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Appendix A
First-Order Autoregressive Structure Among Latent State Residual Variables

Steyer and Schmitt (1994) were among the first to propose the inclusion of an autoregres-
sive structure in LST models to capture stability beyond what can be accounted for by a
common trait factor. Cole, Martin, and Steiger (2005) examined the meaning of autore-
gressive structures in LST models in detail and noted that it is often appropriate to include
autoregressive effects between latent state residual variables to model short-term stability
or carry-over effects in these models. In a similar vein, Bollen and Curran (2004) presented
so-called autoregressive latent trajectory (ALT) models that include autoregressive paths
between observed variables in single-indicator LGC models. Murphy et al. (2011) recently
studied the meaning of autocorrelations in the SGM.

A first-order autoregressive structure implies a time-dependence among adjacent la-
tent state residuals, with an additional unpredictable error component δt:

ζt = βt(t−1)ζ(t−1) + δt, (A.1)

where βt(t−1) is a real constant and the δt variables have a mean of zero and are uncorrelated
with each other as well as with all other latent and error variables in the model. Given that
we assume a first-order autoregressive structure, the notation for the regression coefficient
may be simplified by defining:

βt ≡ βt(t−1). (A.2)

We illustrate a first-order autoregressive structure graphically for the SGM in Figure A1A,
the GSGM in Figure A1B, and the ISGM in Figure A1C.

Including first-order autoregressive effects among the latent state residual variables
relaxes the assumption that all of the across-time stability is entirely due to the trait and
trait-change process. Instead, part of the (short-term) stability can now be captured by
the autoregressive effects, accounting for the fact that adjacent measurements are often
more highly correlated than measurements that are further apart in time. In practical
applications, it is often common to assume time-invariance of the autoregressive effect.
This means that βt = βs = β is often assumed to hold for all s, t.
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Figure A1 . LST Models with First-order Autoregressive Structure Among Latent State
Residual Variables A: SGM Post-Transformation with a First-order Autoregressive Struc-
ture among Latent State Residual Factors. B: GSGM Post-transformation with a First-
order Autoregressive State Residual Structure. C: ISGM Post-transformation with First-
order Autoregressive State Residual Structure.
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Appendix B
Mean and Covariance Structure in the SGM, GSGM, and ISGM

SGM Mean and Covariance Structure

The combined equations for the SGM are given in Equation (13). Recognizing that
we set α1t = 0 and λ1t = γ1t = 1 to define the metric of the latent factors, it is sufficient to
work with only the final line of these equations. This is given by:

Yit = αit + λitξint + λit (t− 1) ξlin + λitζt + εit. (B.1)

Mean Structure. We derive the mean structure by substituting Equation (B.1)
into the expected value, and simplifying this expression according to the algebraic rules for
expected values as follows.

E (Yit) = E (αit + λitξint + λit (t− 1) ξlin + λitζt + εit)
= E (αit)︸ ︷︷ ︸

αit

+E (λitξint) + E (λit (t− 1) ξlin) + E (λitζt)︸ ︷︷ ︸
0

+E (εit)︸ ︷︷ ︸
0

= αit + λitE (ξint) + λit (t− 1)E (ξlin) .

Covariance Structure. First, we expand the covariance by substituting Equation
(B.1) into the covariance operator for Yit and Yjs:

cov (Yit, Yjs) = cov
(

αit + λitξint + λit (t− 1) ξlin + λitζt + εit,
αjs + λjsξint + λjs (s− 1) ξlin + λjsζs + εjs

)
.

Next, we expand using rules of covariance algebra (e.g., Kenny, 1979). This yields

cov (Yit, Yjs) = cov (αit, λjs (ξint + (s− 1) ξlin) + λjsζs + εjs)︸ ︷︷ ︸
0

+

cov (λit (ξint + (t− 1) ξlin) + λitζt + εit, αjs)︸ ︷︷ ︸
0

+

cov
(

λit (ξint + (t− 1) ξlin) + λitζt + εit,
λjs (ξint + (s− 1) ξlin) + λjsζs + εjs

)

= cov
(

λit (ξint + (t− 1) ξlin) + λitζt + εit,
λjs (ξint + (s− 1) ξlin) + λjsζs + εjs

)
.

The first two terms are zero because of the covariance rule cov (k,X) = 0 where k is a
constant. Next, we decompose the covariance according to covariance addition rules. In
this step, we separate the error terms εit and εjs.
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cov (Yit, Yjs) = cov
(

λit (ξint + (t− 1) ξlin) + λitζt + εit,
λjs (ξint + (s− 1) ξlin) + λjsζs + εjs

)
,

= cov
(
λit (ξint + (t− 1) ξlin) + λitζt + εit,
λjs (ξint + (s− 1) ξlin) + λjsζs

)
+

cov (λit (ξint + (t− 1) ξlin) + λitζt + εit, εjs) ,

= cov
(
λit (ξint + (t− 1) ξlin) + λitζt + εit,
λjs (ξint + (s− 1) ξlin) + λjsζs

)
+

cov (λit (ξint + (t− 1) ξlin) , εjs) +
cov (λitζt, εjs) + cov (εit, εjs) ,

= cov
(

λit (ξint + (t− 1) ξlin) + λitζt,
λjs (ξint + (s− 1) ξlin) + λjsζs

)
+

cov (εit, λjs (ξint + (s− 1) ξlin)) +
cov (λit (ξint + (t− 1) ξlin) , εjs) +
cov (εit, λjsζs) + cov (λitζt, εjs) +
cov (εit, εjs) .

The subsequent step focuses on expanding the first covariance term, the covariance between
the latent trait and state residual components.

cov (Yit, Yjs) = cov (λit (ξint + (t− 1) ξlin) , λjsζs) +
cov (λit (ξint + (t− 1) ξlin) , λjs (ξint + (s− 1) ξlin)) +
cov (λitζt, λjsζs) +
cov (εit, λjs (ξint + (s− 1) ξlin)) +
cov (λit (ξint + (t− 1) ξlin) , εjs) +
cov (εit, λjsζs) + cov (λitζt, εjs) +
cov (εit, εjs) .

The second term in this expression, which represents the covariance among the latent trait
variables is now expanded. At the same time, the constant terms λit, λjs, (t− 1), and
(s− 1) can be moved outside the covariance expression according to the rule cov (k ·X,Y ) =
k · cov (X,Y ) .
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cov (Yit, Yjs) = λitλjs cov ((ξint + (t− 1) ξlin) , ζs) +

λitλjs

 [(s− 1) + (t− 1)] cov (ξint, ξlin) +
(t− 1) (s− 1) var (ξlin) +

var (ξint)

+

λitλjs cov (ζt, ζs) +
λjs cov (εit, (ξint + (s− 1) ξlin)) +
λit cov ((ξint + (t− 1) ξlin) , εjs) +
λjs cov (εit, ζs) + λit cov (ζt, εjs) +
cov (εit, εjs) .

Finally, this expression is simplified because for this model, the following restrictions apply

cov (ξit, ζt)
cov (ξit, εit)
cov (ζt, εit)

 = 0 for all i, j, s, t, (B.2)

cov (ζt, ζs) =
{

var (ζt) when t = s,
0 otherwise, (B.3)

cov (εit, εjs) =
{

var (εit) when i = j, t = s,
0 otherwise. (B.4)

The resulting general covariance equation is thus:

cov (Yit, Yjs) = λitλjs

 [(s− 1) + (t− 1)] cov (ξint, ξlin) +
(t− 1) (s− 1) var (ξlin) +

var (ξint)

+

λitλjs cov (ζt, ζs) +
cov (εit, εjs) .

Note that the final two terms are zero except as given in Equations (B.3) and (B.4).

GSGM Mean and Covariance Structure

The combined equations for the GSGM are given in Equation (18). Recognizing that
we set α1t = 0 and λ1t = γ1t = 1, it is sufficient to work with only the final line of these
equations. Thus, the general equation for Yit is given by

Yit = αit + λitξint + λit (t− 1) ξlin + γitζt + εit. (B.5)

Mean Structure. We derive the mean structure by substituting Equation (B.5)
into the expected value operator, and simplifying this expression according to the algebraic
rules for expected values as follows.
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E (Yit) = E (αit + λitξint + λit (t− 1) ξlin + γitζt + εit)
= E (αit)︸ ︷︷ ︸

αit

+E (λitξint) + E (λit (t− 1) ξlin) + E (γitζt)︸ ︷︷ ︸
0

+E (εit)︸ ︷︷ ︸
0

= αit + λitE (ξint) + λit (t− 1)E (ξlin) .

Note that this is equivalent to the mean structure for the SGM, since neither the latent
state residual variable ζt nor the corresponding loading γit appears in the final simplified
equation.

Covariance Structure. We now derive the covariance structure in a similar way
to the SGM. First, we expand the covariance by substituting the above for Yit and Yjs:

cov (Yit, Yjs) = cov
(

αit + λitξint + λit (t− 1) ξlin + γitζt + εit,
αjs + λjsξint + λjs (s− 1) ξlin + γjsζs + εjs

)
.

Next, we expand according to the rules of covariance algebra. This yields

cov (Yit, Yjs) = cov (αit, λjs (ξint + (s− 1) ξlin) + γjsζs + εjs)︸ ︷︷ ︸
0

+

cov (λit (ξint + (t− 1) ξlin) + γitζt + εit, αjs)︸ ︷︷ ︸
0

+

cov
(

λit (ξint + (t− 1) ξlin) + γitζt + εit,
λjs (ξint + (s− 1) ξlin) + γjsζs + εjs

)

= cov
(

λit (ξint + (t− 1) ξlin) + γitζt + εit,
λjs (ξint + (s− 1) ξlin) + γjsζs + εjs

)
.

The first two terms are zero because of the covariance rule cov (k,X) = 0 where k is a
constant. Next, we decompose the covariance according to the rules of covariance addition.
In this step, we separate the error terms εit and εjs.
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cov (Yit, Yjs) = cov
(

λit (ξint + (t− 1) ξlin) + γitζt + εit,
λjs (ξint + (s− 1) ξlin) + γjsζs + εjs

)
,

= cov
(
λit (ξint + (t− 1) ξlin) + γitζt + εit,
λjs (ξint + (s− 1) ξlin) + γjsζs

)
+

cov (λit (ξint + (t− 1) ξlin) + γitζt + εit, εjs) ,

= cov
(
λit (ξint + (t− 1) ξlin) + γitζt + εit,
λjs (ξint + (s− 1) ξlin) + γjsζs

)
+

cov (λit (ξint + (t− 1) ξlin) , εjs) +
cov (γitζt, εjs) + cov (εit, εjs) ,

= cov
(

λit (ξint + (t− 1) ξlin) + γitζt,
λjs (ξint + (s− 1) ξlin) + γjsζs

)
+

cov (εit, λjs (ξint + (s− 1) ξlin)) +
cov (λit (ξint + (t− 1) ξlin) , εjs) +
cov (εit, γjsζs) + cov (γitζt, εjs) +
cov (εit, εjs) .

The subsequent step focuses on expanding the first covariance term, the covariance between
the latent trait and state residual components.

cov (Yit, Yjs) = cov (λit (ξint + (t− 1) ξlin) , γjsζs) +
cov (λit (ξint + (t− 1) ξlin) , λjs (ξint + (s− 1) ξlin)) +
cov (γitζt, γjsζs) +
cov (εit, λjs (ξint + (s− 1) ξlin)) +
cov (λit (ξint + (t− 1) ξlin) , εjs) +
cov (εit, γjsζs) + cov (γitζt, εjs) +
cov (εit, εjs) .

The second term in this expression, which represents the covariance among the latent
trait variables is now expanded. At the same time, the constant terms λit, λjs, γit, γjs,
(t− 1), and (s− 1) can be moved outside the covariance expression according to the rule
cov (k ·X,Y ) = k · cov (X,Y ) .
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cov (Yit, Yjs) = λitγjs cov (ξint + (t− 1) ξlin, ζs) +

λitλjs

 [(s− 1) + (t− 1)] cov (ξint, ξlin) +
(t− 1) (s− 1) var (ξlin) +

var (ξint)

+

γitγjs cov (ζt, ζs) +
λjs cov (εit, (ξint + (s− 1) ξlin)) +
λit cov ((ξint + (t− 1) ξlin) , εjs) +
γjs cov (εit, ζs) + γit cov (ζt, εjs) +
cov (εit, εjs) .

Finally, this expression is simplified because of the restrictions for this model, which are
listed in Equations (B.2), (B.3), and (B.4). The resulting general covariance equation for
the GSGM is thus:

cov (Yit, Yjs) = λitλjs

 [(s− 1) + (t− 1)] cov (ξint, ξlin) +
(t− 1) (s− 1) var (ξlin) +

var (ξint)

+

γitγjs cov (ζt, ζs) +
cov (εit, εjs) .

As before, the final two terms of this equation are zero except as given in Equations
(B.3) and (B.4).

