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Supplement for Individual Differences and Fitting Methods for the Two-Choice
Diffusion Model of Decision Making

Roger Ratcliff and Russ Childers

This supplement adds information to the article. The topics It might be thought that it is unrealistic to assume RTs are
are in an order that is consistent with the sections in the article measured accurately to 1 ms. Generally, keyboards are polled and
Refinements to the Chi-Square Fitting Method there can be systematic steps of 16 or 33 ms between successive
polls of any key. We have measured delays up to 64 ms on older
lEgyboards and found no problems because the variability in the
o . . _ keyboard times is combined (convolved) with the RT and the
1. When the data are divided into 5 quantiles, if the number oéffect of the granularity in the keyboard response is very small. For
observations in a quantile is less than 7 or greater than 1, then@ample, if the SD in RT for a subject was 150 ms and the time
median split is used to form two bins, each with probability .5. petween successive reads of a key was 32 ms, the SD in the
When the data are divided into 9 quantiles, the median split for tWReyboard would be 32/sqrt(12) ms (assuming a uniform
bins is used when the number of observations is less than 10 (Bétribution) so the SD for the combination (the square root of the
see qualifications in point 2 below). Numbers of observations thegum of squares, i.e sqrt(f&@ 22)2150 3) would be 150.3 ms

arﬁ_ I(r)lwhoccur meStly for errcf)rz n h|gr;)acc?raé)cy con@ﬂorys N Therefore, variability in the keyboard response times is not an
which there are few errors. If the number of observations is 1, W e 55 long as the keyboard SD is lower than the SD in RTs.

compute a single value of chi-square ((GAE) where O i the 4. Sometimes, accommodating very slow (perhaps spurious)

observed number of observations, 1 in this case, and E is thg error responses leads to estimates of across-trial variability in drift
expected value from the model) for that condition and add this te larger than they should be. Thus, because accuracy values

the sum OT the rest of the chi-square values for all the cond|t|on|§ave to be fit, drift rates will be estimated to be larger. This means
and quantiles. that drift rates covary with across-trial variability in drift rate

Inthe DMAT program, if the number of observations (usuallyparameters (e.g., Ratcliff & Tuerlinckx, 2002, Figure 6). An
errors) is less than 11, then error quantiles are not used in fittingnalog to this would be: If the SD in signal detection theory were
and drift rates are estimated poorly. DMAT provides a warning increased, then to get the same hit rate, for example, the mean
when this happens and indicates the fitted value may not be valigiould have to be increased to compensate. In practice, with low
For the other methods, all individual RTs are used, thatis, RTs atimbers of observations in human subject data, sometimes long
not binned. error RTs (some of which may be outliers) can cause the fitting

2. When the number of observations in a quantile is less thaprogram to produce values of across-trial variability in drift rate
7 for 5 quantiles or less than 10 for 9 quantiles and the mediantizat are extremely large, and in compensation, this leads to large
outside the range of the .3 to .7 quantiles for correct responsesyalues of drift rate. Unless this is addressed, this can lead to drift
then we do not use the median. Instead, we combine the bins intates several times larger than the values typically found with large
a single bin to produce a single value of chi-square as in point humbers of observations (e.qg., drift rates in the range 1.0 to 2.0
(which of course does not use any information about RTs). We d@hen the values should be in the range of .3 to .4).
this because when there are low numbers of errors in conditions  This problem can be limited by placing upper and lower
with high accuracy, occasionally some of the error RTs can be hounds on across-trial variability in drift rates (e.g., 0.08 and 0.3).
spurious and (we assume) not from the decision process used The upper bound might be determined by examining the ranges of
performing the task. the variability parameter values from similar experiments with

In contrast to binned methods, one extreme long or short Ra@rger numbers of observations. Then upper and lower bounds can
can produce quite large biases in parameter estimates for methdsset that are a little larger than the largest value from the subjects
that use every RT to produce a likelihood. As we show later, thé the larger experiment. A lower bound can be set that is a little
fast-dm method with the KS statistic is robust to such short ~ smaller than the smallest individual value. For fits for the
outliers. simulation studies using the chi-square method with low numbers
of observations, the value of the across trial variability in drift
gagyameter was often estimated to be at the upper or lower bound
for our programs that implemented these limits.

