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In these supplemental materials, we present a recipe on how to obtain Bayes factors

with importance sampling, and two tests to check our implementation of importance

sampling: (1) a model-recovery study, and (2) the Savage-Dickey density ratio test for

each model. In addition, we present the results of a robustness analysis showing

that our conclusions are unaffected by the choice of the priors on the model

parameters. Finally, we present a model comparison study using BIC for the same models

and data pool as used in the article.

Recipe for Importance Sampling

In this section, we present a recipe that describes how we obtained Bayes factors with

importance sampling. We use M(.) to refer to specific model that can either be the EV,

PVL, PVL-Delta, or the VPP model.

1. Fit modelM(.) to the data of participant s = 1.

2. Find the beta distributions (i.e., Beta(α, β)) with the best fit to the posterior

distributions of θ.1 Save the corresponding α and β parameters.
1Note that θ represents a subject and model-specific parameter vector (see Table 2 in the main article

for each model’s parameters). This means that we obtain one beta distribution for each of the parameters
contained in θ.
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3. Draw a set of parameters from the Beta importance densities, and compute the

associated likelihood. Save the likelihood.

4. Repeat the previous step D − 1 times (with D the number of draws).

5. Compute the marginal likelihood using Equation 1.

m(y | M(.)) ≈
1
N

N∑
i=1

p(y | θi,M(.))p(θi | M(.))
g(θi | M(.))

, θi ∼ g(θ | M(.)) (1)

6. Repeat steps 1− 5 for all s ∈ {2, ..., S} (with S the number of participants).

Model-Recovery Studies

In this section, we present the results of the model-recovery study. The purpose of

this study was to confirm that the Bayes factor tends to favor the data-generating model.

This study is based on eight generated data sets: We generated 25 synthetic participants

completing a 100-trial IGT using each of the four models. As data-generating parameters

we used the median parameter values obtained from fitting the models to a subset of the

data used in the article.

We fit each of the four models to the four data sets, and then applied importance

sampling to derive Bayes factors for all possible model comparisons. Analogous to the

analyses reported in the main text, we present histograms showing the distribution of the

log Bayes factors. In addition, we calculated the median posterior model probability for each

model, and the proportion of participants for whom each model has the highest posterior

model probability. The latter two should be high whenever the data-generating model is

the same as the model that was used to fit the data (see also Pitt & Myung, 2002).

Figure 1 shows the distribution of the log Bayes factors of 25 synthetic participants

completing a 100-trial IGT. It is evident that in the case of all models, the majority of

the synthetic participants provides evidence for the data-generating model. This finding is

corroborated by Table 1: The median posterior model probability and the percentage of

participants for whom each model has the largest posterior model probability are highest
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Figure 1 . Histograms of the log(BF) of 25 synthetic participants completing a 100-trial
IGT. Data of the first to fourth row were generated with the EV, PVL, PVL-Delta, and
VPP model, respectively. A positive log(BF12) indicates that the data are more likely to
occur under the first model (i.e., the data-generating model) than under the second model,
whereas a negative log(BF12) indicates that the data are more likely to occur under the
second model (i.e., the model that did not generate the data).
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for the data-generating model. Thus, these results suggest that our implementation

of importance sampling is correct and that the Bayes factor is a useful model

comparison tool.

Table 1
Median posterior model probabilities (MPMP) and percentage of participants for whom the
corresponding model has the largest posterior model probability. The data were generated
with either the EV, PVL, PVL-Delta, or VPP model, and describe the performance of 25
synthetic participants on a 100-trial IGT (i.e., first model-recovery study).

Data-generating model
EV PVL PVL-Delta VPP

MPMP % MPMP % MPMP % MPMP %
EV .95 100 .00 12 .07 40 .00 16
PVL .00 0 .69 56 .05 0 .07 12
PVL-Delta .03 0 .02 12 .58 56 .02 8
VPP .02 0 .12 20 .21 4 .69 64

Savage-Dickey Density Ratio Tests

An alternative way to check our implementation of importance sampling is to

investigate whether Bayes factors obtained with our implementation of importance sampling

are in line with Bayes factors obtained with the Savage-Dickey density ratio test (Dickey,

Lientz, et al., 1970; Dickey, 1971). The Savage-Dickey density ratio offers a method

to compute Bayes factors for nested models. In order to be able to compare

Bayes factors obtained with these two different methods, we thus needed to

create nested RL models. This was done by fixing an arbitrary parameter of

each model. We decided to fix the a parameter of each model to a predefined

value a0, and indicate nested models byM∗(.). Thus, the idea is to compare each

of the four RL models to its nested version using both importance sampling

and Savage-Dickey.