ISGM Mean and Covariance Structure

The combined equations for the ISGM are given in Equation (23). Recognizing that
we set γ1t = 1 to define the metric of each ζt, it is sufficient to work with only the final line
of these equations. Thus, the general equation for Yit is given by:

Yit = αit + ξinti + (t− 1) ξlini + γitζt + εit. (B.6)

Mean Structure. We now derive the covariance structure in a similar way to the
SGM and GSGM. First, Equation (B.6) is substituted into the expected value operator, and
simplifying this expression according to the algebraic rules for expected values as follows.

E (Yit) = E (αit + ξinti + (t− 1) ξlini + γitζt + εit)
= E (αit)︸ ︷︷ ︸

αit

+E (ξinti) + E ((t− 1) ξlini) + E (γitζt)︸ ︷︷ ︸
0

+E (εit)︸ ︷︷ ︸
0

= αit + E (ξinti) + (t− 1)E (ξlini) .
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Covariance Structure. The covariance structure for the ISGM is derived in a like
manner by substituting Equation (B.6) for Yit and Yjs in the covariance operator:

cov (Yit, Yjs) = cov
(

ξinti + (t− 1) ξlini + γitζt + εit,
ξintj + (s− 1) ξlinj + γjsζs + εjs

)
.

Next, we expand according to the covariance algebra rule cov (X,Y + Z) = cov (X,Y ) +
cov (X,Z) . This is used to separate the error terms εit and εjs.

cov (Yit, Yjs) = cov
(

(ξinti + (t− 1) ξlini) + γitζt + εit,(
ξintj + (s− 1) ξlinj

)
+ γjsζs + εjs

)
,

= cov
(

(ξinti + (t− 1) ξlini) + γitζt + εit,(
ξintj + (s− 1) ξlinj

)
+ γjsζs

)
+

cov ((ξinti + (t− 1) ξlini) + γitζt + εit, εjs) ,

= cov
(

(ξinti + (t− 1) ξlini) + γitζt + εit,(
ξintj + (s− 1) ξlinj

)
+ γjsζs

)
+

cov (ξinti + (t− 1) ξlini , εjs) +
cov (γitζt, εjs) + cov (εit, εjs) ,

= cov
(

(ξinti + (t− 1) ξlini) + γitζt,(
ξintj + (s− 1) ξlinj

)
+ γjsζs

)
+

cov
(
εit,

(
ξintj + (s− 1) ξlinj

))
+

cov ((ξinti + (t− 1) ξlini) , εjs) +
cov (εit, γjsζs) + cov (γitζt, εjs) +
cov (εit, εjs) .

The subsequent step focuses on expanding the first covariance term, the covariance between
the latent trait and state residual components.

cov (Yit, Yjs) = cov (ξinti + (t− 1) ξlini , γjsζs) +

cov
(
ξinti + (t− 1) ξlini , ξintj + (s− 1) ξlinj

)
+

cov (γitζt, γjsζs) +

cov
(
εit, ξintj + (s− 1) ξlinj

)
+

cov (ξinti + (t− 1) ξlini , εjs) +
cov (εit, γjsζs) + cov (γitζt, εjs) +
cov (εit, εjs) .

The second term in this expression, which represents the covariance among the latent trait
variables is now expanded. At the same time, the constant terms γit, γjs, (t− 1), and
(s− 1) can be moved outside the covariance expression according to the rule cov (k ·X,Y ) =
k · cov (X,Y ) .
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cov (Yit, Yjs) = γjs cov (ξinti + (t− 1) ξlini , ζs) +
(t− 1) cov

(
ξintj , ξlini

)
+

(s− 1) cov
(
ξinti , ξlinj

)
+

(t− 1) (s− 1) cov
(
ξlini , ξlinj

)
+

cov
(
ξinti , ξintj

)

+

γitγjs cov (ζt, ζs) +

cov
(
εit, ξintj + (s− 1) ξlinj

)
+

cov (ξinti + (t− 1) ξlini , εjs) +
γjs cov (εit, ζs) + γit cov (ζt, εjs) +
cov (εit, εjs) .

Finally, this expression is simplified because for this model, the following restrictions apply:

cov (ξit, ζs) = cov (ξit, εjs) = cov (ζs, εit) = 0,

for all i, j, s, and t. The resulting general covariance equation is thus:

cov (Yit, Yjs) =


(t− 1) cov

(
ξintj , ξlini

)
+

(s− 1) cov
(
ξinti , ξlinj

)
+

(t− 1) (s− 1) cov
(
ξlini , ξlinj

)
+

cov
(
ξinti , ξintj

)

+

γitγjs cov (ζt, ζs) +
cov (εit, εjs) .

As before, the final two terms of this equation are zero except as given in Equations (B.3)
and (B.4).

Autoregressive (AR) Models

In all three instances, the derivation of the autoregressive (AR) model begins where
the corresponding non-AR model left off. This is accomplished by substituting the quantity
βtζt−1 + δt wherever ζt appears. Recall that βt(t−1) is a real constant and the δt variables
have a mean of zero and are uncorrelated with each other as well as with all other latent
and error variables in the model. Thus, the mean structure for the AR-model is identical
in each case to the mean structure for the non-AR model.

It is not possible to explicitly re-write the equations for the covariance structure
because the autoregressive substitution is recursive. Nevertheless, this substitution and
expansion may be done for any specific case in which t and s are known. See Appendix
E, where we illustrate this expansion for the specific case of two indicators, i = {1, 2} and
three time points, t = {1, 2, 3}.
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The restrictions for the AR model are slightly different than those of the non-AR
model. For the AR model, the following restrictions apply:

cov (ξit, ζs)
cov (ξit, εjs)
cov (ζt, εjs)
cov (δt, ζs)
cov (ξit, δs)
cov (εit, δs)


= 0 for all i, j, s, t, (B.7)

cov (δt, δs) =


var (ζ1) when t = s = 1,
var (δt) when t = s 6= 1,

0 otherwise,
(B.8)

cov (εit, εjs) =
{

var (εit) when i = j, t = s,
0 otherwise. (B.9)

Summary

The mean and covariance structure for the three models is summarized in Table B1.

Table B1
Mean and Covariance Equations for Non-Autoregressive SGM, GSGM, and ISGM Models

Mean and Covariance Structure
SGM, non-AR
Mean E (Yit) = αit + λitE (ξint) + λit (t− 1)E (ξlin)
Covariance cov (Yit, Yjs) = λitλjs [(s− 1) + (t− 1)] cov (ξint, ξlin) +

λitλjs (t− 1) (s− 1) var (ξlin) +
λitλjs var (ξint) +
λitλjs cov (ζt, ζs) +
cov (εit, εjs)

GSGM, non-AR
Mean E (Yit) = αit + λitE (ξint) + λit (t− 1)E (ξlin)
Covariance cov (Yit, Yjs) = λitλjs [(s− 1) + (t− 1)] cov (ξint, ξlin) +

λitλjs (t− 1) (s− 1) var (ξlin) +
λitλjs var (ξint)+
γitγjs cov (ζt, ζs) +
cov (εit, εjs)

ISGM, non-AR
Mean E (Yit) = E (Yit) = E (ξinti ) + (t− 1)E (ξlini )

Covariance cov (Yit, Yjs) = (t− 1) cov
(
ξintj , ξlini

)
+

(s− 1) cov
(
ξinti , ξlinj

)
+

(t− 1) (s− 1) cov
(
ξlini , ξlinj

)
+

cov
(
ξinti , ξintj

)
+

γitγjs cov (ζt, ζs) +
cov (εit, εjs)
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Appendix C
Proportionality Constraint

The proportionality constraint refers to an implicit constraint on the ratio of general to
specific variance that is present in the SGM, but not the GSGM or ISGM. The ratio of
general to specific variance for the first time point (t = 1) was given in the main text, while
this ratio for the general case (for an arbitrary number of time points) is given below.
Note that even for the general case, only the ratio for the SGM is subject to the so-called
proportionality constraint.

General to Specific Variance Ratio for the SGM

We begin with the decomposition of variance for an observed variable, var (Yit), in
the SGM, which is given by (the general mean and covariance equations for all three models
are derived in Appendix B):

var (Yit) = λ2
it var (ξint)+(t− 1)2 λ2

it var (ξlin)+2 (t− 1)λ2
it cov (ξint, ξlin)+λ2

it var (ζt)+var (εit) .
(C.1)

For any two indicators Yit and Yjt, at the same time point t, the variance ratio is constrained
to be identical:

λ2
it var (ξint) + (t− 1)2 λ2

it var (ξlin) + 2 (t− 1)λ2
it cov (ξint, ξlin)

λ2
it var (ζt)

=
λ2
jt var (ξint) + (t− 1)2 λ2

jt var (ξlin) + 2 (t− 1)λ2
jt cov (ξint, ξlin)

λ2
jt var (ζt)

(C.2)

= var (ξint) + (t− 1)2 var (ξlin) + 2 (t− 1) cov (ξint, ξlin)
var (ζt)

.

General to Specific Variance Ratio for the GSGM

In the GSGM, the variance decomposition is given by:

var (Yit) = λ2
it var (ξint)+(t− 1)2 λ2

it var (ξlin)+2 (t− 1)λ2
it cov (ξint, ξlin)+γ2

it var (ζt)+var (εit) ,
(C.3)

and the ratio of general to specific variance is given by

λ2
it var (ξint) + (t− 1)2 λ2

it var (ξlin) + 2 (t− 1)λ2
it cov (ξint, ξlin)

γ2
it var (ζt)

for indicator i,

λ2
jt var (ξint) + (t− 1)2 λ2

jt var (ξlin) + 2 (t− 1)λ2
jt cov (ξint, ξlin)

γ2
jt var (ζt)

for indicator j.(C.4)

The ratio of these variances is not constrained.
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General to Specific Variance Ratio for the ISGM

We now consider the general variance equation for the ISGM:

var (Yit) = var (ξinti) + (t− 1)2 var (ξlini) + 2 (t− 1) cov (ξinti , ξlini) + γ2
it var (ζt) + var (εit) ,

(C.5)
which leads to the following ratio of general to specific variance:

var (ξinti) + (t− 1)2 var (ξlini) + 2 (t− 1) cov (ξinti , ξlini)
γ2
it var (ζt)

. (C.6)

Obviously, the ISGM also does not impose a proportionality constraint because in general,
the state residual loadings γit in the denominator can be estimated freely for all indicators1.

1Note that there are specific identification conditions in certain designs that may preclude the state
residual (γ) loadings from being freely estimated in the GSGM and ISGM. For example, designs with only
2 indicators per time point would not allow the state residual (γ) loadings to be freely estimated unless (1)
a significant autoregresive process is present and estimated for the state residual factors or (2) each state
residual factor is significantly related to at least one external variable.
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Appendix D
Degrees of Freedom in the SGM, GSGM, and ISGM

The degrees of freedom (df) of a model is an important consideration when choosing or
comparing models; df is important when choosing a model because insufficient df may
result in model non-identification; df is also important when comparing models since it
provides the context within which fit statistics are interpreted (for more detail see e.g.,
Walker, 1940).

For simplicity, we compare the df for the restricted case in which latent state residuals
are assumed to be uncorrelated, and all conditions of MI are met for all models (i.e., that
all loadings and intercepts are time-invariant). The df for this situation represented as an
algebraic function of the input parameters (m and n) are shown in general in Table D3,
and for specific numeric values (of m and n) in Table D1. The derivation of the formulas in
Table D3 is based on the known and estimated parameters given in Table D2. The technical
details for this derivation are given below. Examining these tables reveals that for a given
set of variables the SGM has the most df , followed by the GSGM, and finally the ISGM.

Computing df

The degrees of freedom (df ) for each model are computed as:

df = #known−#estimated, (D.1)

where #known is the number of known parameters (means, variances, and non-redundant
covariances of the observed variables Yit) and #estimated is the number of free parameters
estimated in the model.