Over the last several years, we have added four refinements
chi-square fitting method.

3. Occasionally when there are few error responses, two
consecutive error quantile RTs can be the same (e.g., 556 and
ms, with RTs with 1 ms resolution) and so the chi-square
computation fails because the denominator of the chi-square is ~ Simulation Study 1: Lexical Decision Design
zero (because there will be zero probability mass betweenthe two  The resuilts of this study are generally the same as for the

equal quantiles). Also, if quantile RTs are only 1 or 2 ms apart, theumerosity design. The major exception is that HDDM largely
chi-square computation produces biased results because the  oytperformed the other methods for this lexical decision design.
probability mass between the quantiles is small. To address theggyrrelations between parameters used to generate simulated data
problems, we added jitter to the raw RTs in the simulation studiegng recovered parameters from fitting are shown in Table S1.
described below by adding a uniformly distributed random For most of the methods, recovered drift rates for the high-

number between -4 ms and +4 ms to each RT. This eliminated . .

i frequency words had high values, even with the largest number of
most of the problems that occurred when RT quantiles were tog . " :
close together Observations (200) per condition and contaminants, because there
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Table S1: Correlations between parameters used to generate simulated data and recovered parameters for 8 fitting methods and
two sets of numbers of observations for the lexical decision design.

N=200,200,200,600 N=20,20,20,60

Method a Ter Vq Vo V3 Vg a Ter Vi Vo V3 Vg

HDDM 0.988 | 0.980| 0.829 0.924 0951 0.947 0.8B7 0.844 0.879 0{726 0.633 (.652

Fastdm | 0.946| 0.955| 0.682 0.858 0.920 0.878 0.757 0509 0.862 0/554 0565 0.564

DMATout | 0.826 | 0.853| 0.395 0.793 0.918 0.737 0.4p9 0428 029 0[144 Q224 0.066

0% DMATno 0.918 | 0.913| 0.533 0.767 0.908 0.793 0.263 0.333 0.p86 0J202 (J.263 0.375

contamin

ants MLH 0.979 | 0.965| 0.692 0.80% 0.850 0.913 0.8p8 0.761 0.8385 0/566 (J.589 0.535
Chioq 0.983 | 0.964| 0.768 0.902 0.931 0.929 0.767 0.730 0.8375 0/682 (J.573 0.666
Chisq 0.979 | 0.953| 0.752 0.910 0.937 0.915 0.814 0.751 0.866 0|663 (J.599 0.674
EZ 0.952 | 0.834| 0.608 0.809 0.920 0.750 0.646 0.346 0.405 0/680 (J.740 0.325

HDDM 0.950 | 0.971| 0.721 0.847 0.948 0.841 0.937 0.869 0.517 0{735 0.661 (.711

Fast-dm 0.911 | 0.920| 0.604 0844 0881 0830 0.838 0.633 0471 0j540 (536 0.598

DMATout | 0.889 | 0.853| 0.287] 0.648 0.829 0.343 0.446 0.446 0.110 0j150 (@.215 0.416

4% DMATno 0.940 | 0.933| 0573 0.790 0.916 0.727 0.2f3 0.410 0.142 0J136 (J.309 0.437

contamin

ants MLH 0.975| 0.975| 0588 0.801 0.779 0.905 0.9p2 0.811 0.493 0J562 (.712 0.571
Chi9q 0.978 | 0.969| 0.662 0.908 0.962 0.902 0.888 0.847 0.8375 0/590 (J.598 0.678
Chisq 0.977 | 0.969| 0.717, 0.92¢ 0.96 0.924 0.8p3 0.855 0.388 0/597 (.613 0.715
EZ 0.892 | 0.743| 0.352 0.756 0.897 0.791 0.789 0.393 0.505 0J716 (.719 0.262