The Savage-Dickey method is explained in detail in Lee and Wagenmakers (2013),

Vandekerckhove, Matzke, and Wagenmakers (2015), and Wagenmakers, Lodewyckx,

Kuriyal, and Grasman (2010); here, we only provide the main idea: To obtain a Bayes

factor comparing a RL modelMi (where i ∈ {EV, PVL, PVL-Delta, VPP}) to its nested
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versionM∗i , we need to divide the prior ordinate at a fixed value of parameter a (i.e., a0)

by the posterior ordinate at that same fixed parameter value. The Bayes factor according

to the Savage-Dickey method is then defined as:

BFMiM∗
i

= p(y | Mi)
p(y | M∗i ) = p(a = a0 | Mi)

p(a = a0 | y,Mi)
, (1)

where y is the data, and a = a0 indicates that the parameter a is fixed to a predefined value

a0.

The Bayes factor that we wish to approximate with importance sampling is the ratio

of the marginal likelihood of the complete RL model and its nested version, that is:

BFMiM∗
i

= m(y | Mi)
m(y | M∗i ) . (2)

We applied the Savage-Dickey density ratio test and importance sampling to the same

synthetic data set as used in the last section (i.e., 25 synthetic participants completing a

100-trial IGT). In Figure 2 we present the Savage-Dickey density ratio test for the four

models and four synthetic subjects; the results for the remaining participants are similar.

The header of each plot shows the Bayes factor obtained with importance sampling (i.e.,

BF_IS), and the Bayes factor obtained with the Savage-Dickey method (i.e., BF_SD). The

dashed and solid lines represent the prior and posterior distribution, respectively. The black

dots indicate the height of the prior and posterior distributions at a = a0. From the figure

it is evident that there is a close correspondence between Bayes factors obtained with the

Savage-Dickey density ratio test and importance sampling suggesting that we correctly

implemented importance sampling.
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Figure 2 . Illustration of the Savage-Dickey density ratio test for all models. Data of the
first to fourth row were generated and fit with the EV, PVL, PVL-Delta, and VPP model,
respectively. The header of each plot shows the BF obtained with importance sampling (i.e.,
BF_IS), and the Bayes factor obtained with the Savage-Dickey method (i.e., BF_SD). The
dashed and solid lines represent the prior and posterior distribution, respectively. The black
dots indicate the height of the prior and posterior distributions at a = a0.
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Robustness Analyses

In this section, we present the results of a robustness analysis. The aim

of this analysis is to investigate the extent to which our conclusions are altered

by the choice of the priors on the model parameters. Whereas we used uniform

priors on the model parameters in the analyses presented in the main article

(i.e., Beta(1, 1)), we repeat here the analyses with two different priors: either

a Beta(1, 2) or a Beta(2, 1) distribution. The different prior distributions

are visualized in Figure 3. It is evident that the Beta(1, 1) distribution puts

equal mass on all parameter values, the Beta(1, 2) distribution favors smaller

parameter values, whereas the Beta(2, 1) distribution favors larger parameter

values.
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Figure 3 . Visulalization of the different priors. The prior distribution shown in the left
panel is used in the analyses presented in the main article, whereas the prior distributions
present in the middle and right panel are used in the sensitivity analyses.

Figures 4 - 6 show, separately for the three different prior distributions,

the distribution of the log Bayes factors of all participants for the six possible

model comparisons. A positive log(BF12) indicates that the data are more likely

to occur under the first model than under the second model, whereas a negative

log(BF12) indicates that the data are more likely to occur under the second

model than under the first model. The header of each histogram presents the

percentage of participants for whom the data are more likely to occur under

model M1 than model M2.
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Figure 4 . Beta(1, 1) prior: Histograms of the log(BF) for pairwise comparison of four
RL models applied to the IGT data from each of 771 participants (cf. Figure 2 in the
main article). A positive log(BF12) indicates that the data are more likely to occur under
the first model than under the second model, whereas a negative log(BF12) indicates that
the data are more likely to occur under the second model. Note that a log(BF) of 20
corresponds to a BF of almost 500 million, and that Jeffreys (1961) considers as extreme
evidence a Bayes factor larger than 100 (i.e., log(BF) > 4.6). The header of each histogram
presents the percentage of participants for whom the data are more likely to occur under
the corresponding model.
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Figure 5 . Beta(1, 2) prior: Histograms of the log(BF) for pairwise comparison of four
RL models applied to the IGT data from each of 771 participants. A positive log(BF12)
indicates that the data are more likely to occur under the first model than under the second
model, whereas a negative log(BF12) indicates that the data are more likely to occur under
the second model. Note that a log(BF) of 20 corresponds to a BF of almost 500 million,
and that Jeffreys (1961) considers as extreme evidence a Bayes factor larger than 100 (i.e.,
log(BF) > 4.6). The header of each histogram presents the percentage of participants for
whom the data are more likely to occur under the corresponding model.
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Figure 6 . Beta(2, 1) prior: Histograms of the log(BF) for pairwise comparison of four
RL models applied to the IGT data from each of 771 participants. A positive log(BF12)
indicates that the data are more likely to occur under the first model than under the second
model, whereas a negative log(BF12) indicates that the data are more likely to occur under
the second model. Note that a log(BF) of 20 corresponds to a BF of almost 500 million,
and that Jeffreys (1961) considers as extreme evidence a Bayes factor larger than 100 (i.e.,
log(BF) > 4.6). The header of each histogram presents the percentage of participants for
whom the data are more likely to occur under the corresponding model.
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Table 2
Median posterior model probabilities (MPMP; note that these need not sum to 1), and
percentage of participants for whom the corresponding model has the largest posterior model
probability, for the three different prior distributions separately. Grey shaded cells refer to
the best model.

