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Supplemental Materials 

Here we present two analyses of the Altmann and Trafton (2015) model (see also 

Altmann, Trafton, & Hambrick, in press) that produced the theoretical values in Figure 4. First, 

we map the formalisms that explain our data to those of a model of temporal distinctiveness 

(Brown, Neath, & Chater, 2007). The Altmann and Trafton model is grounded in decay theory, 

which is generally viewed as a competitor to distinctiveness theory (e.g., Brown et al., 2007; 

Crowder, 1976; Lewandowsky, Oberauer, & Brown, 2009), but, as we show here, a fleshed-out 

decay theory is formally identical to distinctiveness theory for the special case in which the 

retrieval target is the most recent item.  

Second, we evaluate the model’s goodness-of-fit using an inferential test developed by 

Altmann and Trafton (2015). The main result of this analysis is that the model provides a zero-

parameter fit of the session effect on post-interruption sequence errors. That is, the full 

magnitude of the increase in post-interruption sequence errors between sessions is accounted for 

by the decrease in baseline response time (RT) between sessions, to within a level of tolerance 

determined by the error variance in the data. 

The model and our data are posted online at:  msu.edu/~ema/practice/  

Mapping the Model to Temporal Distinctiveness 

The model comprises closed-form equations that map the ages of memory codes to their 

activation levels, activation levels to retrieval probabilities, and retrieval probabilities to 

sequence error probabilities. Here we focus on the equations that link the decrease in baseline RT 

between sessions to the increase in post-interruption sequence errors between sessions.  

The activation of predd, the memory for the dth “predecessor” (i.e., preceding trial), is 



 

 
 

2 

  Ad = −0.5ln(td ) ,       (S1) 

where 0.5 is the decay rate and td is the age of predd. The age td, computed via Equation A2 of 

Altmann and Trafton (2015) with L = 0, factors in the average RT on baseline trials, which 

corresponds to the interpresentation interval in the ratio rule.  

The probability ud of retrieving predd is  

 ud =
e
Ad
s

e
Ai
s

i=1

D
∑

,        (S2) 

where A is the activation level from Equation S1, s governs activation noise, and D is the total 

number of steps in the procedure (7, for UNRAVEL). Equations S1 and S2 are taken from the 

ACT-R cognitive theory (Anderson & Lebiere, 1998), with Equation S1 representing decay and 

Equation S2 representing one form of interference.  

Equations S1 and S2 are isomorphic to Equations 1 and 5 of the SIMPLE model of 

temporal distinctiveness (Brown et al., 2007), for the case in which the retrieval target is the 

most recent item. That case applies here, because the target is pred1, the memory for the most 

recently performed trial.  

The mapping is as follows. Equation S2 represents absolute activation values, but 

SIMPLE emphasizes differences on a psychological dimension. Transformed to represent 

differences in activation between target pred1 and distractors predd, Equation S2 becomes, 

 ud =
e
Ad−A1
s

e
Ai−A1
s

i=1

D
∑

.       (S3) 

In place of activation values A, SIMPLE specifies memory locations M. Both quantities are log-

transformations of time that give more weight to a difference in age of neighboring items the 
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more recent the items are. The difference is that A is a negative log transform (activation 

decreases with time) modified by a decay rate, whereas M is a positive log transform (distance of 

a memory location from the present increases with time). Accordingly, Equation S3 can be 

transformed to represent memory locations with the substitution A = −0.5M , producing 

 ud =
ηd,1

ηi,1i=1

D
∑

,        (S4) 

where  

 ηi,1 = e
−0.5
s

Mi−M1( )
.       (S5) 

The retrieval target pred1 occupies the most recent memory location, M1. Because all other items 

are located further away than M1, the difference (Mi −M1)  in Equation S5 is always nonnegative 

and is therefore equivalent to Mi −M1 . With this substitution, Equation S5 is equivalent to 

SIMPLE Equation 1 and Equation S4 is equivalent to SIMPLE Equation 5, for the case in which 

the retrieval target is the most recent item. This mapping suggests that decay and temporal 

distinctiveness have more in common conceptually than has been acknowledged to date (e.g., 

Lewandowsky et al., 2009).  