Known Parameters

The total number of known parameters is equal to the number of uniquely identified
non-redundant elements in the measurement covariance matrix (including both variances

Table D1
Degrees of Freedom for SGM, GSGM, and ISGM Models

SGM GSGM ISGM
m n n n

3 4 5 6 3 4 5 6 3 4 5 6
2 11 25 43 65 11a 25a 43a 65a 4a 18a 36a 58a

3 33 65 106 156 31 63 104 154 13 45 86 136
4 64 121 194 283 61 118 191 280 28 85 158 247
5 104 193 307 446 100 189 303 442 48 137 251 390
6 153 281 445 645 148 276 440 640 73 201 365 565

Note. SGM = second-order growth model; GSGM = Generalized second-order growth model;
ISGM = indicator-specific growth model; m = number of indicators; n = number of time points.
Here, we assume that measurement invariance across time holds for all intercepts and factor
loadings. aThe two indicator GSGM and ISGM are subject to additional constraints needed
for model identification.
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Table D2
Number of Estimated Model Parameters in Different Multi-indicator Linear Growth Models

Model
Estimated Parameters SGM GSGM ISGM
Intercept and Growth Factor Means
E (ξinti) , E (ξlini) 2 2 2m

Intercept and Growth Factor Variances
var (ξinti) , var (ξlini) 2 2 2m

Error Variances
var (εit) mn mn mn

State Residual Variances
var (ζt) or var (δt) n n n

Intercept and Growth Factor Covariances

cov
(
ξinti , ξintj

)
, cov

(
ξinti , ξlinj

)
,

cov
(
ξlini , ξlinj

) 1 1 m (2m− 1)

Intercepts

αit
n (m− 1) if αit 6= αis
(m− 1) if αit = αis

–

Factor Loadings

λit
n (m− 1) if λit 6= λis
(m− 1) if λit = λis

–

Autoregressive Effects

βt

0 if cov (ζt, ζs) = 0
1 if ζt = βtζ(t−1) + δt

and βt = βs
(n− 1) if ζt = βtζ(t−1) + δit

and βt 6= βs
State Residual Factor Loadings

γit – n (m− 1) if γit 6= γis
(m− 1) if γit = γis

Note. SGM = second-order growth model; GSGM = Generalized second-order growth model; ISGM
= indicator-specific growth model; m = number of indicators; n = number of time points.
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Table D3
Algebraic Degrees of Freedom for SGM, GSGM, and ISGM Models

Model #known #estimated df

SGM (mn)2 + 3mn
2 2m+mn+ n+ 3 m2n2 +mn− 4m− 2n− 6

2

GSGM (mn)2 + 3mn
2 mn+ 3m+ n+ 2 m2n2 +mn− 6m− 2n− 4

2

ISGM (mn)2 + 3mn
2 2m2 + 4m+mn+ n− 1 m2n2 − 4m2 +mn− 8m− 2n+ 2

2
Note. #known = number of known means, variances, and covariances; #estimated = number of esti-
mated parameters; SGM = second-order growth model; GSGM = Generalized second-order growth model;
ISGM = indicator-specific growth model; m = number of indicators; n = number of time points. Here, we
assume that all latent state residual factors are uncorrelated and that measurement invariance across time
holds for all intercepts and factor loadings.

and covariances) plus the total number of expected values that can be computed from the
measurements (see, e.g., Bollen, 1989). In the present context, the number of known
parameters is

#known = (mn)2 + 3mn
2 .

Estimated Parameters and Degrees of Freedom

In contrast to the number of known parameters, the number of parameters estimated
varies across models. The number of degrees of freedom is then calculated by subtracting
the number of estimated parameters from the number of known parameters, as given in
Equation (D.1). For simplicity, we assume linear growth, and that all intercepts (αit), trait
loadings (λit), and state residual loadings (γit) are time-invariant. We also assume that the
state residual factors are all uncorrelated (no autoregressive structure). For less restrictive
models, or models with other forms of growth, more parameters will be estimated.

SGM.

#estimated = 2︸︷︷︸
E (ξint)
E (ξlin)

+ 2︸︷︷︸
var (ξint)
var (ξlin)

+ m · n︸ ︷︷ ︸
var(εit)

+ n︸︷︷︸
var(ζt)

+

1︸︷︷︸
cov(ξint,ξlin)

+ (m− 1)︸ ︷︷ ︸
αi

+ (m− 1)︸ ︷︷ ︸
λi

= 4 + 2 (m− 1) +m · n+ n+ 1
= 2m+mn+ n+ 3

= 4m+ 2mn+ 2n+ 6
2
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Thus, the degrees of freedom for the SGM are given by

df = #known−#estimated

= (mn)2 + 3mn
2 −

(4m+ 2mn+ 2n+ 6
2

)
= m2n2 + 3mn− 4m− 2mn− 2n− 6

2

= m2n2 +mn− 4m− 2n− 6
2

GSGM.

#estimated = 2︸︷︷︸
E (ξint)
E (ξlin)

+ 2︸︷︷︸
var (ξint)
var (ξlin)

+ mn︸︷︷︸
var(εit)

+ n︸︷︷︸
var(ζt)

+

1︸︷︷︸
cov(ξint,ξlin)

+ (m− 1)︸ ︷︷ ︸
αi

+ (m− 1)︸ ︷︷ ︸
λi

+ (m− 1)︸ ︷︷ ︸
γi

= 4 + 3 (m− 1) +m · n+ n+ 1
= 4 + 3m− 3 +m · n+ n+ 1
= mn+ 3m+ n+ 2

= 2mn+ 6m+ 2n+ 4
2

Thus, the degrees of freedom for the GSGM are given by

df = #known−#estimated

= (mn)2 + 3mn
2 −

(2m · n+ 6m+ 2n+ 4
2

)
= m2n2 + 3mn− 2mn− 6m− 2n− 4

2

= m2n2 +mn− 6m− 2n− 4
2

ISGM.

#unknown = 2m︸︷︷︸
E (ξinti)
E (ξlini)

+ 2m︸︷︷︸
var (ξinti)
var (ξlini)

+ m · n︸ ︷︷ ︸
var(εit)

+ n︸︷︷︸
var(ζt)

+
(
2m2 −m

)
︸ ︷︷ ︸

cov(ξit,ξjs)

+ (m− 1)︸ ︷︷ ︸
γi

= (2m+ 2m−m+m) +m · n+ n+ 2m2 − 1
= 2m2 + 4m+mn+ n− 1
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Thus, the degrees of freedom for the ISGM are given by

df = #known−#estimated

= (mn)2 + 3mn
2 −

(
2m2 + 4m+mn+ n− 1

)
= (mn)2 + 3mn

2 −
(

4m2 + 8m+ 2mn+ 2n− 2
2

)

= m2n2 − 4m2 +mn− 8m− 2n+ 2
2 .

Note that for models with autoregressive parameters (βt) as well as partial or complete
non-invariance of measurement parameters (αit, λit, γit), models with fewer df would result.
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Appendix E
Model Identification with Two Indicators per Time Point

To demonstrate the limitations of a growth model with only two indicators per time point, it
is sufficient to consider only the case with three time-points. That is, i = {1, 2}, t = {1, 2, 3}.
The covariance matrix for this case, in terms of Yit for all i, t is shown in Table E1.

Table E1
Covariance Matrix for 2 Indicators and 3 Time-points

i = 1 i = 2 i = 1 i = 2 i = 1 i = 2
t = 1 t = 1 t = 2 t = 2 t = 3 t = 3

j = 1 s = 1 var (Y11)
j = 2 s = 1 cov (Y11, Y21) var (Y21)
j = 1 s = 2 cov (Y11, Y12) cov (Y21, Y12) var (Y12)
j = 2 s = 2 cov (Y11, Y22) cov (Y21, Y22) cov (Y12, Y22) var (Y22)
j = 1 s = 3 cov (Y11, Y13) cov (Y21, Y13) cov (Y12, Y13) cov (Y22, Y13) var (Y13)
j = 2 s = 3 cov (Y11, Y23) cov (Y21, Y23) cov (Y12, Y23) cov (Y22, Y23) cov (Y13, Y23) var (Y23)

To show the general case, we first write out the complete model for the GSGM. This is
accomplished by starting with the generic covariance relation for the autoregressive GSGM
given in Table B1. The substitution of values for the indices into the general covariance
equation is very straightforward.

However, as noted in Appendix B, βtζt−1 + δt must be recursively substituted for ζt
(if t > 1 or s > 1). Then, the resulting covariance relation must be expanded and simplified.
We demonstrate this for all except the trivial instance where t = s = 1. Note that the order
in which the values (t, s) appear is not important (cov (ζt, ζs) = cov (ζs, ζt)).

(1, 2) = (2, 1)

cov (ζ2, ζ1) = cov (β2ζ1 + δ2, ζ1)
= cov (β2ζ1, ζ1) + cov (δ2, ζ1)
= β2 var (ζ1)

(1, 3) = (3, 1)

cov (ζ1, ζ3) = cov (ζ1, β3 [β2ζ1 + δ2] + δ3)
= cov (ζ1, β3β2ζ1 + β3δ2 + δ3)
= β3β2 var (ζ1)

(2, 2)

cov (ζ2, ζ2) = cov (β2ζ1 + δ2, β2ζ1 + δ2)
= cov (β2ζ1 + δ2, β2ζ1) + cov (β2ζ1 + δt, δ2)
= cov (β2ζ1, β2ζ1) + cov (δ2, β2ζ1)︸ ︷︷ ︸

0

+

cov (β2ζ1, δ2)︸ ︷︷ ︸
0

+ cov (δ2, δ2)

= β2
2 var (ζ1) + var (δ2)
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(2, 3) = (3, 2)

cov (ζ2, ζ3) = cov (β2ζ1 + δ2, β3 [β2ζ1 + δ2] + δ3)
= cov (β2ζ1, β3 [β2ζ1 + δ2] + δ3) +

cov (δ2, β3 [β21ζ1 + δ2] + δ3)
= β3β

2
2 cov (ζ1, ζ1) + cov (δ2, β3β2ζ1 + β3δ2) +

= β3β
2
2 var (ζ1) + β3 var (δ2, δ2)

(3, 3)

cov (ζ3, ζ3) = cov (β3 [β2ζ1 + δ2] + δ3, β3 [β2ζ1 + δ2] + δ3)
= cov (β3 [β2ζ1 + δ2] , β3 [β2ζ1 + δ2]) +

2 cov (β3 [β2ζ1 + δ2] , δ3)︸ ︷︷ ︸
0

+

cov (δ3, δ3)
= cov (β3β2ζ1 + β3δ2, β3β2ζ1 + β3δ2) +

cov (β3β2ζ1, β3β2ζ1) +
2 cov (β3β2ζ1, β3δ2)︸ ︷︷ ︸

0

+

cov (β3δ2, β3δ2) +
var (δ3)

= β2
3β

2
2 var (ζ1) + β2

3 var (δ2) + var (δ3)

The results from substituting all possible combinations for the specific values of i and t into
this covariance equation, and simplifying these according to the model restrictions given
in Equations (B.7)-(B.9) are shown in Table E3. Similarly, the results of this substitution
for the case of uncorrelated state residual variables, simplified according to the restrictions
given in Equations (B.2)-(B.4), are shown in Table E3.

We assume MI and uncorrelated state residual variables in order to examine when
the model is not identified. The identification problem comes from the state residual (ζt)
parameters. This is evident from the fact that the latent state residual variable for the first
time point, ζ1, appears in exactly three equations from Table E3:

var (Y11) = var (ξint) + var (ζ1) + var (ε11)
cov (Y11, Y21) = λ21 var (ξint) + γ21 var (ζ1)

var (Y21) = λ2
21 var (ξint) + γ2

21 var (ζ1) + var (ε21)

These are also the only equations in which the parameter γ21 appears. In these equations,
var (Y11) , var (Y21) , and cov (Y11, Y21) are known, while var (ξint) and λ21 can be identified
from the other model equations. The parameters γ21, var (ζ1), var (ε11) and var (ε21) are
not known. These parameters do not appear elsewhere and thus cannot be estimated
from other information. Without formal proof, we note that the situation remains un-
changed regardless of the number of time-points present. This leads to the conclusion that
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Table E2
Variance and covariance equations for the GSGM-AR with two indicators and three time
points.

var (Y11) = var (ξint) + γ2
11 var (ζ1) + var (ε11)

cov (Y11, Y21) = λ21 var (ξint) + γ21 var (ζ1)
cov (Y11, Y12) = cov (ξint, ξlin) + var (ξint) + β2 var (ζ1)
cov (Y11, Y22) = λ22 [cov (ξint, ξlin) + var (ξint)] + γ22β2 var (ζ1)
cov (Y11, Y13) = [2 cov (ξint, ξlin) + var (ξint)] + β3β2 var (ζ1)
cov (Y11, Y23) = λ23 [2 cov (ξint, ξlin) + var (ξint)] + γ23β3β2 var (ζ1)

var (Y21) = λ2
21 var (ξint) + λ2

21 var (ζ1) + var (ε21)
cov (Y21, Y12) = λ21 [cov (ξint, ξlin) + var (ξint)] + γ21β2 var (ζ1)
cov (Y21, Y22) = λ21λ22 [cov (ξint, ξlin) + var (ξint)] + γ21γ22β2 var (ζ1)
cov (Y21, Y13) = λ21 [2 cov (ξint, ξlin) + var (ξint)] + γ21β3β2 var (ζ1)
cov (Y21, Y23) = λ21λ23 [2 cov (ξint, ξlin) + var (ξint)] + γ21γ23β3β2 var (ζ1)

var (Y12) = 2 cov (ξint, ξlin) + var (ξlin) + var (ξint) +
β2

2 var (ζ1) + var (δ2) + var (ε12)
cov (Y12, Y22) = λ22 [2 cov (ξint, ξlin) + var (ξlin) + var (ξint)] +

γ22
[
β2

2 var (ζ1) + var (δ2)
]

cov (Y12, Y13) = [3 cov (ξint, ξlin) + 2 var (ξlin) + var (ξint)] +[
β3β

2
2 var (ζ1) + β3 var (δ2)

