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Model fitting
All models fitted to the data from the delayed-estimation task consisted of two parts: our proposed model of confidence and an existing visual working memory (VWM) encoding model. We denote the parameter vector related to the encoding model by θe (which varies across models) and that related to the confidence model by θc=(a,b,σmc). We used maximum-likelihood estimation to fit the parameters to subject data. The log likelihood of a parameter combination is the logarithm of the probability of the entirety of a subjects’ responses given those parameters,

	,
where n is the number of trials, ε=(ε1, …, εn) the estimation errors and γ=(γ1, …, γn) the confidence reports. We evaluated the likelihood function through Monte Carlo simulations, with 2,500 samples per set size. We used the following custom-made evolutionary algorithm to find the maximum of the likelihood function:
1. Draw a population of M=1500 parameter vectors from uniform distributions. Set generation count i to 1.
2. Make copies of the parameter vectors of the current population and add noise to the copies. The total size of the population is now temporarily 2M.
3. Compute the “fitness” (log likelihood) of each parameter vector in the population.
4. If M>100, decrease M by 2%.
5. Only keep the M fittest parameter vectors.
6. Increase i with 1. If i < 500, go back to Step 2. Otherwise, stop.
After the algorithm terminated, we used the log likelihood of the parameters of the fittest individual in the final population as an estimate of the maximum parameter log likelihood. We validated the accuracy of this method in earlier work (van den Berg, Awh, & Ma, 2014). 

Derivation of the likelihood function in the neural model


[bookmark: MTBlankEqn]When we defined Jneural,1, we made use of the fact that population activity r encodes a Von Mises likelihood function over stimulus s, i.e., . Here, we provide a derivation of this likelihood function. The neurons in our model have tuning functions of the form , where s is the stimulus value, θi is the preferred orientation of the i-th cell, g is the neural gain, and κtc controls the width of the tuning curve. Assuming that spike counts r=(ri, …, rM) are corrupted by Poisson noise, the log likelihood function over the stimulus value is written as


	

When the neurons have broad, overlapping tuning curves that cover the entire stimulus domain, the second term is a constant. The third term is also a constant, as it does not depend on s. We thus obtain

	
where constant log(g) is absorbed by constant C. Finally, we can rewrite this into the following form,

	
with

	
From this, it follows that p(r|s) is proportional to a Von Mises distribution with μlh and κlh.

Implementation of factorial set of working memory encoding models 
There are several ways to formally specify the 18 encoding models listed in Table 2. One way is to provide for each model the postulated distributions of precision, p(J|N,θe), where J denotes encoding precision, N the set size, and θe the encoding model’s parameters. However, for many of the models, the mathematical expression of this distribution is quite complex and not very intuitive. Therefore, we choose an alternative way to specify the models, namely by providing pseudo-code of how precision values are generated in each model. This is not only more intuitive, it is also more useful for readers who wish to implement the models. Another advantage is that it allows us to describe all models in a compact way. Readers who prefer to see the mathematical expressions can consult our previous work, where we provided a detailed mathematical description of a very similar set of models (van den Berg et al., 2014).

Factor 1: number of encoded items 
The first factor in our model space determines how many items will be encoded in memory. We consider three possibilities: all items are encoded (“A”), there is a limit K on the number of items that can be encoded (“F”), or the number of encoded items is drawn from a Poisson distribution with a mean Kmean (“P”). The first step in generating a precision value is to determine the total number of memorized items on a trial, which we denote by M:

	case A   % all items encoded
    M = N
case F   % a maximum of K items are encoded
    M = min(K,N)
case P   % Poisson-distributed number of items encoded 
    K = PoissonRandom(Kmean) % number of slots on this trial
    M = min(K,N)



Next, we can compute the probability that an item is encoded and use this to make a stochastic choice to determine whether or not the target item is remembered on the current trial. If not, its precision is set to 0 and we are done. If, on the other hand, the item is encoded, its precision depends on Factors 2 and 3, which are described next.

	p_encode = min(M/N,1)
if rand(0,1) > p_encode
    J = 0
    return
end



Factor 2: discreteness of precision
Given the number of encoded items, the second factor determines the (mean) precision with which a memorized item is stored. In our model space, we consider three possibilities: precision is a continuous quantity (“C”), it is a discrete quantity and distributed as evenly as possible across encoded items (“Qe”), or it is a discrete quantity and unevenly distributed across encoded items (“Qu”). 

	As in previous work (Keshvari, van den Berg, & Ma, 2012, 2013; van den Berg et al., 2014; van den Berg, Shin, Chou, George, & Ma, 2012), when precision is modeled as a continuous quantity, we assume that the (mean) precision per item depends on the total available precision and the number of encoded items through a power law, , where Jtotal and α are free parameters:

	case C   % Resource is a continuous quantity
    Jbar = Jtotal*M^alpha



In Qe-models, precision is quantized into Q chunks that are distributed as evenly as possible across the M encoded items. The (mean) precision with which an item is encoded is obtained by first determining how many chunks it is assigned and then multiplying this by the amount of precision per chunk, J1, 


	case Qe  % Resource comes in Q chunks that are evenly distributed
    p_high = mod(Q,M)/M
    if rand(0,1)<p_high
        nchunk = floor(Q/M)+1
    else
        nchunk = floor(Q/M)
    end
    Jbar = nchunk*J1



In Qu-models, precision is quantized into Q chunks that are randomly assigned to the M encoded items. In this case, the number of chunks assigned to an item follows a binomial distribution:

	case Qu  % Resource comes in Q chunks that are randomly distributed
    nchunk = binornd(Q,1/M)
    Jbar = nchunk*J1


    
Factor 3: variability


The third factor determines the amount of variability in precision across items. We consider two possibilities: precision is equal across items (“EP”), or it varies according to a gamma distribution (“VP”). In the former case, J is equal to the value of computed above. In the latter case, we draw the actual value of J from a Gamma distribution with mean  and shape parameter τ:

	case EP  % No variability
    J = Jbar
case VP  % Draw from Gamma pdf with mean Jbar and shape parameter τ
    J = GammaRandom(Jbar,tau)
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