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Supplementary material: Details of the simulation setup

The description of the simulation study is divided into three steps: (1) simulation conditions, (2)

generating the simulation data and (3) model estimation and evaluation. An overview of these three

steps of the simulation is given in Figure 1. The programming language R was used for all statistical

simulations and analyses.

Step 1: Simulation conditions. We varied three factors: 1) the generating function of β0,t and

β1,t (invariant, linear, cosine, random walk and stepwise); 2) the maximum absolute value of the time-

varying parameters (low or high); and 3) the sample size (30, 60, 100, 200, 400, 1000). This resulted in

60 (5x2x6) different conditions. A total of R = 1000 replications of each condition were simulated. We

elaborate on the factors below.

1. Parameter generating functions. The intercept (β0,t) and autoregressive parameter (β1,t) of the

TV-AR model were generated with five different types of functions, three of them gradually chang-

ing and two non-gradually changing. The function generating the attractor (µt) was indirectly

calculated afterwards, see Figure 1.



The first of the gradually changing functions is a time invariant function, meaning that the β0,t

and β1,t do not change over time and could therefore also be modeled with a standard AR. The

second is a linear function. In this case β0,t and β1,t increase over time. The third of the gradually

changing functions is a cosine function, where β0,t and β1,t first increase, then decrease and in the

end increase again. The fourth and fifth functions are non-gradually changing, and thus violate

the assumption of gradual change of the TV-AR model. The fourth function is a random walk

function, in which β0,t and β1,t are generated in such a way that they show random and fast change

that can also result in an increase or decrease in the function over a period of time. The fifth

function is a stepwise function, meaning that β0,t and β1,t have for a certain period of time a

constant value, which then changes abruptly to a higher value.

2. Low and high maximum values. Besides the different generating functions, we also compared low

and high value settings for the maximum absolute values possible for the time-varying parameters.

The maximum absolute values for the low condition for β0,t (the intercept) were 1 and for the high

condition 1.5. Thus, for example, the peak values for the cosine function were 1 and -1 in the low

condition (and 1.5 and -1.5 in the high condition). The maximum absolute value for the low and

high condition for β1,t (the autoregressive parameter) was set to 0.2 and 0.5, respectively (based

on values typically found in psychological studies, see e.g., Rovine & Walls, 2006). Whereas the

invariant, linear, cosine and stepwise function are by definition bounded, a random walk is not, so

in order to have a bounded random walk with the above mentioned maximum absolute values we

used an adapted version of the formula ρat/max0≤j≤t |aj|, based on Giraitis, Kapetanios, and Yates

(2014). This formula guarantees that the random walk will be bounded between the pre-specified

−ρ and ρ. In this formula, a is defined as follows: at − at−1 = ηt. Here, the difference between at

and at−1 equals ηt, a random number drawn from an independent identically normal distribution.

At every time point ρ is multiplied with at and then divided by the maximum absolute value of a

up to current time point t.

3. Sample size. Furthermore, sample sizes (the number of time points, n) were chosen to be compa-

rable to those possible in psychological research: 30, 60, 100, 200, 400 and 1000. This will shed

light on the amount of time points needed in order for the TV-AR to give a reliable recovery of

the “true” underlying model.1

1As pointed out by an anonymous reviewer, the local range of change of the cosine function is dependent upon sample
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Step 2: Generating the simulation data. To generate the simulation data, we used the

TV-AR formula introduced in section 3: yt = β0,t + β1,tyt−1 + εt (see also step 2 in Figure 1). The

time-varying intercept β0,t and the time-varying autoregressive parameter β1,t can be generated after

the parameter generating function, the maximum absolute value of the parameters and the sample size

have been set. The residuals εt are a white noise process. This is simulated by drawing n times (with

n being the number of time points) randomly from a standard normal distribution N (0, 1). Since the

model is an autoregressive model with a lagged variable, we had to pre-specify the zeroth observation

(y0), which we drew from a stationary marginal normal distribution:

N (
β0

1− β1
,

σ2
ε

1− β2
1,t

). (1)

Marginal means here that the time point is not conditioned on the previous time point (see also

the Appendix, the R-code). Now all further time points of yt can be simulated. Note that the generated

time series, as can been seen in Figure 1, follows the trajectory of the attractor (µt).

