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Supplementary Materials

MFA simulation details

To simulate the standard signal detection theory (SDT; Swets & Green, 1963) model,
we allowed two parameters to vary: d′ and C. The noise and signal-plus-noise distributions
were both assumed to be Gaussian with a standard deviation of 1. The mean of the noise
distribution was fixed at 0, with the d′ parameter being the mean of the signal-plus-
noise distribution, and therefore, the difference in the means of the distributions. The C
parameter was specified as the offset from d′

2 (i.e. the mid-point between the means of the
distributions), so that the absolute criterion was given by the sum of the C parameter and
d′

2 . Specifying the C parameter as an absolute value did not change the pattern of changes
when using the MFA approach. To create the parameter space required to create the data
space for MFA analysis, d′ parameter values varied from 0 to 3.25 in 0.05 intervals, and
C parameter values varied from -1.55 to 1.55 in 0.05 intervals, creating a total of 4,158
parameter combinations. For our manipulations of the parameter ranges, the bigger d′

range varied from 0 to 20.25 in 0.05 intervals, the bigger C range varied from -1.55 to 10.55
in 0.05 intervals, the smaller d′ range varied from 0.5 to 1.25 in 0.05 intervals, and the
smaller C range varied from -0.25 to 0.25 in 0.05 intervals.

To simulate unequal variance signal detection theory (UV-SDT), all calculations re-
mained identical, except that we allowed the standard deviation of the signal-plus-noise
distribution to vary. The standard deviation of the signal-plus-noise distribution varied
in separate intervals when greater than and smaller than the noise distribution’s standard
deviation, in order to maintain an equal ratio. When greater than the noise distribution’s
standard deviation, the standard deviation varied from 1 to 3 in intervals of .1, and when
smaller than the noise distribution’s standard deviation, the inverse of these values were
used. With 41 different standard deviation parameter possibilities, there were a total of
170,478 parameter combinations.

The second set of simulations involved three models of perception. The Linear Integra-
tion Model (LIM; Anderson, 1981), the Fuzzy Logic Model of Perception (FLMP; Oden
& Massaro, 1978), and a perceptual parameterization of the SDT model (Green & Swets,
1966). The functional forms of these models were identical to those used by Myung and
Pitt (1997), which were:
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LIM :

pi,j =
θi + λj

2
FLMP :

pi,j =
θiλj

θiλj + (1− θi)(1− λj)
SDT :

pi,j = Φ[si,j

√
|Φ−1(θ)2 + vi,jΦ−1(λ)2|]

Here, the task of interest was a categorization task with two response options, and
two factors, the first with levels i = 1,..,n, and the second with levels j = 1,...,n. The θ
and λ parameters represent the level of support for response option A, given the stimulus
information provided by the first and second factors, respectively, both being bounded
between 0 and 1. For the SDT model, Φ() is the standard cumulative normal density
function, si,j is the sign (+/- 1) of Φ−1(θi) + Φ−1(λ), and vi,j is the sign (+/- 1) of
Φ−1(θi)Φ

−1(λ).
For the simulations in our 2x2 design there were 4 dependent variables, being the

probability of choosing response option A for each combination of the levels of the two
factors. Both θ and λ for each factor level varied between 0 and 0.99, in 11 equally spaced
values. Therefore, the total number of parameter combinations was 14,641 (114).

Transformations

In order to test the stability of the MFA metric, we subjected the simulated data space
to a series of common transformations. Simulated data were transformed after generation;
there was no transformation applied to the parameter space. After performing each trans-
formation the data were normalized relative to their maximum, to ensure data remained
within the 0-1 range, as required for MFA. Failing to perform such a normalization pro-
cedure only resulted in more extreme and variable results. Any data that resulted in an
undefined value due to the transformations were removed.

For the logarithmic transformation we took the natural logarithm of the data: x 7→
ln(x). For the exponential transform we used x 7→ ex. For the logit transformation:
x 7→ log x

1−x . For the probit transformation: x 7→ Φ−1(x), where Φ−1 is the inverse
cumulative normal density function.

MFA calculation

All MFA complexity computations were based on the “R” (R Core Team, 2015) code
provided by Veksler et al. (2015). We also wrote and tested an equivalent MATLAB
version of the code, to ensure the reliability of our findings. All MFA grid sizes were,
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again, directly based on the provided code, and thus adhered to the suggested estimation
procedure proposed by the authors.

NML simulation details

To assess the complexity metric provided by normalized maximum likelihood, we treated
hit-rate and false-alarm-rate as continuous variables, and used the Monte Carlo integration
method of Klauer and Kellen (2015), with 500 samples, to estimate the complexity metric,
which involves integrating over the maximum likelihood values of all possible data values
(i.e., the data space).

To estimate the maximum likelihood that the model could achieve for each sample of
the data space, we used the differential evolution algorithm with 300 iterations, 50 particles,
and a mutation factor of 0.0001. To improve the search efficiency of the algorithm, the
parameters were bounded between reasonable values, being 0 and 5 for d′, -2 and 2 for C,
and 0 and 5 for the standard deviation of the signal-and-noise distribution, for UV-SDT.

The probability density function was solved using closed-form analytic solutions, with
the predicted hit-rate and false-alarm rate being found through the same method as the
MFA simulations. From there, the likelihood of the hit-rate and false-alarm-rate given
the predicted rates was that of a joint binomial distribution, with no correlation between
parameters.