Beta(1, 1) Beta(1, 2) Beta(2, 1)
MPMP % MPMP % MPMP %

EV .00 7 .00 6 .00 13
PVL .04 25 .04 30 .02 25
PVL-Delta .00 9 .00 11 .00 5
VPP .64 59 .49 52 .66 57

Figures 4 - 6 show that there are some quantitative differences depending

on which prior distribution is used. For example, the EV model is stronger

supported when a Beta(2, 1) prior is used compared to the two other prior

distributions. However, the qualitative conclusions are the same irrespective

of the prior distribution; all three figures show that the data provide the most

evidence for the VPP model, and the least evidence for the EV model. In

addition, the data provide more evidence for the PVL model than for the PVL-

Delta model.

The findings from Figures 4 - 6 are corroborated by Table 2. The

second, fourth, and sixth column of Table 2 show the median posterior model

probabilities, and the third, fifth and seventh column show the percentage of

participants for whom the corresponding model has the largest posterior model

probability, separately for the three different prior distributions. It is evident

that the VPP model is supported the most; that is, the data from 52-59% of the

participants provide the most evidence for the VPP model. The PVL model is

favored by the second largest proportion of the participants (i.e., 25-30%). It

is also evident that the EV model is stronger supported than the PVL-Delta

model when a Beta(2, 1) prior is used—a finding that is reversed for the two

other prior distributions.
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Figure 7 . Beta(1, 1) prior: Distribution of the posterior model probabilities of 771
participants derived with importance sampling. Each violin plot shows the distribution
of posterior model probabilities for one model. The dots indicate the median posterior
model probability (cf. second column of Table 2), and the boxes indicate the interquartile
range (i.e., the distance between the .25 and .75 quantiles).

The distributions of individual posterior model probabilities are visualized

in Figures 7 - 9, which presents violin plots of the 771 posterior model

probabilities for each of the four RL models, for the three different prior

distributions separately. The dots indicate the median posterior model

probability (cf. second, fourth, and sixth column of Table 2), and the boxes

indicate the interquartile range (i.e., the distance between the .25 and .75

quantiles). From Figures 7 - 9, it is evident that in the case of the EV, PVL, and

PVL-Delta models, the individual posterior model probabilities follow a right

skewed distribution suggesting that the data of most participants provide little

evidence for these models. It is also evident that the tail of the distribution in
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Posterior model probabilities
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Figure 8 . Beta(1, 2) prior: Distribution of the posterior model probabilities of 771
participants derived with importance sampling. Each violin plot shows the distribution
of posterior model probabilities for one model. The dots indicate the median posterior
model probability (cf. fourth column of Table 2), and the boxes indicate the interquartile
range (i.e., the distance between the .25 and .75 quantiles).

the case of the EV and PVL-Delta models is thinner than in the case of the

PVL model. This suggests that there are more participants who provide strong

evidence for the PVL model then for the EV and PVL-Delta models. In the

case of the VPP model, the distribution of the posterior model probabilities

is bimodal with the right mode being more pronounced than the left mode.

This distribution suggests that the evidence for the VPP model differs greatly

across participants, but that most participants provide compelling evidence in

favor of the VPP model. Altogether Figures 7 - 9 suggest that there are only

minor difference in the distributions of individual poster model probabilities.