Note: DMATout was the DMAT method with contaminant correction, DMATno was the DMAT method with no contaminant correction, MLH
was the maximum likelihood method, chi9q and chi5q were the chi-square methods with 9 and 5 quantiles respisditvehdary separa-
tion, T, is nondecision component of response timeyy, v, and vy, are the drift rates for high, low, and very low frequency words and for

nonwords respectively.

were often no errors. As a result, the recovered values were mocendition, HDDM, fast-dm, DMAT without contaminant

variable than for the drift rates for low- and very low-frequency correction, MLH, the two chi-square methods, and the EZ method
words and nonwords and this led to correlations lower than for thall produced correlations greater than .72. DMAT with correction
drift rates for the other conditions. In the discussion that followsor contaminants gave lower correlations. The EZ method

we exclude drift rates for;, the high-frequency word condition. performed reasonably well, with correlations above .76.

With 200 and 600 observations per condition and no With 4% contaminant RTs and 20 and 60 observations per

contaminant RTs, all of the methods produced parameter valuegpndition, HDDM, fast-dm, the two chi-square methods, and the
that were highly correlated with the generating values, above .7#ILH method produced correlations greater than .53. The EZ
Some of the drift rate correlations were lower than for the method’s correlations were as low as .26 and the two DMAT
numerosity simulations because they used 1000 observations fjegthods’ were as low as .14.

condition (as opposed to either 200 or 600 used here). With20and - Simulation Study 2: Lexical Decision Design

60 ?hbs;rvatgns, ';DDM’I f?st-dml,) MLHé aglt\j/lg\]'l? (;‘_’(\;0 ch|-§dquagel Generally, the results mirror those from the numerosity design
MEthods produced correlations above .S. Id considerably, o provide a replication of its findings. Figures S1 and S2

worse, with correlations dropping to the .1-.3 range. CorrelatiorE;nOW the recovered values for the 32 means and SD's for each of
for the EZ were as low as .32. the parameters,

With 4% contaminant RTs, for 200 and 600 observations per
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Figure S1 Plots of boundary separation, nondecision time, and three drift rates for the lexical decision design with 300, 300,
and 600 observations for the high and low frequency words and nonwords respectively for Simulation Study 2. Each row
shows a different fitting method. On the x-axis is plotted the mean of the parameter values and on the y-axis, in a horizontal
row at the value of the parameter used to generate the simulated data is plotted 1 SD error bars. The thin vertical line repre-
sents the values used to generate the simulated data. Movement away from the vertical line on the x-axis represents bias in the
recovered parameter values and a large spread of the error bars represents high variability in the recovered parameter values.
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Figure S2 The same plot as in Figure S1, but for the lexical decision design with 30, 30, and 60 observations for the high and
low frequency words and nonwords respectively for Simulation Study 2. As for Figure 5, the DMAT results had SD’s that

For the large numbers of observations (Figure S1), the chi-  Forthe small numbers of observations (Figure S2), the results
square methods show a little more bias for some drift rates,  mirror those for the numerosity design with 40 observations per
especially for the 9 quantile method, compared with the condition. The SD’s in drift rates are a little larger but the biases

numerosity design. Fast-dm shows biases about the same sizeaas of similar size. The chi-square, fast-dm, and HDDM methods
for the numerosity design. HDDM as for the numerosity design produce acceptable parameter recovery, with the lowest biases and
shows some conditions with extreme biases that occur with theSD’s. This is somewhat of a puzzle as for the numerosity design
lower value (0.1) of boundary separation, and with 4% because biases were less than with larger numbers of observations
contaminants. The unbiased values from HDDM are closer to thger condition. Finally, the EZ method and DMAT produce large
true values with smaller SD’s than for the chi-square methods. biases and large SD’s relative to the other methods.