]
cov (Y12, Y23) = λ23 [3 cov (ξint, ξlin) + 2 var (ξlin) + var (ξint)] +

γ23
[
β3β

2
2 var (ζ1) + β3 var (δ2)

]
var (Y22) = λ2

22 [2 cov (ξint, ξlin) + var (ξlin) + var (ξint)] +
γ2

22
[
β2

2 var (ζ1) + var (δ2)
]

+ var (ε22)
cov (Y22, Y13) = λ22 [3 cov (ξint, ξlin) + 2 var (ξlin) + var (ξint)] +

γ22
[
β3β

2
2 var (ζ1) + β3 var (δ2)

]
cov (Y22, Y23) = λ22λ23 [3 cov (ξint, ξlin) + 2 var (ξlin) + var (ξint)] +

γ22γ23
[
β3β

2
2 var (ζ1) + β3 var (δ2)

]
var (Y13) = 4 cov (ξint, ξlin) + 4 var (ξlin) + var (ξint) +

β2
3β

2
2 var (ζ1) + β2

3 var (δ2) + var (δ3) + var (ε13)
cov (Y13, Y23) = λ23 [4 cov (ξint, ξlin) + 4 var (ξlin) + var (ξint)] +

γ23
[
β2

3β
2
2 var (ζ1) + β2

3 var (δ2) + var (δ3)
]

var (Y23) = λ2
23 [4 cov (ξint, ξlin) + 4 var (ξlin) + var (ξint)] +
γ2

23
[
β2

3β
2
2 var (ζ1) + β2

3 var (δ2) + var (δ3)
]

+ var (ε23)
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Table E3
Variance and covariance equations for the GSGM with two indicators and three time points.

var (Y11) = var (ξint) + var (ζ1) + var (ε11)
cov (Y11, Y21) = λ21 var (ξint) + γ21 var (ζ1)
cov (Y11, Y12) = cov (ξint, ξlin) + var (ξint)
cov (Y11, Y22) = λ22 [cov (ξint, ξlin) + var (ξint)]
cov (Y11, Y13) = 2 cov (ξint, ξlin) + var (ξint)
cov (Y11, Y23) = λ23 [2 cov (ξint, ξlin) + var (ξint)]

var (Y21) = λ2
21 var (ξint) + γ2

21 var (ζ1) + var (ε21)
cov (Y21, Y12) = λ21 [cov (ξint, ξlin) + var (ξint)]
cov (Y21, Y22) = λ21λ22 [cov (ξint, ξlin) + var (ξint)]
cov (Y21, Y13) = λ21 [2 cov (ξint, ξlin) + var (ξint)]
cov (Y21, Y23) = λ21λ23 [2 cov (ξint, ξlin) + var (ξint)]

var (Y12) = [2 cov (ξint, ξlin) + var (ξlin) + var (ξint)] +
var (ζ2) + var (ε12)

cov (Y12, Y22) = λ22 [2 cov (ξint, ξlin) + var (ξlin) + var (ξint)] +
γ22 var (ζ2)

cov (Y12, Y13) = 3 cov (ξint, ξlin) + 2 var (ξlin) + var (ξint)
cov (Y12, Y23) = λ23 [3 cov (ξint, ξlin) + 2 var (ξlin) + var (ξint)]

var (Y22) = λ2
22 [2 cov (ξint, ξlin) + var (ξlin) + var (ξint)] +
γ2

22 var (ζ2) + var (ε22)
cov (Y22, Y13) = λ22 [3 cov (ξint, ξlin) + 2 var (ξlin) + var (ξint)]
cov (Y22, Y23) = λ22λ23 [3 cov (ξint, ξlin) + 2 var (ξlin) + var (ξint)]

var (Y13) = 4 cov (ξint, ξlin) + 4 var (ξlin) + var (ξint) +
var (ζ3) + var (ε13)

cov (Y13, Y23) = λ23 [4 cov (ξint, ξlin) + 4 var (ξlin) + var (ξint)] +
γ23 var (ζ3)

var (Y23) = λ2
23 [4 cov (ξint, ξlin) + 4 var (ξlin) + var (ξint)] +
γ2

23 var (ζ3) + var (ε23)
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the GSGM is not generally identified with only two indicators at each time-point, unless
further constraints are imposed or effects are added to the model. If the parameters γ2t are
known, the remaining unknown parameters in these equations can be estimated. This can
be accomplished by fixing the state residual loadings γ2t to some value (i.e., γ1t = γ2t = 1).
Alternatively, the SGM, which we have shown to be a special case of the GSGM in which
γit = λit can be used to adequately constrain this model, since the λit parameters can be
estimated from other model information.

Another case in which the model information is sufficient for the parameters γ2t and
var (ζt) to be estimated occurs when there is a significant autoregressive structure. The γ2t
loadings in this case are related by the βt parameters. This can be seen by comparing the
covariance relations in Table E2 to those in Table E3, paying particular attention to the
parameters containing the terms containing ζ1 and δt.
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Appendix F
Variance Components and Coefficients

In each of the three growth models, the observed variance can be partitioned into variance
due to the growth process, variance due to state residual variability, and measurement error
variance as shown in Figure F1.

Error Variance

State Residual Variance

Trait & Growth Variance

Observed
Variance
var (Yit)

Latent State
Variance
var (τit)

var (εit)

Figure F1 . Variance Decomposition in the SGM, GSGM, and ISGM

Based on the variance decomposition in each model (see Table F1), several coefficients
can be defined (Eid, Courvoisier, & Lischetzke, 2012):

Coefficient of reliability:

Rel (Yit) = State Variance
Observed Variance = var (τit)

var (Yit)
.

Coefficient of consistency:

Con (τit) = Trait & Growth Variance
State Variance .

Coefficient of occasion-specificity:

OSpec (τit) = State Residual Variance
State Variance .

Table F1
Variance Decomposition

Model Variance Component Equation
SGM

Trait & Growth Variance λ2
it var (ξint) + (t− 1)2 λ2

it var (ξlin) + 2 (t− 1)λ2
it cov (ξint, ξlin)

State Residual Variance λ2
it var (ζt−1)

Error Variance var (εit)
GSGM

Trait & Growth Variance λ2
it var (ξint) + (t− 1)2 λ2

it var (ξlin) + 2 (t− 1)λ2
it cov (ξint, ξlin)

State Residual Variance γ2
it var (ζt)

Error Variance var (εit)
ISGM

Trait & Growth Variance var (ξinti ) + (t− 1)2 var (ξlini ) + 2 (t− 1) cov (ξinti , ξlini )
State Residual Variance γ2

it var (ζt)
Error Variance var (εit)
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Note that whereas the reliability coefficient is defined for the observed variables Yit,
the Con and OSpec coefficients are defined for the true score variables τit, so as to partition
the total systematic variance into growth versus state residual variance. Below we show the
specific calculations for each model.

SGM

Total Variance:

var (Yit) = λ2
it var (ξint)+(t− 1)2 λ2

it var (ξlin)+2 (t− 1)λ2
it cov (ξint, ξlin)+λ2

it var (ζt)+var (εit) .

Reliability Coefficient:

Rel (Yit) = λ2
it var (ξint) + (t− 1)2 λ2

it var (ξlin) + 2 (t− 1)λ2
it cov (ξint, ξlin) + λ2

it var (ζt)
var (Yit)

.

Consistency Coefficient:

Con (τt) = var (ξint) + (t− 1)2 var (ξlin) + 2 (t− 1) cov (ξint, ξlin)
var (τt)

,

= var (ξint) + (t− 1)2 var (ξlin) + 2 (t− 1) cov (ξint, ξlin)
var (ξint) + (t− 1)2 var (ξlin) + 2 (t− 1) cov (ξint, ξlin) + var (ζt)

.

Occasion-specificity Coefficient:

OSpec (τt) = var (ζt)
var (τt)

,

= var (ζt)
var (ξint) + (t− 1)2 var (ξlin) + 2 (t− 1) cov (ξint, ξlin) + var (ζt)

.

GSGM

Total Variance:

var (Yit) = λ2
it var (ξint)+(t− 1)2 λ2

it var (ξlin)+2 (t− 1)λ2
it cov (ξint, ξlin)+γ2

it var (ζt)+var (εit) .

Reliability Coefficient:

Rel (Yit) = λ2
it var (ξint) + (t− 1)2 λ2

it var (ξlin) + 2 (t− 1)λ2
it cov (ξint, ξlin) + γ2

it var (ζt)
var (Yit)

.

Consistency Coefficient:

Con (τit) = λ2
it var (ξint) + (t− 1)2 λ2

it var (ξlin) + 2 (t− 1)λ2
it cov (ξint, ξlin)

var (τit)
,

= λ2
it var (ξint) + (t− 1)2 λ2

it var (ξlin) + 2 (t− 1)λ2
it cov (ξint, ξlin)

λ2
it var (ξint) + (t− 1)2 λ2

it var (ξlin) + 2 (t− 1)λ2
it cov (ξint, ξlin) + γ2

it var (ζt)
.

Occasion-specificity Coefficient:

OSpec (τt) = γ2
it var (ζt)
var (τit)

,

= γ2
it var (ζt)

λ2
it var (ξint) + (t− 1)2 λ2

it var (ξlin) + 2 (t− 1)λ2
it cov (ξint, ξlin) + γ2

it var (ζt)
.
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ISGM

Total Variance:
var (Yit) = var (ξinti) + (t− 1)2 var (ξlini) + 2 (t− 1) cov (ξinti , ξlini) + γ2

it var (ζt) + var (εit) .

Reliability Coefficient:

Rel (Yit) = var (ξinti) + (t− 1)2 var (ξlini) + 2 (t− 1) cov (ξinti , ξlini) + γ2
it var (ζt)

var (Yit)
.

Consistency Coefficient:

Con (τit) = var (ξinti) + (t− 1)2 var (ξlini) + 2 (t− 1) cov (ξinti , ξlini)
var (τit)

,

= var (ξinti) + (t− 1)2 var (ξlini) + 2 (t− 1) cov (ξinti , ξlini)
var (ξinti) + (t− 1)2 var (ξlini) + 2 (t− 1) cov (ξinti , ξlini) + γ2

it var (ζt)
.

Occasion-specificity Coefficient:

OSpec (τit) = γ2
it var (ζt)

var (ξinti) + (t− 1)2 var (ξlini) + 2 (t− 1) cov (ξinti , ξlini) + γ2
it var (ζt)

.

Note that for the SGM, the consistency coefficient and its complement (OSpec) are
dependent only upon τt. Thus, this coefficient is the same for all indicators measured at the
same time point in this model. However, for both the GSGM and ISGM, Con and OSpec
are indicator-specific (dependent on τit) because there is not a common latent state factor
for each time-point in these two models. Additional coefficients can be defined in the case
of an autoregressive structure among the state residuals as shown in Eid et al. (2012).
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Appendix G
Mplus Model Inputs for SGM, GSGM, and ISGM

The order and names used for the following model specifications match the specifi-
cation in Table 3 (of the main paper). The data file used for this analysis is pro-
vided for practice purposes only. It is available for download at http://supp.apa.org/
psycarticles/supplemental/met0000018/met0000018_supp.html. Publication of this
data in any form, including results from analyzing this data is expressly forbidden. For
requests to use this data for publication or other purposes, please contact Dr. David Cole
at david.cole@vanderbilt.edu.

Model 1a: SGM

filename: 1a_SGM_LinearGrowth_AlphaLamInv.inp

TITLE: Second-Order Multiple-Indicator Growth Model.
Linear Growth.
First-order representation.

