
Appendix

This appendix describes values of s and l that are able to make best/worst and normalized

comparisons in the attribute representation sublayers. The parameter values listed here are

not exhaustive (this discussion serves largely as an existence proof). The time scale used in

this discussion will be the time scale of the attribute representation layer, and for all t the

external inputs to the nodes in the sublayer will be y = (x1, x2, ... , xn, 0, 0, ... , 0), with

1 > x1 > x2 > ... > xn > 0. The activation of a node corresponding to alternative i at

time t will be written as Ai(t) and, with the piecewise linear function f , defined in the text,

its dynamics will be determined by:

Ai(t) = f [s · Ai(t− 1)− l ·
∑
k 6=i

Ak(t− 1) + xi] (1)

There are three different types of attribute sublayer computations discussed in this paper.

One requires the identification of the worst alternative on an attribute with stable activation

state α such that αi > 0 for i < n and αi = 0 for i = n. These computations can be

understood by considering the stable activation state of the system in the absence of upper

and lower bounds imposed by f , and in the absence of nodes i > n, whose inputs are 0.

Without the bounds the system is linear. At time t, the activations of the nodes in this

system can be represented by the n dimensional vector A(t), which is transformed across

time by the n × n state transition matrix W , with Wij = s for i = j and Wij = −l for

i 6= j. W is a symmetric toeplitz matrix, and its eigenvalues are λ1 = s− (n− 1) · l for the

first eigenvector and λ2 = s+ l for all other eigenvectors (Makhoul, 1981). Requirements for

stability are λ1, λ2 ∈ (−1, 1). Let us assume that s and l are such that these requirements

are satisfied. We can thus write the asymptotic activation of node i as:

αi =
xi

1− λ2
−
[

1

1− λ2
− 1

1− λ1

]
· 1

n
·

n∑
k=1

xk (2)

Now for simplicity let us set s = 0, and find a value of l such that αn = 0. Imposing

these restrictions on equation 2 and simplifying gives us:

l =
C

1− (n− 1) · C
(3)

Here C = xn∑n
k=1 xk

. As C < 1
n
, equation 3 guarantees some l > 0. Also note that the

stability requirements imply that |s − (n − 1) · l| < 1, which means that l < 1
n−1 . Placing

equation 3 into this inequality gives us n < 2
C

+ 1. This is guaranteed for any n, as C < 1
n
.

Now we have found a value of l such that for s = 0, the system without upper or lower

1

bounds, and without nodes i > n, stabilizes with activation αn = 0. As s = 0, the stable

activations of all other nodes i < n, is 0 = αn < αi < xi < 1. Thus for these nodes we do

not need to worry about the bounds imposed by f . With the lower bound on f , we also

have αi = 0 for i > n. This means that the activations of these nodes remain at 0, and

these nodes can be ignored from the analysis. Thus the value of l (with s = 0) that gives

us the required computation without bounds and without nodes i > n also gives us this

computation with these bounds and with these nodes.

The second type of computation considered in this paper requires the identification of

the best alternative on an attribute, with stable activation state α such that αi = 1 for i = 1

and αi = 0 for i > 1. For this analysis, let us explore the restrictions we can place on Ai(t)

over time. At t = 1 we have Ai(1) = xi. At t = 2 we have Ai(2) = f [s ·xi− l ·
∑
k 6=i

xk +xi]. To

ensure that we are able to perform best comparisons, we can impose the following restriction:

A1(2) > 0 and Ai(2) = 0 for i > 1. The latter is guaranteed if A2(2) = 0. Thus our

restrictions can be written as:

s · x1 − l ·
∑
k 6=1

xk + x1 > 0 (4)

s · x2 − l ·
∑
k 6=2

xk + x2 ≤ 0 (5)

The constraints imposed by equations 4 and 5 can be simplified into equations 6 and 7

respectively

s >
l

A
− 1 (6)

s ≤ l

B
− 1 (7)

Here we have A = x1∑
k 6=1

xk
and B = x2∑

k 6=2

xk
. Note that we have A > B > 0 and also that

B < 1. This implies that values of s and l satisfying the above constraints can be seen on

the s/l plane, as lying between two lines with positive slope, both originating at s = −1.

For a large enough s, some value of l that satisfies these constraints necessarily exists, and

similarly for a large enough l some value of s that satisfies these constraints also necessarily

exists.

Now, equations 6 and 7 are not sufficient to ensure that Ai(3) are suppressed to 0 for

all i > 1. This restriction is however guaranteed if A2(3) = 0, which imposes a further

constraint, written in equation 8.

2

x2 < l · A1(2) = l · f [s · x1 − l ·
∑
k 6=1

xk + x1] (8)

Now let us assume that s·x1−l ·
∑
k 6=1

xk+x1 ≤ 1 implying that A1(2) = s·x1−l ·
∑
k 6=1

xk+x1.

The constraint written in equation 8 can now be rewritten as:

x2 < l · [s · x1 − l ·
∑
k 6=1

xk + x1] (9)

This simplifies into

s >
C

l
+

l

A
− 1 (10)

Here C = x2
x1

and A is as defined above. Now as l becomes large, C
l

approaches 0, and

the constraint in equation 10 converges to the constraint in equation 6, which is necessarily

satisfied for a correspondingly large enough value of s. If we have s · x1 − l ·
∑
i 6=1

xi + x1 > 1

then the constraint in equation 8 is merely x2 < l which is also satisfied for a large l (and a

correspondingly large s).

Now we have thus far shown that some large enough values of l and s exist so that we

have A1(2) > 0 and Ai(2) = 0 for all i > 1, and also that Ai(3) = 0 for all i > 1. Now if

we select any s ≥ 1 then we have A1(3) ≥ A1(2) > 0, which in turn is sufficient to ensure

that Ai(t) = 0 for all i > 1 and all t > 3. s ≥ 1 also ensures that for large enough t we

obtain A1(t) = 1. Note that for the required s ≥ 1, a large enough value of l can be found,

so that the constraints necessary to ensure A1(2) > 0, Ai(2) = 0 and Ai(3) = 0 for all

i > 1, are satisfied. For these values of s and l our network can perform the required best

computations.

The final type of computation considered in this paper requires normalizing attribute

values, so that αi = ω1 · xi − ω2 ·
∑

k 6=i xk where ω1 an ω2 are positive constants. Some

simple algebra shows that rewriting equation 2 can give us this form, or more specifically,

can give us αi = [ω3 − ω2] · xi − ω2 ·
∑

k 6=i xk, where ω3 = 1
1−λ2 > ω2 =

[
1

1−λ2 −
1

1−λ1

]
· 1
n
≥ 0

for λ1, λ2 ∈ (−1, 1). If s = l = 0 then we have ω3 = 1 and ω2 = 0. If we increase s and

l marginally, then we get our required form, without α1 ≥ 1 or αn ≤ 0. This gives us the

required stable activation state in the presence of bounds on f .

3