DMAT without contaminant correction shows larger SD’s in . DMAT warning messages

model parameters than the other methods and shows some quite . .
large biases in drift rates. DMAT with contaminant correction There are several warning messages provided by DMAT that

show even larger SD’s and biases, values so large that 2 SD’s fg],dmate pmb'ems with pqrameter est|mat|o"n.. 'I_'he last
some drift rates include zero. The EZ method. as for the convergence point was still a suspect result” indicates some of the

numerosity design, shows quite small SD’s, especially in drift rateacross-tnal variability parameter estimates may be wrong,

but very large biases, so large that some of the 0.1 drift rates a‘r‘];essmn is not positive definite”/"Hessian is not of full rank”

estimated to be zero. Similarly, nondecision time varies from Ies@d'cates some parameter is not sufficiently identified by the data,

than 200 ms to 500 ms when the value used to generate the and “Matrix is close to singular .." indicates some of the standard
simulated data was 400 ms. This is expected because the EZ error estimates are likely biased. For the numerosity design with
method assumes the starting point is halfway between the 40, 100, and 1000 observations per condition, the percentage of

boundaries, and in a number of the sets of parameter values t}I]I%ese three error messages across the 16 set of parameters and 64
starting poiht is biased with valuaS or 23 " “simulated data sets per parameter are: 52%, 52%, and 13% for the

i ] ) three messages for N=40 per conditions, 23%, 31%, and 13% for
Thus, for this design, only the chi-square methods and fast-dfe N=100 per conditions, and 2%, 6%, and 0% for the N=1000

produce acceptable parameter recovery with small bias (relative i, ;onditions. For the lexical design, the percentages were: 70%,
the other methods) and with small SD’s in recovered parameteig, and 18% for the smaller number of observations and 36%,
If the spurious values produced by HDDM were fixed, then it 1594 ang 294 for the larger number of observations. These error
would be acceptable also. messages indicate that the fits might be invalid (as spelled out in
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Vandekerckhove & Tuerlinckx, 2008). The results show that theontaminants made this variant uncompetitive.

DMAT package is warning that the fits are potentially flawed even Simulation Study 3: A Hierarchical Byesian
\(/:vcl)t:dli\tl;iloo per condition, but are mainly good with N=1000 per Diffusion Model

Normal Distributions Across Subjects

The means and SD’s in the parameter values were those in the
th and third lines from the bottom of Table 1 for which
individual subjects varied from each mean according to a normal

EZ variants

We evaluated two other EZ variants, EZ2 and robust EZ, anfjour
found that neither was competitive with any of the methods
examined so far. These variants were designed to address the distribution.
problems with the assumption that the starting point is midway

between the boundaries (EZ2, Grasman, Wagenmakers, & van der Figure S3 shows the recovered values of the two drift rates,
Maas, 2009) and the problem with contaminants (robust EZ boundary separation, and nondecision time for the two methods

Wagenmakers, van der Maas, Dolan, & Grasman, 2008). for 4Q 'observations per condition and 1000 observations per
W ined th thod ing iust a f diti condition for the two methods (we used the results for the 100

b € etxhamlne eff? .met 'S s;;uzng jUSt ake8W con;.t! Ionsf observations condition later, but because the figures look the same
thectle\use | desg are Zu icien grgtr | ' WQE/SOO dalgon ('j'of‘tf] "o the ones presented, they are not shown). We present the plots in
boethet)élg?argeecrligg sr?ws;ﬁgrﬁlumb\é?sugfs obsea:\r/]ationgnFc;/: Irobu  different way from the other plots to highlight the issue of

X i hrinkage of the parameters (regression to the mean).
EZ, we used all 16 sets of parameter values with both 0% and 4?/0 9 P ] (reg )