To conclude, this robustness analysis suggests that our main conclusions are
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Posterior model probabilities
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Figure 9 . Beta(2, 1) prior: Distribution of the posterior model probabilities of 771
participants derived with importance sampling. Each violin plot shows the distribution
of posterior model probabilities for one model. The dots indicate the median posterior
model probability (cf. sixth column of Table 2), and the boxes indicate the interquartile
range (i.e., the distance between the .25 and .75 quantiles).

unaffected by the choice of the prior distribution.
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Comparison to BIC

In this section, we present the results of a model comparison study based on BIC

for the same models and data pool as used in the article. The BIC is called post hoc fit

criterion in the context of RL models for the IGT. Therefore, we call it here “BIC post hoc

fit criterion”. The advantage of the BIC post hoc fit criterion is that it is easier to compute

than the importance sampling Bayes factors. However, it should be kept in mind that the

BIC post hoc fit criterion considers only one dimension of model complexity, that is, the

number of parameters, and that the BIC post hoc fit criterion is derived as an asymptotic

approximation of Bayesian model selection using Bayes factors (Myung, Cavagnaro, & Pitt,

in press). Another popular measure is the Watanabe-Akaike information criterion (WAIC;

Watanabe, 2010, 2013). However, WAIC is not suitable for our predictive goal, that

is, to predict the next choice given all previous choices (Aki Vehtari, personal

communication, 16.07.2014; see also a discussion on Andrew Gelman’s blog

http://andrewgelman.com/2014/09/25/waic-time-series/, and Vehtari & Ojanen,

2012).

Computation of BIC. The BIC for model M(.) is defined as follows (Schwarz,

1978):

BICM(.) = −2 log(L(.)) + ki log(n), (3)

where L(.) is the maximum likelihood of modelM(.), k(.) is the number of free parameters

of model M(.), and n is the number of IGT trials (Wagenmakers, 2007; Worthy, Pang,

& Byrne, 2013, but see also for example Ahn, Busemeyer, Wagenmakers, & Stout, 2008,

Fridberg et al., 2010, and Yechiam, Arshavsky, Shamay-Tsoory, Yaniv, & Aharon, 2010,

where the BIC post hoc fit criterion is computed for RL models relative to a baseline

model). Thus, the first term in Equation 3 (i.e., the log maximum likelihood) quantifies the

goodness-of-fit, whereas the second term penalizes a model for its complexity. Note that
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Table 3
Median posterior model probabilities (MPMP), and percentage of participants for whom the
corresponding model has the largest posterior model probability obtained from three different
methods: (1) Importance sampling, and (2) BIC. Grey shaded cells refer to the best model.

Importance Sampling BIC
MPMP % MPMP %

EV .00 7 .00 14
PVL .04 25 .36 46
PVL-Delta .00 9 .00 17
VPP .64 59 .00 24

for the sake of clarity we omitted the notation that indexes a specific participant.2

Approximation of the Bayes Factor. The BIC score can be used to approximate

the Bayes factor using the following equation (e.g., Wagenmakers, 2007):

BF12 ≈ exp
(BICM2 − BICM1

2

)
, (4)

Equation 4 allows us to investigate whether the approximations of the Bayes factors are in

line with Bayes factors obtained from importance sampling.

Results. Table 3 shows the median posterior model probabilities (MPMP), and

percentage of participants for whom the corresponding model has the largest posterior

model probability obtained from two different methods: (1) Importance sampling, and (2)

BIC post hoc fit criterion. Just as the Bayes factors obtained from importance sampling,

the Bayes factors approximated with the BIC post hoc fit criterion suggest that the data of

only a minority of participants provide strong evidence for the EV and PVL-Delta models.

However, it is evident that in contrast to the Bayes factors obtained from importance

sampling, Bayes factors approximated with the BIC post hoc fit criterion suggest that the

data provide the most evidence for the PVL model and relatively little evidence for the

VPP model. These findings are corroborated by Figure 10 showing the distributions of the
2Since we did not use maximum likelihood to estimate the parameters, the fitting routine

did not automatically provide us with L(.)—the maximum likelihood of model M(.). However,
we obtained L(.) by computing the likelihood of the parameter combination that corresponds
to the maximum log posterior. The log posterior is automatically returned by Stan (i.e.,
called “lp__”). The BIC computation was confirmed by comparing our results obtained for
the dataset of Worthy et al. (2013) to the ones reported in the original article.
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Posterior model probabilities

VPP

PVL−D

PVL

EV

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

Figure 10 . Distribution of the posterior model probabilities of 771 participants derived with
BIC. Each violin plot shows the distribution of one model. The dots indicate the median
posterior model probability (cf. Table 3), and the boxes indicate the interquartile range
(i.e., the distance between the .25 and .75 quantiles).

posterior model probabilities of all participants derived with the BIC post hoc fit criterion.

This analysis illustrates the critique that the BIC prefers simple models that

underfit the data (Burnham & Anderson, 2002). In this particular case, the

VPP model is punished for having relatively many parameters; however our

Bayes factor analysis reveals that for this specific model comparison exercise,

the number of free parameters alone is a limited and possibly misleading index

of model complexity.
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