Step 3: Estimation and evaluation. We used seven different settings for estimating β0,t and

β1,t
2: 1) a TV-AR model using the default setting (a thin plate regression spline basis using 10 basis

functions); 2) a TV-AR model with only a time-varying intercept and a time-invariant autoregressive

parameter using the default settings; 3) a TV-AR model with only a time-varying autoregressive param-

eter using the default settings; 4) a standard time-invariant AR model; and 5) a thin plate regression

spline basis using 30 basis functions.

Although 10 basis functions is the standard setting in the mgcv package, this might not always

be enough to capture the wiggliness of a function, especially when a function takes a lot of turns, as

is the case with for example the random walk function. Therefore, it is interesting to check whether

an increase in basis functions leads to better estimations. However, increasing the number of basis

functions requires that there is a large amount of time points. In this simulation, at least 400 time

points were needed for increasing the number of basis functions to 30. Thus, we could only compare the

difference between 10 and 30 basis functions for the sample sizes n = 400 and n = 1000 time points.

Note that sometimes with already 100 time points it is possible to estimate a TV-AR model with 30

basis functions. However, from 400 time points on, the TV-AR model with 30 basis functions could be

fitted for all 1000 replications, whereas with less than 400 time points this was not always the case.

size: there is a smaller rate of change for larger sample sizes.
2The attractor µt was again indirectly derived from the results of β0,t and β1,t (see Figure 1 step 3).
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To evaluate the global performance of the TV-AR model, we used the log of the median of the

mean squared errors (MSEs) of the R = 1000 replications per condition. The MSE for a single time-

varying parameter is defined as 1
n

∑n
t=1(θ̂t−θt)2, in which θ̂t stands for the estimated value at time point

t and θt for the true value at time point t. Any of the parameters β0,t, β1,t or µt can take the role of θt

and n stands for the number of time points. In addition, a coverage probability was calculated, which

is the proportion of time that the true value is captured by the constructed CIs.3

An example is given in step 3 of Figure 1. All parameters have been estimated with our TV-AR

model after the data were generated. The estimated values θ̂t and the true values θt of the parameters

are represented as the middle solid black and red lines respectively. In this figure, the black and red

solid line are close to each other, meaning that the model estimates had a low MSE value and the true

underlying function(s) could be estimated well. The estimated CIs corresponding to the dashed lines

show that almost everywhere the true values of the function are within these intervals, meaning that

also the coverage probability was very high and the TV-AR model could estimate the true underlying

model well.

Finally, we evaluated whether we could discriminate between a time-varying and time-invariant

model (models 1, 2, 3 and 4 of step 3). We used the AIC, BIC and GCV to select the best fitting

model for every replication. Next we calculated how often the correct model was selected by these fit

indices. For example, for the cosine generating function condition we calculated how often the BIC

correctly indicated that model 1, 2 or 3 (time-varying models) was the best fitting model versus model 4

(time-invariant model). In addition, the type I and type II errors were calculated. Finally, for both the

intercept and autoregressive parameter, if applicable, the effective degrees of freedom (edf) and p-values

were extracted.

3Although the CIs are given as output for the intercept and the autoregressive parameter, this is not the case for

the attractor, since this time-varying parameter is only estimated indirectly. Therefore, for the smooth function of the

attractor we calculated the CIs independently following the same procedures as in the mgcv package (see also the R-code).
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Figure 1. The simulation setup The simulation setup consists of three steps. Step 1 represents the simulation

conditions, step 2 the generation of the simulation data and step 3 the estimation and evaluation of the TV-AR

model.
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