Plotted on the x-axis are the values of the parameters from

contaminants for the numerosity design for all three sets of ) ] -
numbers of observations. We found that the methods were ratiiéfich the simulated data were generated. Plotted on the y-axis are

poor at recovering parameter values and so did not pursue theffj recovered values minus the value used to generate the
further. We now describe the results. simulated data (i.e., the residuals). If there is no shrinkage, the

plots will be horizontal, but if there is shrinkage, the lines will have

Like the EZ method, EZ2 assumes no across-trial variabilit egative slope. Figures S3, S4, and 6 plot the results from the
in model_parameters. With both the lower and larger numbers j?jierarchical method and frc;m tr’1e chi-square method, but if we
observations, parameter recovery was not go_odaﬂmli, the plotted residuals, the functions would largely lie on top of each
average recovered value was 0.13 andi@r2, it was 0.21. F_or other and they would be hard to compare. To spread the values
the narrow b_oundary separation (0.1), wizémwas 013' one driit apart, they were offset by adding a constant for the chi-square
rate was e_stlmated to be_O and the other 0.23 while Waevas method (the circles in the figure) and subtracting a constant for the
0.7, one drift rate was estimated to_be 0‘_23 and the other -0.3 Whﬁﬂararchical method (the x’s in the figure). Any other biases in the
bo_th were 0.2. Eyen in the cases in meas 0.6, the mean recovered values will be seen as systematic deviations between the
drift rate was estimated to be 0.114 instead of 0.2. These resu'}foints and the horizontal solid lines. Also, the spread in the

showed Ic?zge giwatlonsdm cond|(t::%ns t:]at the mtﬁdel Wg\sl ‘ threcovered parameter values, the residuals, can be used to compute
Supposed to address and So we did not pursue the model urthgly, p iy the difference between the recovered parameter values

Robust EZ was developed to estimate the distribution of  and those used to generate the data. Thus, the vertical spread about
contaminants and then remove them from the analyses, in effegie horizontal line visually represents this variability.
running EZ on the decontaminated distribution. The method
involves first fitting a mixture distribution to the data: an
exGaussian for the diffusion model and a uniform for

The top solid horizontal line in the figures is the mean offset
for the chi-square method, the bottom solid line is the mean offset

taminant dth ing th G ian distribution t for the hierarchical method, and the dotted lines are regression
contaminants, and then using the ext;aussian distribution 1o - i,e5 The correlations between the recovered values of the

cor_npute the mean and variance of the decontamma}ed (_d|str|but| Brameters (not the residuals) and the values used to generate the
which are then used by the EZ method to produce diffusion mod Hmulated data are shown in the headings of the panel

arameters.
P W thi del on the dat  for th ity task | For 40 observations per condition, correlations for the
€ ran this model on the data set for the numerosity task jjje 4rchical method were higher than for the chi-square method

the Secof‘d simulation (for the three sets of numbers of for boundary separation and drift rates, but lower or the same for
observations and 16 sets of parameter values). The results sho q.|

that. | hen the original bound i 0 f6hdecision time. For 1000 observations per condition, the
al, for exampie, when the original boundary separation Was 9.¢ e|ations for the chi-square method are higher for all the
the robust EZ analysis produced a value of about 0.138 for all t
" X . . . ; arameters.
conditions witha=0.2. The proportion of outliers estimated did not

track the actual number. When there were 40, 100, and 1000 The hierarchical method (but not the chi-square method)
observations per condition, we found the estimates of the consistently underestimates nondecision time, with most of the

proportion of contaminants were 38.4%, 20.3%, and 6.1% points falling below the horizontal line. The hierarchical method

respectively (even though half the sets of parameter values had GY5° Overestimates boundary separation with 4% contaminants (as

contaminants and half 4%). Other model parameters were not 49€S the chi-square method to a lesser degree), but does not do so

poorly estimated, for example, whanvas 0.1, the estimated ~ With no contaminants.

