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Examples of visual displays 

The following are some displays exemplifying the possible combinations among training stimuli, 
colored backgrounds, and report buttons. Each of the eight training stimuli was equally likely to 
appear on all six backgrounds. Both background color and report buttons were unique to each of 
the six types of problems. As described in the text, the assignments differed from bird to bird. 
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Mixed-effects models information. 

 All mixed-effects models were fitted in R, using the lme4 package (https://cran.r-
project.org/web/packages/lme4). Mixed-effect models are a type of hierarchical regression that 
allows the estimation of unbiased coefficients, by means of capturing the variance produced by 
nested factors (in this case, the variance produced by individual differences among our pigeons). 

 Although the fixed-effects structure of the model is determined by the experimental 
design itself, the random-effects structure that captures the nested variance needs to be identified 
through model selection. Model selection was performed in steps. Starting with a model that 
included pigeon intercepts, we compared models that had random-effects structures of increasing 
complexity. At each step, the feasibility of the more complex model was compared to its simpler 
counterpart by using χ2 tests. If the χ2 was significant, then the random-effect was kept in the 
final model’s random-effect structure. 

Logistic mixed-effects model for the Concurrent Phase data: 

 This model included the natural logarithm of session (1 to 180, centered) and structural 
ratio (centered) as fixed effects. Furthermore, the model included a random pigeon intercept and 
random pigeon slopes for the natural logarithm of session, structural ratio, and their interaction. 

Logistic mixed-effects model for the Successive Phase data: 

 This model included the natural logarithm of session (1 to 30, centered) and structural 
ratio (centered) as fixed effects. Furthermore, the model included a random pigeon intercept and 
random pigeon slopes for the structural ratio and the Session × Structural Ratio interaction. 
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Individual pigeons’ percentage of errors as a function of each task’s structural ratio. 

The figure below depicts each pigeon’s overall percentage of errors in each task (1 to 6 in the 
concurrent phase, and 1, 2, 4, and 6 in the successive phase). As denoted in the figure, both 
17B’s and 81B’s errors were linearly related to the structural ratio of each task. In contrast, 
42Y’s errors in the Type 2 task were almost as low as those in the Type 4 task. 
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Phi coefficients between dimensional values and category choice. 

The figures below depict each pigeon’s mean absolute Phi coefficient between the values of each 
dimension and their category choices. In this setting, the absolute Phi coefficient indicates the 
extent to which the pigeons categorized the training stimuli on the basis of each dimension’s 
values, with a Phi of 1 indicating a perfect relation between dimensional values and category 
choice (i.e., perfect unidimensional strategy) and 0 indicating no relation between them. Note 
that under perfect performance, only Type 1 will show a Phi of 1 along a single dimension. Due 
to their nonlinear structures, perfect performance in Types 2 and 6 will show a Phi of 0 along all 
three dimensions. Finally, perfect performance in Types 3, 4, and 5 will show a Phi of 0.5 along 
2, 3, and 1 of the dimensions, respectively. 

Concurrent phase: 
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Successive phase: 
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ALCOVE’s fitting process 

 The comparison of pigeons’ performance across the concurrent and successive phases 
suggested that concurrent programming did not materially alter our pigeons’ performance on 
each task when trained separately. Therefore, we trained ALCOVE with one problem at a time. 
In doing so, the attentional weights for each dimension (abrightness, aorinetation, asize) were all set to 1 
before each task was trained (simulations that trained ALCOVE with all six tasks concurrently 
did not meaningfully alter the model’s behavior). For all simulations, the dimensional values 
along each of the three dimensions comprising the stimuli were encoded as 0 or 1. Thus, 
ALCOVE’s input layer contained three nodes. Except for “ALCOVE + dimensional 
discriminability” (see ahead), the exemplars in the hidden layer were activated as follows: 
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where 𝑎"#$%is the activation of hidden node (or exemplar) j, αi is the attentional weight for 
dimension i (brightness, orientation, or size, in the present case), ℎ"$ is the dimensional value 
along dimension i for the hidden exemplar j, c is a global sensitivity parameter, and 𝑎$$2 is the 
dimensional value along dimension i for the presented stimulus. ALCOVE’s hidden layer 
contained 8 nodes, after the number of unique stimuli presented in each task. For the current set 
of simulations, we fixed both q and r at 1 (i.e., city-block metric). ALCOVE’s output category 
nodes are activated as follows: 

𝑎89:; =.𝑤8"𝑎"#$%
#$%
"

 

where 𝑎89:; is the activation of category node k, and 𝑤8" is the response weight between hidden 
node j and category node k. Finally, the activation of category nodes is mapped onto response 
probabilities as follows: 

𝑃(𝐾) = 	 exp	(𝜙𝑎C9:;) ∑ exp	(𝜙𝑎89:;9:;
8
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where P(K) is the probability of choosing category K, and 𝜙 is a parameter that scales the 
differences in the activation of the output nodes (i.e., controlling how deterministic responding 
is). 
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 The “ALCOVE + dimensional learning” model expanded ALCOVE’s single attentional 
learning rate parameter (𝜆G) into three dimension-specific attentional learning rates (λbrightness, 
λorientation, λsize) in the equation determining attentional learning, as follows: 

∆𝛼$ = −𝜆$.I.(𝑡8 − 𝑎89:;)𝑤8
9:;
8
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where, λi is the attentional learning rate for dimension i, tk is the teacher value for node k, 𝑎89:; is 
the activation of output node k, and wk is the response weight for node k. 

 The “ALCOVE + dimensional discriminability” model expanded ALCOVE’s single 
sensitivity parameter into three dimension-specific sensitivity parameters (cbrightness, corientation, 
csize) in the equation determining the activation of hidden nodes, as follows: 
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where 𝑐$is the sensitivity parameter for dimension i. Additionally, the equation determining 
attentional learning was modified as follows: 

 	

∆𝛼$ = −𝜆M.I.(𝑡8 − 𝑎89:;)𝑤8
9:;
8
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where 𝜆M is a global attentional learning rate. 

 Each model was coded in MATLAB, and its parameters were optimized using a genetic 
algorithm (from MATLAB’s global optimization toolbox). The parameters of each model were 
optimized to minimize the negative log likelihood of the model, given an individual pigeon’s 
responses, on a trial-by-trial basis. 
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Learning curves for concurrent and successive phases 

The following figure depicts the percentage of errors per task for each pigeon, across session 
blocks in the concurrent and successive phases (left and right columns, respectively). Note that 
no pigeon showed a sudden decrease in the percentage of errors on either the Type 1 task or the 
Type 2 task. Each bird name also denotes (in parentheses) the relevant dimension to determine 
category membership in the Type 1 task.
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