(after Schmid-Leiman Transformation).
DATA: file = Anxiety_Data_3_Indicators_4_Waves.dat;
VARIABLE:
names = grpID

y11 y21 y31
y12 y22 y32
y13 y23 y33
y14 y24 y34;

usevariables = y11 y21 y31
y12 y22 y32
y13 y23 y33
y14 y24 y34;

missing = all(-99);
MODEL:
! Common xi. This is the trait intercept.
! Set the first trait loading (lambda) to 1.
! Estimate the other two.
! Measurement Invariance on lambda not assumed.
xi_int by y11@1 (lambda11)

y21 (lambda21)
y31 (lambda31)
y12@1 (lambda12)
y22 (lambda22)
y32 (lambda32)
y13@1 (lambda13)
y23 (lambda23)
y33 (lambda33)
y14@1 (lambda14)
y24 (lambda24)



MULTIPLE-INDICATOR GROWTH MODELS 30

y34 (lambda34);
! Estimate the mean of the trait factor.
! (zero by default in Mplus).
[xi_int*];
! Variance of the trait factor (xi_int).
xi_int (xi_intv);
! Growth Model. This is the trait slope.
! Wave 1 is missing, because lambda would be multiplied by 0.
! Multiply by 1*lambda for the second wave, by 2*lambda for
! the third, and 3*lambda for the fourth.
xi_lin by y12@1 (lambda12)

y22 (lambda22)
y32 (lambda32)
y13@2 (lambda13d)
y23 (lambda23d)
y33 (lambda33d)
y14@3 (lambda14t)
y24 (lambda24t)
y34 (lambda34t);

! Estimate the mean of the growth factor.
! (zero by default in Mplus).
[xi_lin*];
! Variance of the growth factor (xi_lin).
xi_lin (xi_linv);
! These loadings must be the same as the trait
! loadings given above...a constraint of the SGM.
zeta1 by y11@1 (lambda11)

y21 (lambda21)
y31 (lambda31);

zeta2 by y12@1 (lambda12)
y22 (lambda22)
y32 (lambda32);

zeta3 by y13@1 (lambda13)
y23 (lambda23)
y33 (lambda33);

zeta4 by y14@1 (lambda14)
y24 (lambda24)
y34 (lambda34);

! Set intercepts of state residual factors to zero.
! (would otherwise be estimated as the default in Mplus)
[zeta1-zeta4@0];

! Delta error variances on each zeta.
zeta1 (zeta1var);
zeta2 (zeta2var);
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zeta3 (zeta3var);
zeta4 (zeta4var);
! Constant intercepts (alpha_it).
! Set the intercept on the first indicator
! (alpha1) to 0, and estimate the other
! two (alpha2, alpha3).
! This assumes alpha-MI.
[y11@0]; [y21*] (alpha21); [y31*] (alpha31);
[y12@0]; [y22*] (alpha22); [y32*] (alpha32);
[y13@0]; [y23*] (alpha23); [y33*] (alpha33);
[y14@0]; [y24*] (alpha24); [y34*] (alpha34);
! Estimate the Error Variances.
y11 (ev11); y21 (ev21); y31 (ev31);
y12 (ev12); y22 (ev22); y32 (ev32);
y13 (ev13); y23 (ev23); y33 (ev33);
y14 (ev14); y24 (ev24); y34 (ev34);
! Non-admissible correlations.
xi_int with zeta1-zeta4@0;
xi_lin with zeta1-zeta4@0;
zeta1 with zeta2-zeta4@0;
zeta2 with zeta3-zeta4@0;
zeta3 with zeta4@0;
MODEL CONSTRAINT:
! lambdaid is double lambda i.
lambda23d = lambda23*2;
lambda33d = lambda33*2;
! lambdait is triple lambda i.
lambda24t = lambda24*3;
lambda34t = lambda34*3;
OUTPUT: sampstat stdyx;

Model 1b: SGM, α, λ-MI

filename: 1b_SGM_LinearGrowth_AlphaLamInv.inp

TITLE: Second-Order Multiple-Indicator Growth Model.
Measurement invariance assumed on alpha and lambda.
Linear Growth.
First-order representation.

(after Schmid-Leiman Transformation).
DATA: file = Anxiety_Data_3_Indicators_4_Waves.dat;
VARIABLE:
names = grpID

y11 y21 y31
y12 y22 y32
y13 y23 y33
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y14 y24 y34;
usevariables = y11 y21 y31

y12 y22 y32
y13 y23 y33
y14 y24 y34;

missing = all(-99);
MODEL:
! Common xi. This is the trait intercept.
! Set the first trait loading (lambda) to 1.
! Estimate the other two.
! This assumes Measurement Invariance on lambda.
! Do this if the lambdas have to be the same
! for a given test across testing occasions.
xi_int by y11@1 y21 y31 (lambda1-lambda3)

y12@1 y22 y32 (lambda1-lambda3)
y13@1 y23 y33 (lambda1-lambda3)
y14@1 y24 y34 (lambda1-lambda3);

! Estimate the mean of the trait factor.
! (zero by default in Mplus).
[xi_int*];
! Variance of the trait factor (xi_int).
xi_int (xi_intv);
! Growth Model. This is the trait slope.
! Wave 1 is missing, because lambda would be multiplied by 0.
! Multiply by 1*lambda for the second wave, by 2*lambda for
! the third, and 3*lambda for the fourth.
xi_lin by y12@1 (lambda1)

y22 (lambda2)
y32 (lambda3)
y13@2 (lambda1d)
y23 (lambda2d)
y33 (lambda3d)
y14@3 (lambda1t)
y24 (lambda2t)
y34 (lambda3t);

! Estimate the mean of the growth factor.
! (zero by default in Mplus).
[xi_lin*];
! Variance of the growth factor (xi_lin).
xi_lin (xi_linv);
! These loadings must be the same as the trait
! loadings given above...a constraint of the SGM.
zeta1 by y11@1 y21 y31 (lambda1-lambda3);
zeta2 by y12@1 y22 y32 (lambda1-lambda3);
zeta3 by y13@1 y23 y33 (lambda1-lambda3);
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zeta4 by y14@1 y24 y34 (lambda1-lambda3);
! Set intercepts of state residual factors to zero.
! (would otherwise be estimated as the default in Mplus)
[zeta1-zeta4@0];

! Delta error variances on each zeta.
zeta1 (zeta1var);
zeta2 (zeta2var);
zeta3 (zeta3var);
zeta4 (zeta4var);
! Constant intercepts (alpha_it).
! Set the intercept on the first indicator
! (alpha1) to 0, and estimate the other
! two (alpha2, alpha3).
! This assumes alpha-MI.
[y11@0]; [y21*] (alpha2); [y31*] (alpha3);
[y12@0]; [y22*] (alpha2); [y32*] (alpha3);
[y13@0]; [y23*] (alpha2); [y33*] (alpha3);
[y14@0]; [y24*] (alpha2); [y34*] (alpha3);
! Estimate the Error Variances.
y11 (ev11); y21 (ev21); y31 (ev31);
y12 (ev12); y22 (ev22); y32 (ev32);
y13 (ev13); y23 (ev23); y33 (ev33);
y14 (ev14); y24 (ev24); y34 (ev34);
! Non-admissible correlations.
xi_int with zeta1-zeta4@0;
xi_lin with zeta1-zeta4@0;
zeta1 with zeta2-zeta4@0;
zeta2 with zeta3-zeta4@0;
zeta3 with zeta4@0;
MODEL CONSTRAINT:
! lambdaid is double lambda i.
lambda2d = lambda2*2;
lambda3d = lambda3*2;
! lambdait is triple lambda i.
lambda2t = lambda2*3;
lambda3t = lambda3*3;
OUTPUT: sampstat stdyx;

Model 2a: GSGM

filename: 2a_GSGM_LinearGrowth.inp

TITLE: Generalized Second-Order Multiple-Indicator Growth Model.
Linear Growth.
First-order model representation.
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(after Schmid-Leiman Transformation).
DATA: file = Anxiety_Data_3_Indicators_4_Waves.dat;
VARIABLE:
names = grpID

y11 y21 y31
y12 y22 y32
y13 y23 y33
y14 y24 y34;

usevariables = y11 y21 y31
y12 y22 y32
y13 y23 y33
y14 y24 y34;

missing = all(-99);
MODEL:
! Common xi. This is the trait intercept.
! Set the first trait loading (lambda) to 1.
! Estimate the other two.
! Measurement Invariance on lambda not assumed.
xi_int by y11@1 (lambda11)

y21 (lambda21)
y31 (lambda31)
y12@1 (lambda12)
y22 (lambda22)
y32 (lambda32)
y13@1 (lambda13)
y23 (lambda23)
y33 (lambda33)
y14@1 (lambda14)
y24 (lambda24)
y34 (lambda34);

! Estimate the mean of the trait factor.
! (zero by default in Mplus).
[xi_int*];
! Variance of the trait factor (xi_int).
xi_int (xi_intv);
! Growth Model. This is the trait slope.
! Wave 1 is missing, because lambda would be multiplied by 0.
! Multiply by 1*lambda for the second wave, by 2*lambda for
! the third, and 3*lambda for the fourth.
xi_lin by y12@1 (lambda12)

y22 (lambda22)
y32 (lambda32)
y13@2 (lambda13d)
y23 (lambda23d)
y33 (lambda33d)
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y14@3 (lambda14t)
y24 (lambda24t)
y34 (lambda34t);

! Estimate the mean of the growth factor.
! (zero by default in Mplus).
[xi_lin*];
! Variance of the growth factor (xi_lin).
xi_lin (xi_linv);
! These loadings are NOT the same as the trait
! loadings given above. This is the difference
! between the GSGM and the SGM.
! Do not assume measurement invariance of the state residual
! factor loadings (gamma_it=gamma_is).
zeta1 by y11@1 (gamma11)

y21 (gamma21)
y31 (gamma31);

zeta2 by y12@1 (gamma12)
y22 (gamma22)
y32 (gamma32);

zeta3 by y13@1 (gamma13)
y23 (gamma23)
y33 (gamma33);

zeta4 by y14@1 (gamma14)
y24 (gamma24)
y34 (gamma34);

! Set intercepts of state residual factors to zero.
! (would otherwise be estimated as the default in Mplus)
[zeta1-zeta4@0];

! Delta error variances on each zeta.
zeta1 (zeta1var);
zeta2 (zeta2var);
zeta3 (zeta3var);
zeta4 (zeta4var);
! Constant intercepts (alpha_it).
! Set the intercept on the first indicator
! (alpha1) to 0, and estimate the other
! two (alpha2, alpha3).
! This assumes alpha-MI.
[y11@0]; [y21*] (alpha21); [y31*] (alpha31);
[y12@0]; [y22*] (alpha22); [y32*] (alpha32);
[y13@0]; [y23*] (alpha23); [y33*] (alpha33);
[y14@0]; [y24*] (alpha24); [y34*] (alpha34);
! Estimate the Error Variances.
y11 (ev11); y21 (ev21); y31 (ev31);
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y12 (ev12); y22 (ev22); y32 (ev32);
y13 (ev13); y23 (ev23); y33 (ev33);
y14 (ev14); y24 (ev24); y34 (ev34);
! Non-admissible correlations.
xi_int with zeta1-zeta4@0;
xi_lin with zeta1-zeta4@0;
zeta1 with zeta2-zeta4@0;
zeta2 with zeta3-zeta4@0;
zeta3 with zeta4@0;
MODEL CONSTRAINT:
! lambdaid is double lambda i.
lambda23d = lambda23*2;
lambda33d = lambda33*2;
! lambdait is triple lambda i.
lambda24t = lambda24*3;
lambda34t = lambda34*3;
OUTPUT: sampstat stdyx;

Model 2b: GSGM, α, λ-MI

filename: 2b_GSGM_LinearGrowth_AlphaLamInv.inp

TITLE: Generalized Second-Order Multiple-Indicator Growth Model.
Measurement invariance assumed on alpha and lambda.
Linear Growth.
First-order model representation.

(after Schmid-Leiman Transformation).
DATA: file = Anxiety_Data_3_Indicators_4_Waves.dat;
VARIABLE:
names = grpID

y11 y21 y31
y12 y22 y32
y13 y23 y33
y14 y24 y34;

usevariables = y11 y21 y31
y12 y22 y32
y13 y23 y33
y14 y24 y34;

missing = all(-99);
MODEL:
! Common xi. This is the trait intercept.
! Set the first trait loading (lambda) to 1.
! Estimate the other two.
! This assumes Measurement Invariance on lambda.
! Do this if the lambdas have to be the same
! for a given test across testing occasions.
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xi_int by y11@1 y21 y31 (lambda1-lambda3)
y12@1 y22 y32 (lambda1-lambda3)
y13@1 y23 y33 (lambda1-lambda3)
y14@1 y24 y34 (lambda1-lambda3);

! Estimate the mean of the trait factor.
! (zero by default in Mplus).
[xi_int*];
! Variance of the trait factor (xi_int).
xi_int (xi_intv);
! Growth Model. This is the trait slope.
! Wave 1 is missing, because lambda would be multiplied by 0.
! Multiply by 1*lambda for the second wave, by 2*lambda for
! the third, and 3*lambda for the fourth.
xi_lin by y12@1 (lambda1)

y22 (lambda2)
y32 (lambda3)
y13@2 (lambda1d)
y23 (lambda2d)
y33 (lambda3d)
y14@3 (lambda1t)
y24 (lambda2t)
y34 (lambda3t);

! Estimate the mean of the growth factor.
! (zero by default in Mplus).
[xi_lin*];
! Variance of the growth factor (xi_lin).
xi_lin (xi_linv);
! These loadings are NOT the same as the trait
! loadings given above. This is the difference
! between the GSGM and the SGM.
! Do not assume measurement invariance of the state residual
! factor loadings (gamma_it=gamma_is).
zeta1 by y11@1 (gamma11)

y21 (gamma21)
y31 (gamma31);

zeta2 by y12@1 (gamma12)
y22 (gamma22)
y32 (gamma32);

zeta3 by y13@1 (gamma13)
y23 (gamma23)
y33 (gamma33);

zeta4 by y14@1 (gamma14)
y24 (gamma24)
y34 (gamma34);

! Set intercepts of state residual factors to zero.
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! (would otherwise be estimated as the default in Mplus)
[zeta1-zeta4@0];