Testing Model Fit 

As in Altmann and Trafton (2015) and Altmann et al. (in press), we fit the model to each 

participant’s data using maximum likelihood estimation. Here we estimated 5 free parameters to 

maximize the sum of log likelihoods across the 72 cells of a 2 (session) x 6 (offset) x 6 (position) 

design. Table S1 shows mean estimated parameter values, along with means for the bound 

parameters R (empirical RT) and I (empirical interruption duration). Altmann and Trafton 

describe the functional role of each parameter in detail.  
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Of relevance here is that the model offers a zero-parameter account of the increase in 

post-interruption sequence errors between sessions. Two model parameters (R and I) vary 

between sessions, but both are bound by empirical data, and we claim that together they fully 

account for the increase in sequence errors. This claim rests on an inferential goodness-of-fit test 

showing that the model leaves no experimental variance in the sequence error data unexplained. 

The test, developed by Altmann and Trafton (2015), involves augmenting the analysis of 

variance (ANOVA) for the experimental design with an additional within-participants factor 

called fit, with levels empirical, meaning the sequence errors generated by each participant, and 

theoretical, meaning the corresponding model values. The test produces one F-ratio for each 

interaction of the fit factor with a contrast (main effect or interaction) in the experimental design. 

A significant F indicates that model-data deviations for that particular contrast differed from 0, 

implying that the model was not able to accommodate that particular experimental effect.  

Table S2 shows the test results. Columns 1…7 are the results of a 2 (session) x 6 

(position) x 6 (offset) ANOVA on empirical sequence error proportions, and columns 8 and 9 

constitute the goodness-of-fit test. Each F-ratio in column 9 is formed from the effect term in 

column 8 and the empirical error term in column 5. A significant F in column 9 would mean that 

the difference between empirical and theoretical means is large relative to the error term. No F in 

column 9 was greater than 1. In particular, F < 1 for all contrasts involving session, licensing the 

conclusion that the model leaves no systematic variance due to session unexplained. This full 

accounting of the experimental results, mediated by the memory mechanisms represented in the 

model, supports a causal interpretation linking the session effect on RT to the session effect on 

post-interruption sequence errors.  
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That said, as with any ANOVA, this test is sensitive to heterogeneity of variance—which 

we have in our data, with the error term for the session effect being greater on the post-

interruption trial than on baseline trials (compare the error bars for Position 1 versus Positions 

2…6 in the top panel of Figure 3). The goodness-of-fit test reported above was therefore more 

powerful for the post-interruption trial than it would have been had error variance not been 

pooled across all levels of position. By the same token, the test was less powerful for baseline 

trials than it would have been without pooling—and, indeed, the test failed to detect the fact that 

the model does not account for the session effect on baseline sequence errors (compare the 

bottom panels of Figure 4). 

When we tested goodness-of-fit on baseline trials alone, excluding the post-interruption 

trial and its associated error variance, the Fit x Session interaction was, in fact, marginally 

significant, F(1, 205) = 3.02, p = .084, indicating that the model did not track the session effect. 

We leave it to future work to diagnose the exact problem with the model’s account of baseline 

performance. For present purposes, the fact that the test could detect the misfit for baseline 

performance with an appropriate error term builds confidence that the null results in column 9 of 

Table S2 reflect the model’s accuracy as an account of post-interruption performance, which is 

the focus of our study.  
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Table S1: Model Parameter Values and Descriptions. 
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Table S2: Results of a 2 (Session) x 6 (Position) x 6 (Offset) Analysis of Variance for Sequence 

Errors (Columns 1-7) and the Corresponding Model Goodness-of-Fit Test (Columns 8-9). 

 
1 2 3 4 5 6 7 8 9 

       Contrast x Fit 

           
Contrast dfeffect MSeffect dferror MSerror   F p MSeffect F 

         Session (S) 1 1.66E-07 205 4.05E-04 0.00 .984 2.67E-04 0.66 
Position (P) 5 1.57E-01 1025 5.48E-04 286.02 .000 3.40E-05 0.06 
Offset (O) 5 4.01E-02 1025 4.28E-04 93.76 .000 3.01E-04 0.70 
S x P 5 1.45E-03 1025 2.34E-04 6.20 .000 1.54E-04 0.66 
S x O 5 4.67E-04 1025 1.99E-04 2.35 .039 5.10E-05 0.26 
P x O 25 1.23E-02 5125 2.06E-04 59.90 .000 1.69E-04 0.82 
S x P x O 25 5.04E-04 5125 1.85E-04 2.72 .000 8.00E-05 0.43 

 

 


