to see. Using the results reported by Chechile (2011), it immediately follows

that c2(µ) is monotonically increasing for signal and noise distributions based on

normal distributions (as in the equal-variance SDT and the unequal-variance SDT),

but also for the case of exponential distributions (fµ(y) = k exp(−k(y − µ)) with

lµ = µ), for shift distributions based on ex-Gaussian distributions, Gumbel

distributions, mixtures thereof, and many other distributions. Note that the

densities of these distributions are locally bounded in an interval around each µ for

all y which implies that the assumptions of the theorem on local dominance are

satisfied.

The distributions satisfying the conditions of the theorem are not limited

to distributions with signal strength conceptualized as a shift parameter. Consider,

for example, the Gamma Distribution with shape α > 0 and scale µ > 0. Here,

lµ = 0 and u =∞. Its distribution function is

Fµ(z) =
γ(α, z

µ
)

Γ(α)
,
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where γ is the lower incomplete gamma function. Its derivative with respect to µ is

∂

∂µ
Fµ(z) =

1

Γ(α)

(
− z

µ2

)(
z

µ

)α−1

e−
z
µ .

Note that this function is bounded in an interval around each µ for all z. Using a

series expansion of the lower incomplete gamma function (Abramowitz & Stegun,

1964, p. 262), on the other hand, leads to

Fµ(z) =

(
z

µ

)α
e−

z
µ

∞∑
i=0

(z/µ)i

Γ(α + i+ 1).

Hence,

Hµ(z) = − 1

µΓ(α)

1∑∞
i=0

(z/µ)i

Γ(α+i+1)

,

which is monotonically increasing in z > 0.

Hierarchical-Bayesian Modeling

In this hierarchical-modelling approach (Rouder & Lu, 2005), response

frequencies were directly used instead of estimated conditional probabilities.

Individual rank 2 response frequencies (subscripts m and n denoting experiment

and participant respectively) for weak and strong items (dwm,n and dsm,n,

respectively) among the total of non-rank 2 responses (Nw
m,n and N s

m,n) were

modeled with a binomial model:

dwm,n ∼ Binomial(θwm,n, N
w
m,n),

dsm,n ∼ Binomial(θsm,n, N
s
m,n).

Rate parameters θwm,n and θsm,n were a function of the following terms:

θwm,n = Φ(φm,n),

θsm,n = Φ(φm,n + αm,n),

with φm,n representing the individual rate parameter (on a probit scale) and αm,n

the rate increment for strong items (also on a probit scale). These two parameters
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are distributed as:

φm,n ∼ Normal(µφm , σ
2
φm),

αm,n ∼ Normal(µαm , σ
2
αm).

Parameter µφm denotes the group average rate in Experiment m while parameter

µαm = (δ + βm)× σαm denotes the average difference in the rates for weak and old

items in Experiment m. Parameter δ corresponds to the overall effect size, βm to a

contrast-coded experiment factor (β = β1 = −β2), and σαm to the variance of the

difference between weak and strong items.

The following set of priors was used (Wagenmakers, Lodewyckx, Kuriyal,

and Grasman, 2010):

β ∼ Normal(0, 1),

δ ∼ Normal(0, 1),

µφm ∼ Normal(0, 10),

σαm ∼ Uniform(0, 10),

σφm ∼ Uniform(0, 10),

The estimation of posterior estimates was made with JAGS (Plummer,

2003) and R (R Core Team, 2013). Posterior samples were obtained from five

Markov chain Monte Carlo chains with 250,000 iterations each. From each chain,

the first 50,000 samples were removed and only every 20th subsequent sample

retained for analysis. Statistic R̂ (Gelman, Carlin, Stern, & Rubin, 2004, Chap.

11), which compares within-chain variance to between-chain variance indicated that

the samples successfully converged (all R̂ < 1.01).

The Bayes Factor was calculated using the Savage-Dickey ratio method,

which compares the height of the prior and posterior densities of δ at the point

δ = 0 (for an introduction, see Wagenmakers et al., 2010; see also Gelfand & Smith,

1990; Morey, Rouder, Pratte, & Speckman, 2011). The height of the prior was

rescaled to conform to the order-restricted hypothesis δ > 0.
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