! Delta error variances on each zeta.
zeta1 (zeta1var);
zeta2 (zeta2var);
zeta3 (zeta3var);
zeta4 (zeta4var);
! Constant intercepts (alpha_it).
! Set the intercept on the first indicator
! (alpha1) to 0, and estimate the other
! two (alpha2, alpha3).
! This assumes alpha-MI.
[y11@0]; [y21*] (alpha2); [y31*] (alpha3);
[y12@0]; [y22*] (alpha2); [y32*] (alpha3);
[y13@0]; [y23*] (alpha2); [y33*] (alpha3);
[y14@0]; [y24*] (alpha2); [y34*] (alpha3);
! Estimate the Error Variances.
y11 (ev11); y21 (ev21); y31 (ev31);
y12 (ev12); y22 (ev22); y32 (ev32);
y13 (ev13); y23 (ev23); y33 (ev33);
y14 (ev14); y24 (ev24); y34 (ev34);
! Non-admissible correlations.
xi_int with zeta1-zeta4@0;
xi_lin with zeta1-zeta4@0;
zeta1 with zeta2-zeta4@0;
zeta2 with zeta3-zeta4@0;
zeta3 with zeta4@0;
MODEL CONSTRAINT:
! lambdaid is double lambda i.
lambda2d = lambda2*2;
lambda3d = lambda3*2;
! lambdait is triple lambda i.
lambda2t = lambda2*3;
lambda3t = lambda3*3;
OUTPUT: sampstat stdyx;

Model 2c: GSGM, α, λ, γ-MI

filename: 2c_GSGM_LinearGrowth_AlphaLamGamInv.inp

TITLE: Generalized Second-Order Multiple-Indicator Growth Model.
Measurement invariance assumed on alpha and lambda.
Measurement invariance assumed on gamma.
Linear Growth.
First-order model representation.
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(after Schmid-Leiman Transformation).
DATA: file = Anxiety_Data_3_Indicators_4_Waves.dat;
VARIABLE:
names = grpID

y11 y21 y31
y12 y22 y32
y13 y23 y33
y14 y24 y34;

usevariables = y11 y21 y31
y12 y22 y32
y13 y23 y33
y14 y24 y34;

missing = all(-99);
MODEL:
! Common xi. This is the trait intercept.
! Set the first trait loading (lambda) to 1.
! Estimate the other two.
! This assumes Measurement Invariance on lambda.
! Do this if the lambdas have to be the same
! for a given test across testing occasions.
xi_int by y11@1 y21 y31 (lambda1-lambda3)

y12@1 y22 y32 (lambda1-lambda3)
y13@1 y23 y33 (lambda1-lambda3)
y14@1 y24 y34 (lambda1-lambda3);

! Estimate the mean of the trait factor.
! (zero by default in Mplus).
[xi_int*];
! Variance of the trait factor (xi_int).
xi_int (xi_intv);
! Growth Model. This is the trait slope.
! Wave 1 is missing, because lambda would be multiplied by 0.
! Multiply by 1*lambda for the second wave, by 2*lambda for
! the third, and 3*lambda for the fourth.
xi_lin by y12@1 (lambda1)

y22 (lambda2)
y32 (lambda3)
y13@2 (lambda1d)
y23 (lambda2d)
y33 (lambda3d)
y14@3 (lambda1t)
y24 (lambda2t)
y34 (lambda3t);

! Estimate the mean of the growth factor.
! (zero by default in Mplus).
[xi_lin*];



MULTIPLE-INDICATOR GROWTH MODELS 40

! Variance of the growth factor (xi_lin).
xi_lin (xi_linv);
! These loadings are NOT the same as the trait
! loadings given above. This is the difference
! between the GSGM and the SGM.
! Assume measurement invariance of the state residual
! factor loadings (gamma_it=gamma_is).
zeta1 by y11@1 (gamma1)

y21 (gamma2)
y31 (gamma3);

zeta2 by y12@1 (gamma1)
y22 (gamma2)
y32 (gamma3);

zeta3 by y13@1 (gamma1)
y23 (gamma2)
y33 (gamma3);

zeta4 by y14@1 (gamma1)
y24 (gamma2)
y34 (gamma3);

! Set intercepts of state residual factors to zero.
! (would otherwise be estimated as the default in Mplus)
[zeta1-zeta4@0];

! Delta error variances on each zeta.
zeta1 (zeta1var);
zeta2 (zeta2var);
zeta3 (zeta3var);
zeta4 (zeta4var);
! Constant intercepts (alpha_it).
! Set the intercept on the first indicator
! (alpha1) to 0, and estimate the other
! two (alpha2, alpha3).
! This assumes alpha-MI.
[y11@0]; [y21*] (alpha2); [y31*] (alpha3);
[y12@0]; [y22*] (alpha2); [y32*] (alpha3);
[y13@0]; [y23*] (alpha2); [y33*] (alpha3);
[y14@0]; [y24*] (alpha2); [y34*] (alpha3);
! Estimate the Error Variances.
y11 (ev11); y21 (ev21); y31 (ev31);
y12 (ev12); y22 (ev22); y32 (ev32);
y13 (ev13); y23 (ev23); y33 (ev33);
y14 (ev14); y24 (ev24); y34 (ev34);
! Non-admissible correlations.
xi_int with zeta1-zeta4@0;
xi_lin with zeta1-zeta4@0;
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zeta1 with zeta2-zeta4@0;
zeta2 with zeta3-zeta4@0;
zeta3 with zeta4@0;
MODEL CONSTRAINT:
! lambdaid is double lambda i.
lambda2d = lambda2*2;
lambda3d = lambda3*2;
! lambdait is triple lambda i.
lambda2t = lambda2*3;
lambda3t = lambda3*3;
OUTPUT: sampstat stdyx;

Model 3a: ISGM

filename: 3a_ISGM_LinearGrowth.inp

TITLE: Indicator-Specific Growth Model.
Linear Growth.
First-order model representation.

DATA: file = Anxiety_Data_3_Indicators_4_Waves.dat;
VARIABLE:
names = grpID

y11 y21 y31
y12 y22 y32
y13 y23 y33
y14 y24 y34;

usevariables = y11 y21 y31
y12 y22 y32
y13 y23 y33
y14 y24 y34;

missing = all(-99);
MODEL:
! One xi (trait intercept factor) for each indicator.
! All loadings are set to 1, because of the
! indicator-specificity. See derivation.
xi_int_1 by y11@1 y12@1 y13@1 y14@1;
xi_int_2 by y21@1 y22@1 y23@1 y24@1;
xi_int_3 by y31@1 y32@1 y33@1 y34@1;
! Estimate the trait factor means
! (zero by default in Mplus).
[xi_int_1* xi_int_2* xi_int_3*];
! Variance on xi_int_i.
xi_int_1 (xi_int1v);
xi_int_2 (xi_int2v);
xi_int_3 (xi_int3v);
! Growth Model. These are the trait slopes.
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! Linear Growth. No loading on the first
! indicator as this would be 0.
xi_lin_1 by y12@1 y13@2 y14@3;
xi_lin_2 by y22@1 y23@2 y24@3;
xi_lin_3 by y32@1 y33@2 y34@3;
! Estimate the growth factor means
! (zero by default in Mplus).
[xi_lin_1* xi_lin_2* xi_lin_3*];
! Estimate the growth factor variances.
xi_lin_1 (xi_lin1v);
xi_lin_2 (xi_lin2v);
xi_lin_3 (xi_lin3v);
! Occasion-specific (common) state residual
! factors (zeta_t).
! Do not assume measurement invariance of the state residual
! factor loadings (gamma_it><=gamma_is).
zeta1 by y11@1

y21 (gamma21)
y31 (gamma31);

zeta2 by y12@1
y22 (gamma22)
y32 (gamma32);

zeta3 by y13@1
y23 (gamma23)
y33 (gamma33);

zeta4 by y14@1
y24 (gamma24)
y34 (gamma34);

! Set intercepts of state residual factors to zero.
! (would otherwise be estimated as the default in Mplus)
[zeta1-zeta4@0];
! Variances of zeta.
zeta1 (zeta1var);
zeta2 (zeta2var);
zeta3 (zeta3var);
zeta4 (zeta4var);
! Intercepts factors (alpha loadings).
! Set the intercept loadings (alpha_it) on
! all indicators to 0 as required by the model.
! Intercepts.
! Set to 0, as required by the model.
[y11@0 y21@0 y31@0];
[y12@0 y22@0 y32@0];
[y13@0 y23@0 y33@0];
[y14@0 y24@0 y34@0];
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! Estimate the Error Variances.
y11 (ev11); y21 (ev21); y31 (ev31);
y12 (ev12); y22 (ev22); y32 (ev32);
y13 (ev13); y23 (ev23); y33 (ev33);
y14 (ev14); y24 (ev24); y34 (ev34);
! Non-admissible correlations.
xi_int_1-xi_int_3 with zeta1-zeta4@0;
xi_lin_1-xi_lin_3 with zeta1-zeta4@0;
zeta1 with zeta2-zeta4@0;
zeta2 with zeta3-zeta4@0;
zeta3 with zeta4@0;
OUTPUT: sampstat stdyx;

Model 3b: ISGM, γ-MI

filename: 3b_ISGM_LinearGrowth_GamInv.inp

TITLE: Indicator-Specific Growth Model.
Measurement invariance assumed on gamma.

(gamma_it = gamma_is for all i,t,s)
Linear Growth.
First-order model representation.

DATA: file = Anxiety_Data_3_Indicators_4_Waves.dat;
VARIABLE:
names = grpID

y11 y21 y31
y12 y22 y32
y13 y23 y33
y14 y24 y34;

usevariables = y11 y21 y31
y12 y22 y32
y13 y23 y33
y14 y24 y34;

missing = all(-99);
MODEL:
! One xi (trait intercept factor) for each indicator.
! All loadings are set to 1, because of the
! indicator-specificity. See derivation.
xi_int_1 by y11@1 y12@1 y13@1 y14@1;
xi_int_2 by y21@1 y22@1 y23@1 y24@1;
xi_int_3 by y31@1 y32@1 y33@1 y34@1;
! Estimate the trait factor means
! (zero by default in Mplus).
[xi_int_1* xi_int_2* xi_int_3*];
! Variance on xi_int_i.
xi_int_1 (xi_int1v);
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xi_int_2 (xi_int2v);
xi_int_3 (xi_int3v);
! Growth Model. These are the trait slopes.
! Linear Growth. No loading on the first
! indicator as this would be 0.
xi_lin_1 by y12@1 y13@2 y14@3;
xi_lin_2 by y22@1 y23@2 y24@3;
xi_lin_3 by y32@1 y33@2 y34@3;
! Estimate the growth factor means
! (zero by default in Mplus).
[xi_lin_1* xi_lin_2* xi_lin_3*];
! Estimate the growth factor variances.
xi_lin_1 (xi_lin1v);
xi_lin_2 (xi_lin2v);
xi_lin_3 (xi_lin3v);
! Occasion-specific (common) state residual
! factors (zeta_t).
! Assume Measurement invariance of the state residual
! factor loadings (gamma_it=gamma_is).
zeta1 by y11@1

y21 (gamma2)
y31 (gamma3);

zeta2 by y12@1
y22 (gamma2)
y32 (gamma3);

zeta3 by y13@1
y23 (gamma2)
y33 (gamma3);

zeta4 by y14@1
y24 (gamma2)
y34 (gamma3);

! Set intercepts of state residual factors to zero.
! (would otherwise be estimated as the default in Mplus)
[zeta1-zeta4@0];
! Variances of zeta.
zeta1 (zeta1var);
zeta2 (zeta2var);
zeta3 (zeta3var);
zeta4 (zeta4var);
! Intercepts factors (alpha loadings).
! Set the intercept loadings (alpha_it) on
! all indicators to 0 as required by the model.
! Intercepts.
! Set to 0, as required by the model.
[y11@0 y21@0 y31@0];
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[y12@0 y22@0 y32@0];
[y13@0 y23@0 y33@0];
[y14@0 y24@0 y34@0];
! Estimate the Error Variances.
y11 (ev11); y21 (ev21); y31 (ev31);
y12 (ev12); y22 (ev22); y32 (ev32);
y13 (ev13); y23 (ev23); y33 (ev33);
y14 (ev14); y24 (ev24); y34 (ev34);
! Non-admissible correlations.
xi_int_1-xi_int_3 with zeta1-zeta4@0;
xi_lin_1-xi_lin_3 with zeta1-zeta4@0;
zeta1 with zeta2-zeta4@0;
zeta2 with zeta3-zeta4@0;
zeta3 with zeta4@0;
OUTPUT: sampstat stdyx;
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Appendix H
Monte-Carlo Simulation for the Indicator-specific Growth Model

A Monte-Carlo simulation study was conducted to study the behavior of the indicator-
specific growth model (ISGM) under a variety of conditions. Population parameters were
generated for five different conditions that were fully crossed. These included the number of
time-points (time; 3 levels), sample size (N; 5 levels), consistency (con; 3 levels), intercept
and slope correlations (corr; 3 levels), and effect-size for mean change based on Cohen’s d
(cohen; 4 levels). The size of this simulation was thus (3× 5× 3× 3× 4) = 540 cells.