parameter was 0.088,, was 0.36 instead of 0.4, and the two drift For drift rates, there is moderate shrinkage in HDDM’s

rates were 0.078 and 0.22 instead of 0.1 and 0.2. But the prob|er,cﬁcovered parameters because the dotted regression line for all the

with the wider boundary separation and proportion of drift rates for all the conditions has negative slope. The drift rates
for the chi-square method do not show systematic shrinkage.
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Figure S3 Plots of the recovered values of parameters from the hierarchical fitting method and for the chi-square method for
the numeracy design with normally distributed population parameters for 40 and 100 observations per condition and for 0 and 4%
contaminants. Plotted on the y-axis are the recovered parameter values minus the values used to generate the simulated data (i.
the residuals) offset by the amount represented by the thick horizontal lines. The circles are for the chi-square method and the
crosses are for the hierarchical method. The dashed lines are regression lines for the two methods (shrinkage of model paramete
results in a negative slope). The numbers at the top of each plot are the correlations between the recovered values and those us:
to generate the simulated data for the two methods.
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Uniformly distributed populations of individual differences
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Figure S4.Plots of the recovered values of parameters from the hierarchical fitting method and for the chi-square method

Parameter values used to generate simulated data

for the numeracy design with uniformly distributed parameters. Other details of the plots are the same as for Figure S3.
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Perhaps surprisingly, there is no shrinkage in the boundary  simulated data.
separation and nondecision time parameters for the HDDM model.  one explanation for the extreme shrinkage in drift rates is in

We discuss pOSSIble reasons in the main bOdy of the paper fOrPopulations of individual differences with 16 observations per subject

these results and the number of observations at which the chi- Normal Uniform Two Populations
square method begins to outperform the hierarchical method, i.e., hddm=0.77(0.66) hddm=0.77 (0.76) hddm= 0.86 (0.86)
the cross-over point after the next two studies. - _';.1, .. 004 o - ° o [ o °
Uniform Distributions Across Subjects o 1 g Levesea e o { -

For this study, the distributions for drift rates, boundary | N P I "L N _.@_9:%.,_,_
separation, and nondecision time came from uniform distributions * e | T A RIS
with the same means and SD’s as for the simulation just discussel. \v————— **® tT——7—7—— ——
This means that each of these distributions across subjects is 008 012 016 006 010 014 010 015 020
modestly mis-specified relative to assumed parameter hddm=0.61 (0.59) hddm=0.55 (0.54) hddm=0.50 (0.5%)
distributions in the hierarchical model. L T bl B o ::‘;g@o .

Figure S4 shows the results in the same way as for Figure S% T; D%{% | oo oL, Lo 0.00 -ﬁ%ﬂgg—
with normally distributed parameter values and results showedos 4 O X < fore— 005 - 5° %o
patterns that were qualitatively similar. The only major difference,, | S 005 1 PR B 010 4 “ .
was that the shrinkage in drift rates was reduced relative to normal —— L N SR £ S—
distributions in Figure S3, especially for the lower drift rates. 030 040 050 030 035 040 045 035 045 055
Very Low Numbers of Observations per Subject . _oicidm' 04304 . OB e O

Joachim Vandekerckhove suggested running simulations . f = 005 &%%% 024 ° oo
with the hierarchical method with the number of observations g w R
equal to the number of parameters plus 1. We used the numerosj’ty_ “’%} 010 %«ee@q% 0o Co o °5”%°
design and 10 observations, 5 for each of the easy and hard | oy [0 7 ol TR
conditions and the number of parameters for each subject was Y. T T T T 0;": ' T 0-; °04

For each condition, we fit the hierarchical method to the first |, _ 53 053 hddms= 0.36 (0.37) hddms= 0.48 (0.45)
five trials in each condition from the data sets with 1000 S o IE 010 J77
observations per condition with the three distributions of ' . ' %9’[?% O
parameter values from Figures S3, S4, and 6. Five observations’ | 930 0.0 e IR
per condition would be impossible to fit with the non-hierarchical T o | o U R
methods because the low numbers of observations would produée ENh B [ e
estimates with very high variability and there would not be enough® “r——r———F o010 — 0
observations to produce meaningful RT distributions for both 0% 00 o 005 040 04 0080050
correct and error responses. Also, it is likely that the fitting Figure S5. Plots of the recovered values of parameters from

programs would not converge on a solution most of the time.  the hierarchical fitting method for the numeracy design with

The hierarchical fits for the three distributions of subject ~nhormally distributed population parameters for 5 observations per
parameters from the prior simulations for 0% contaminants are condition. The plots are otherwise the same as for Figure S3 (but
shown in Figure S5 and the plots are in the same format as for there are only fits for the HDDM method).