In our choice of parameter values and other conditions, we included conditions that
could be seen as somewhat extreme. This was done in order to “test the limits” of the
ISGM, that is, to examine the conditions under which the model might fail. Specifically,
we included low sample size conditions (N=100; 150; 200), conditions of low consistency
(.2;.5), and high (.9) as well as low (.1) intercept/slope factor correlations. These parameter
values, especially the low consistency and high correlation conditions were expected to bring
the model to its limits, given that low consistency means weakly-defined trait factors and
high correlations could make the model prone to improper solutions (correlation estimates
> 1.0).

Algorithm 1 Generation of ISGM Population Parameters for the Simulation
for t = 1 to {time}

var (ζt) = 1.0
end
for i=1 to 3

var (Yi1) = 1
Con (τi1) = {Con}+ ∼ N (0, 0.025)
Rel (Yi1) = 0.73+ ∼ N (0, 0.025)
var (εi1) = 1− Rel (Yi1)
var (τi1) = var (Yi1)− var (εi1)
var (ξinti) = Con (τi1) · var (τi1)
var (ξlini) = 0.05 · var (ξinti)
γi =

√
var (τi1)− var (ξinti)

for t = 2 to {time}
var (τit) = var (ξinti) + (t− 1)2 var (ξlini) + γ2

i var (ζt)
var (εit) = var (τit) · (1− Rel (Yi1)) + ∼ N (0, 0.03)
var (Yit) = var (τit) + var (εit)

end
end
for i = 1 to 3

for j = 1 to 3
cov

(
ξinti , ξintj

)
= {corr} ·

√
var (ξinti)

√
var

(
ξintj

)
cov

(
ξlini , ξlinj

)
= {corr} ·

√
var (ξlini)

√
var

(
ξlinj

)
end

end
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Table H1
Simulation Parameters Used to Identify Population Values for the ISGM.

Parameter (abbreviation) Levels Description
Number of time
points (time)

= {3, 4, 5}

Sample size (N) = {100, 150, 200, 300, 500}

Average Consistency (con) ≈ {0.8, 0.5, 0.2}
∑m

i=1

∑n

t=1 [Con (τit)]
m · n ,

Con (τit) = var (ξinti ) + (t− 1)2 var (ξlini )
var (τit)

Intercept and slope
correlations (corr)

= {0.9, 0.5, 0.1} corr
(
ξinti , ξintj

)
, corr

(
ξlini , ξlinj

)
Effect-size based
on Cohen’s d (cohen)

= {0.0, 0.2, 0.5, 0.8} E (ξlini )√
var (ξlini )

Average Reliability (rel) ≈ {0.8}
∑m

i=1

∑n

t=1 [Rel (Yit)]
m · n ,

Rel (Yit) = var (ξinti ) + (t− 1)2 var (ξlini ) + γ2
it var (ζt)

var (Yit)
Trait-growth correlations {0.0} corr

(
ξinti , ξlinj

)
for all i, j

Trait means and
indicator intercepts

{0.0} E (ξinti ) , αi for all i

Trait/growth variance ratio {0.05} var (ξlini )
var (ξinti ) for all i

Note. Parameters not listed were identified through constraints with other parameters as given in Algorithm 1.
i = 1, . . . , j, . . . ,m, indicates the manifest variable or indicator. t = 1, . . . , s, . . . n indicates the time point.

Method

There were two main steps involved in developing the simulation inputs, a) generation
of the population parameters, and b) specification of the models. The general idea in
generating population parameters was to use the approximate parameter levels shown in
Table H1 for consistency, correlations, reliability, and cohen’s d, but allow for some variation
across conditions to obtain a more realistic scenario. Throughout this process, it was
necessary to make some arbitrary assumptions concerning the value to which particular
parameters were set. For example, observed variances for the first time point (Yi1) were
set to 1.0, as were state residual variances var (ζt). The relations among model parameters,
indicator reliability, consistency, total observed variance, and some randomness were all
used to determine the true values for population parameters. This led to the development
of Algorithm 1, which was implemented in Matlab, and led to population values within the
desired range.

The Monte Carlo facility of Mplus was then used for the analysis both to generate
samples from the given population values, and to fit the corresponding correctly specified
latent growth models to the simulated data over 1,000 replications per cell. The total
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number of models fit for this simulation was thus 540,000. For these models, invariance
of state residual factor loadings was assumed, and the first factor loading (γ1) was fixed
to the known population value for each time point as required for model identification.
Correlations/covariances between trait and slope factors were not estimated, but were fixed
to 0. This specification was chosen mostly to simplify the variance decomposition, leading
to a simpler algorithm for the generation of the remaining population parameters. Ex-
pected values for latent trait and slope factors [E (ξinti) , E (ξlini)], trait and intercept factor
variances [var (ξinti) , var (ξlini)], state residual variances [var (ζt)] state residual factor load-
ings for non-reference indicators (γ2, γ3), error variances [var (εit)], intercept correlations[
corr

(
ξinti , ξintj

)]
, and slope correlations

[
corr

(
ξlini , ξlinj

)]
were all estimated.

Criteria for Evaluating the Performance of the Models

Six criteria were used to evaluate the performance of the ISGM: 1) non-convergence,
2) improper solutions, 3) χ2 distribution approximation, 4) parameter estimation bias, 5)
standard error bias, and 6) coverage. These criteria are discussed below.

Non-convergence. For non-convergence, we recorded the number of replications
for which the estimation process did not converge after 1000 iterations. The percent con-
vergence was then computed, which is given by

%convergence = number of replications with no convergence after 1000 iterations
number of replications requested × 100.

Improper Solutions. Two types of improper solutions were evaluated. The first
type refers to the number of replications with a non-positive definite (npd) residual covari-
ance matrix, Θ (theta). These will be referred to as Θ warnings. The second type refers
to the number of replications with a npd latent variable covariance matrix, Ψ (psi). These
will be referred to as Ψ warnings.

χ2 Distribution Approximation. The adequacy of the χ2 distribution approx-
imation was assessed by comparing the observed χ2 distribution across replications with
the theoretical χ2 distribution. This helps to evaluate whether the empirical χ2 value is
appropriate to assess model fit. If the theoretical χ2 distribution is not sufficiently approx-
imated in a certain cell of the simulation design, this would indicate that the theoretical
χ2 distribution cannot be used in this case to obtain a valid p-value for the empirical χ2

statistic.
In order to get a single representative statistic for each model, the fit was assessed by

creating a mean of the observed differences,

χ2stat =

∑∣∣∣∣χ2
expected − χ

2
observed

∣∣∣∣
N

,

where χ2
expected is the proportion expected, and χ2

observed is the corresponding proportion
observed. The sum in the numerator is made over thirteen expected proportions given in
Mplus: .99, .98, .95, .90, .80, .70, .50, .30, .20, .10, .05, .02, and .01; N in the denominator
is equal to 13.
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Parameter Estimation Bias. The parameter estimation bias is a measure of the
accuracy with which the true population parameters are reproduced and is given by

peb = Mp − ep
ep

,

whereMp is the mean of the parameter estimates over all replications and ep is the parameter
value in the population. Values of less that .10 for peb are generally considered acceptable.

Standard Error Bias . The standard error bias is a measure of the reliability of
the reported standard error values, and is useful in determining the appropriateness of tests
of significance of the model parameters. High bias values for the standard error indicate
that significance tests may be unreliable (increased type I or type II errors). The standard
error bias is given by

seb = MSE − SDp

SDp
,

where MSE is the mean of the standard errors over all replications, and SDp is the standard
deviation of the estimated model parameters over all replications.

Coverage. Coverage refers to the proportion of replications for which the 95%
confidence interval actually contains the true population value. The nominal value for
coverage is .95.

Results

Non-convergence. The total number of non-converged replications was 173,305,
which represented 32% of the 540,000 total replications requested. Although this number
seems large, the distribution of non-converged solutions was heavily skewed, with 37%
of the cells having fewer than 10% non-converged solutions. The simulation results were
further examined using a regression analysis to identify the factors that were most strongly
related to non-convergence. The regression models and R2 values are shown in Table H2.
The most important factors were the number of time points, the level of trait consistency,
and sample size. This can be seen in Figure H1, which shows observed proportions of
non-converged solutions grouped by condition. While the proportion of non-converged
solutions was unacceptably high (.91) for the worst condition tested (sample size = 100,
consistency = .2, and only 3 time-points), non-convergence dropped below .001 (i.e., 0.1%)
when consistency was above .5 and five time-points were present.

Improper Solutions. The total number of improper solutions due to npd Θ matri-
ces was 910, which is less than 0.2%. The overall number of solutions with npd Ψ matrices
was much higher (132,954 or 25%), and sometimes exceeded 50% of the total number of
replications requested for a cell. Of the 132,954 replications with a Ψ warning message,
117,335 (88%) contained at least one improper parameter estimate, and 15,619 (12%) had
none. The absence of improper estimates when Ψ warnings are present indicates that the
Ψ warning is due to a linear dependency among parameters. There were a total of 191,864
improper parameter estimates, since there were multiple improper parameter estimates for
some replications. Of the 191,864 improper parameter estimates, 177,805 (93%) were out
of range (i.e., >1.0) slope correlations, 11,761 (6%) were improper (i.e., >1.0) intercept
correlations, and 2,298 (1%) were accounted for by other latent variable parameters.
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Table H2
Regression Results for Non-convergence, Improper Solutions, and χ2 statistic.

Criteria Model R2

(Non-)convergence
converged ~ time .51
converged ~ N .08
converged ~ con .34
converged ~ cohen .00
converged ~ corr .00
converged ~ time + con .85
converged ~ time + con + N .93

Improper solutions: Θ
Θ ~ time .08
Θ ~ N .20
Θ ~ con .06
Θ ~ cohen .00
Θ ~ corr .02
Θ ~ N + corr .22
Θ ~ N + corr + time .30
Θ ~ N*corr*time - N:corr:time .51
Θ ~ N*corr*time .52

Improper solutions: Ψ
Ψ ~ time .02
Ψ ~ N .00
Ψ ~ con .00
Ψ ~ cohen .00
Ψ ~ corr .62
Ψ ~ time + corr .65
Ψ ~ time*corr .71

χ2 statistic
χ2 stat ~ time .46
χ2 stat ~ N .35
χ2 stat ~ con .01
χ2 stat ~ cohen .00
χ2 stat ~ corr .00
χ2 stat ~ time + N .81
χ2 stat ~ time*N .97

Note. Regression models are presented in Wilkinson-Rogers (1973)
notation (for example, a*b indicates that terms a, b, and the prod-
uct a*b were used in the regression; a + b indicates that only a and b
were used; a*b - a:b is equivalent to a + b, as - a:b denotes that prod-
uct a*b was excluded). converged = the number of replications that
converged, Ψ = number of replications with an improper residual co-
variance matrix, Θ = number of replications with an improper latent
variable covariance matrix, χ2 stat = a composite measure of the ad-
equacy of the χ2 distribution approximation, con = consistency, N =
sample size, time = the number of time points, cohen = effect size for
mean change based on Cohen’s d.
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Figure H1 . Proportion of non-converged replications, grouped by condition; N = sample
size, con = consistency. The proportion of non-converged replications tended to decrease
as sample size, consistency, and the number of time points increase.

The results of a regression analysis on each of these warning messages is shown in
Table H2. These analyses revealed that while uncommon overall, Θ warnings occurred most
often when the latent correlations, number of time points, and sample size were lowest. The
number of Ψ warnings was highest when the latent correlations were high (0.9), which is
expected, since high correlations make the occurrence of correlation estimates greater than
1.0 due to sampling error more likely, especially in smaller samples. This behavior can be
seen graphically in Figure H2, which shows the proportion of improper solutions grouped
by the number of time points and level of correlation.

χ2 Distribution Approximation. The results for the χ2 distribution approxima-
tion indicated that the theoretical χ2 distribution was generally well-approximated, with an
average difference between expected and observed proportions below 0.1 in all conditions.
Table H2 shows the R2 fit statistics for the regression analysis, which indicated that the
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Figure H2 . Solutions with an improper residual covariance matrix, Θ (theta) or an improper
latent variable covariance matrix, Ψ (psi).

number of time points and the sample size were the best predictors for a deviation between
the theoretical and empirical χ2 distributions. The largest magnitude of differences between
expected and observed proportions occurred when the sample size was low, and the number
of time points was high. This dependency can be seen in Figure H3.

Parameter Estimation Bias. The performance criteria discussed previously (non-
convergence, improper solutions, and χ2 statistic) all resulted in a single metric for each
model. In contrast, the final three criteria (peb, seb, and coverage) provide a performance
value for each parameter estimated in the model. The average peb for most parameters
was less than 0.1, which can be seen in Figure H4A. This indicates that estimates of these
parameters tended to be well approximated. The peb for the expected value of the trait
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Figure H3 . χ2 Distribution Approximation. The average absolute distance between the
expected and observed proportions of the χ2 distribution.
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Figure H4 . Parameter estimation bias proportion histograms. A: The parameters (front
to back) are: γ2, γ3, var (ξint1), var (ξint2), var (ξint3), var (ε11), var (ε21), var (ε31), var (ε12),
var (ε22), var (ε32), var (ε13), var (ε23), var (ε33), var (ε14), var (ε24), var (ε34), var (ε15),
var (ε25) , var (ε35), var (ζ1), var (ζ2), var (ζ3), var (ζ4), and var (ζ5). B: The parame-
ters (front to back) are: var (ξlin1), var (ξlin2), var (ξlin3), corr (ξint1 , ξint2), corr (ξint1 , ξint3),
corr (ξlin1 , ξlin2), corr (ξlin1 , ξlin3), corr (ξlin2 , ξlin3).
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intercept and growth factors could not be estimated since the population values were set
to 0. However, these parameters were also approximated well; the mean difference between
the population and estimated values was 0.00, and the standard deviation was 0.003. The
peb for the intercept correlations [corr

(
ξinti , ξintj

)
], slope correlations [corr

(
ξlini , ξlinj

)
], and

growth factor variances [var (ξlini)] was higher, as seen in Figure H4B. The average peb of
the intercept correlations was -0.26, with a standard deviation of 0.80. The average peb for
the slope correlations was 0.33 with a standard deviation of 1.51. The average peb for the
growth factor variances was positively skewed, with a mean of 0.87 and a standard deviation
of 1.55.

A separate regression analysis was performed to examine the most important factors
causing peb for each parameter. The R2 values resulting from this regression are shown in
Figure H5. Due to the high peb values observed for the growth factor variances, the intercept
correlations, and the slope correlations, these were investigated further to determine the
conditions under which high peb levels occurred. For this, an overall peb metric for each
parameter set was made by averaging the absolute bias value for each parameter with
other model parameters from that set. The R2 fit for the regression with the combined
peb metrics is shown in Table H3. The peb for the growth factor variances was highest the
lower the level of consistency, sample size, and number of time points. This is demonstrated
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Figure H5 . R2 values for regression of parameter estimation bias by time, N, cohen, and
corr. Parameters not estimated in all conditions [e.g., var (ε14−35), var (ζ4−5)] were omitted.
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Table H3
Regression Results for peb, seb, and Coverage

Criteria Model R2

var (ξlini ) corr
(
ξinti , ξintj

)
corr

(
ξlini , ξlinj

)
Parameter estimate bias

peb ~ time .31 .02 .08
peb ~ N .06 .03 .01
peb ~ con .29 .15 .12
peb ~ cohen .00 .00 .00
peb ~ corr .00 .18 .32
peb ~ time*con .82 .20 .23
peb ~ time*con + N .89 .24 .24
peb ~ time*con*N .99 .30 .27
peb ~ time*con + corr .83 .38 .56
peb ~ time*con*corr .83 .69 .86

Standard Error Bias
seb ~ time 0.48 .01 .00
seb ~ N 0.04 .01 .02
seb ~ con 0.41 .03 .01
seb ~ cohen 0.00 .01 .01
seb ~ corr 0.00 .00 .00
seb ~ time*con 0.93 .06 .02
seb ~ time*con + N 0.96 .07 .04
seb ~ time*con*N 0.99 .15 .12
seb ~ time*con + corr 0.93 .06 .02
seb ~ time*con*corr 0.93 .10 .05

Coverage
cover ~ time .00 .14
cover ~ N .02 .03
cover ~ con .07 .05
cover ~ cohen .00 .00
cover ~ corr .77 .42
cover ~ corr*con .91 .54
cover ~ corr*time .78 .66
cover ~ corr*con*time .92 .88
cover ~ corr*con*N .98 .60

Note. Regression models are presented in Wilkinson-Rogers (1973) notation. peb = parameter es-
timation bias, seb = standard error bias, cover = the proportion of replications for which the 95%
confidence interval contains the true population value, con = consistency, N = sample size, time = the
number of time points, cohen = effect size for mean change based on Cohen’s d.
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graphically in Figure H6. The peb for the intercept and slope correlations behaved similarly.
Parameter estimate bias was highest the lower the actual level of correlation, consistency,
and number of time points. This is depicted in Figure H7, which also demonstrates that
intercept correlation estimates were less biased than the slope correlations.

Standard Error Bias . Standard error bias for the estimated parameters is shown
in Figures H8 and H9. The seb for the parameters in Figure H8 was low, suggesting that
tests of significance for these model parameters were reliable. As with peb, three sets of
parameters were the exception to this rule: the intercept correlations, slope correlations,
and growth factor variances. Of these, the standard error of the growth factor variances
was the least biased, with a mean of 0.21 and a standard deviation of 0.21. The mean seb
for intercept correlations was 0.25, and the standard deviation was 2.56, while the mean
seb for slope correlations was 24.8, with a standard deviation of 263.

The seb regression results for most parameters are shown in Figure H9. From this
plot, we see that for most parameters, seb is predicted by the number of time points and the
sample size. For the trait and growth variances, consistency is also a strong predictor. The
conditions which produced high seb values for the correlations and growth factor variances
was again investigated further using a combined seb metric for each parameter set. The
models and R2 values are shown in Table H3.

Differences between conditions with respect to seb for the growth factor variance was
explained by consistency, sample size, and number of time points in the expected way, as
shown in Figure H10. As indicated by the regression results, no clear set of conditions was
found that linearly predicted the seb for the intercept and slope correlations, which was
large for most cells. However, the condition with the highest number of time points (t = 5),
highest consistency (Con = 0.8), and highest sample size (N = 500) produced a mean seb
of 0.01 with a standard deviation of 0.002 for both the intercept and slope correlations,
which can be seen as good.

Coverage. The average coverage for each parameter is shown in Figure H11. As
depicted in the graph, coverage values for most parameters were well approximated. The
intercept and slope correlations were the only parameters for which the coverage values were
low enough to be of concern. Coverage for intercept correlations were the lowest, followed
by slope correlations. Regression was again performed on the coverage for each separate
parameter, as shown in Figure H12. Coverage was most heavily dependent on the level of
correlation for both intercept and slope-slope correlations, which can also be seen from the
regression values shown in Table H3. Figure H13 shows the average coverage by condition
for intercept correlations, and Figure H14 shows the average coverage for slope correlations.
For both of these sets of parameters, coverage was highest when the population correlation
was 0.5. Coverage was low when the correlation was either very high or very low. The
second most important factor for both sets of correlations was consistency. Coverage for
intercept correlations was higher when consistency was high. For slope correlations the
same general trend is true for the 5 time point condition and also for the condition with
4 time points. Coverage for intercept correlations did not depend on the number of time
points, while coverage for the slope correlations did. Sample size was more important in
the coverage for intercept correlations than for slope correlations.
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Figure H6 . Parameter estimation bias for growth factor variances, var
(
ξlin1−3

)
.

Summary and Discussion

Overall, this Monte Carlo simulation revealed that the ISGM performs well under
a range of conditions, but also clearly indicated conditions under which estimation prob-
lems become more likely with this model. Non-convergence occurred mostly in extreme
conditions, that is, when consistency, sample size, and the number of time points were low
(growth models are not typically used when consistency is as low as in the current study,
so this condition is of relatively little practical concern). Non-convergence was not an issue
when the level of consistency was high, the sample size was at least 300, and measurements
were available for at least 4 time points. Solutions with an improper residual covariance
matrix (Θ) were uncommon (less than 0.2% overall). Replications with an improper latent
variable covariance matrix occurred much more frequently in general, and particularly when
population correlations were close to 1.0. The theoretical χ2 distribution was generally well-
approximated, with average difference between expected and observed proportions below
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Figure H7 . Parameter estimate bias for intercept correlations (top row), and slope correla-
tions (bottom row).

.10 in all conditions. Interestingly, the size of the design had a negative effect on the χ2

distribution approximation. This is in line with a study by Kenny and McCoach (2003),
who also found that CFI and TLI also tend to worsen with the size of design, while RMSEA
tends to improve. Most model parameters were accurately reproduced (see Figure H4A),
and the corresponding standard error estimates for these model parameters were reliable
(see Figure H8). Therefore, both estimated values and inferences made based on these
parameter estimates are generally trustworthy, except for the conditions described below.

Three sets of parameters and the corresponding standard errors were not always
accurately estimated. These include growth variances, intercept covariances, and slope
covariances. Estimates of growth factor variances and the accompanying standard errors
were most biased when the level of consistency, number of time points, and sample size was
low. These are the same conditions that led to more frequent model non-convergence.

Parameter estimate bias and standard error bias for intercept and slope correlations
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Figure H8 . Standard Error Bias. The parameters (front to back) are: γ2, γ3, E (ξint1),
E (ξint2), E (ξint3), E (ξlin1), E (ξlin2), E (ξlin3), var (ξint1), var (ξint2), var (ξint3), var (ε11),
var (ε21), var (ε31), var (ε12), var (ε22), var (ε32), var (ε13), var (ε23), var (ε33), var (ε14),
var (ε24), var (ε34), var (ε15), var (ε25) , var (ε35), var (ζ1), var (ζ2), var (ζ3), var (ζ4), and
var (ζ5).

were high when consistency, correlation, and number of time points were low. Standard
error bias was particularly high for slope correlations except under the condition with the
highest consistency, correlation, and number of time points. Coverage for the correlation
estimates was the highest (average = .935) when the correlation was in the middle range
(0.5). Coverage for all parameters except the intercept and slope correlations was very close
to the nominal value of .95 (within 1.3%) under all simulation conditions.

In summary, in this simulation we assessed a range of conditions, including extreme
conditions of low sample size, low consistency, and high and low latent correlations. This
was done in order to give the model a “chance to fail” and to clearly identify conditions
under which estimation problems should be expected to occur. Our results indicate that
the ISGM shows problems in small samples (N ≤ 200), which is not unexpected for a com-
plex growth model. We therefore recommend that larger samples (N = 300 or larger) be
used for this model. We also found that situations with low consistency (i.e., weakly de-
fined growth factors) can be problematic, especially when other conditions are suboptimal
as well. Low consistency means that most of the true score variance is due to state vari-
ability processes (situational effects or person by situation interaction effects). We suspect
that in these cases, the empirical identification of growth factors becomes more difficult,
leading to estimation problems. In such cases, a researcher could consider simpler models
(e.g. LST models without growth components) that focus exclusively on state-variability
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Figure H9 . R2 values for regression of standard error bias by time, N, cohen, and corr.
Parameters not estimated in all conditions [e.g., var (ε14−35), var (ζ4−5)] were omitted.

processes. Another problematic condition (in terms of improper solutions) was the size of
the correlation between growth factors. The size of these correlations indicates the degree
of homogeneity of the indicators. Very high correlations (.9) indicate that it is hard to dis-
tinguish between the trait components of different indicators, showing that these indicators
are essentially homogeneous. In these cases, researchers may consider simplifying the model
by choosing a model with general (as opposed to indicator-specific) growth factors (i.e., the
SGM or GSGM instead of the ISGM).

The ISGM appears to be most suitable when the level of trait (or growth) variance is
substantial relative to occasion-specific (state residual) variability and when trait/growth
correlations are substantial, but not too high. This makes sense, as this model is designed
to model trait-change processes with related, yet heterogeneous indicators. Another inter-
esting finding of this simulation study was the positive effect of the number of time points
on various measures of model performance. Our results showed that the common recom-
mendation according to which researchers should use at least four (and preferably more)
time points when modeling growth was confirmed for the ISGM. Having a larger number of
time points clearly helped the model to perform better in otherwise suboptimal conditions.
We therefore recommend that researchers using the ISGM collect data on at least four—and
preferably more—measurement occasions.
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Figure H10 . Standard error bias for growth factor variances, var
(
ξlin1−3

)
.
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Figure H11 . Mean Coverage. The parameters (left to right) are: γ2, γ3, E (ξint1), E (ξint2),
E (ξint3), E (ξlin1), E (ξlin2), E (ξlin3), var (ξint1), var (ξint2), var (ξint3), var (ξlin1), var (ξlin2),
var (ξlin3), var (ζ1), var (ζ2), var (ζ3), var (ζ4), var (ζ5), var (ε11), var (ε21), var (ε31), var (ε12),
var (ε22), var (ε32), var (ε13), var (ε23), var (ε33), var (ε14), var (ε24), var (ε34), var (ε15),
var (ε25) , var (ε35), corr (ξint1 , ξint2), corr (ξint1 , ξint3), corr (ξlin1 , ξlin2), corr (ξlin1 , ξlin3), and
corr (ξlin2 , ξlin3). The red line is drawn at the nominal .95 level. The green lines are drawn
at .91 and .98.
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Figure H12 . R2 values for regression of coverage on time, N, cohen, and corr. Parameters
not estimated in all conditions [e.g., var (ε14−35), var (ζ4−5)] were omitted.
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Figure H13 . Coverage for corr
(
ξinti , ξintj

)
.
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