Figures S3, S4, and 6. The correlations in parentheses are from faems of what features of the data determine drift rates. Drift rates

condition with 4% contaminants (the plots for 4% contaminantsare most related to accuracy rates, and because there are only 5

are very similar to those presented in Figure S5). observations per condition, there are not enough observations to
The first thing to note is that there is extreme shrinkage in theonstrain drift rates. Thus the hierarchical model constrains them

drift rates, especially for the normal and uniform distributions ofto be nearly the same. In contrast, even with 5 observations, the RT

parameters across subjects. In the plots, if the recovered differences from differences in boundary separation and

parameters match those used to generate the data, the plot willh@ndecision time across subjects are large enough to produce

horizontal. Instead, the plots are diagonal for drift rates with a moderate to large differences in recovered values of these

slope close to -1 which means that the drift rates are estimatedg@rameters.

be almost the same across conditions. For the most extreme case, Despite the shrinkage, the correlations between the

for the uniform distribution of parameters fgr(the higher drift parameters recovered by HDDM and the parameters used to
rate), the mean value of the drift rate parameters used to generajenerate the simulated data are quite high. This is especially the
the simulated data is 0.284 and the mean recovered value is 0.24@se when the model is misspecified with two populations (leading
but the SD in the drift rate parameters used to generate the  to a larger spread of values) rather than one normal population.
simulated data is 0.094 and the SD in the recovered parameterThe correlations between the recovered parameter values and one:
values is 0.0054, i.e., only 6% of the variability used to generatased to generate the data were high for boundary separation (.66 to
parameters is recovered. Fiy for the two-population plot, there .86), moderately high for nondecision time (.50 to .61) and even
appears to be considerable shrinkage and the SDs in recoverefhoderate for the drift rates (.35 to .61). Thus one could use the
values are only about half that of the values used to generate thecovered parameter values to examine individual differences
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within the group. But because of the amount of shrinkage, the Our solution to the small-n problem is to include many filler
recovered parameter values could not be used to compare groitpsms in an experiment and use the RTs and accuracy for these
unless a study was done to examine biases for the different setsitgfims to constrain fitting the model to the items in the experimental
parameter values for the groups and individual differences withinonditions. In White et al's (2009) experiment, there were 540
groups. filler words and 510 nonwords and in McKoon and Ratcliff’s

Even though the hierarchical method with very few (2013), there were 416 words that had been studied and 416 words

observations might recover individual differences relatively well that had not. The model is fit simultaneously to all the data with
there are serious limitations with experiments based on this fevihe result that the filler items largely determine all the parameters
observations. These include warm-up and practice effects. Forof the model except the drift rates for the conditions of interest.
example, when undergraduate subjects begin an experiment, iti§ese drift rates can be estimated with enough precision to

usual in our laboratory to ignore the first block of trials. If we arecompare performance in conditions to each other and to compare
testing with a limited number of materials, we may test them for #€rformance of one subject group to another (for example,

few minutes on a related task, such as lexical decision ora  doubling of power, see White, Ratcliff, Vasey, & McKoon, 2010).
perceptual task in order to familiarize them with the response Goodness of Fit

requirements. In the first few trials, subjects may be working out g 5:qiff Thapar, Gomez, and McKoon (2004) examined the

which fingers to use, still talking to the experimenter and so 0N u¢fact of moving a .1 probability mass from one quantile bin (so

For older adults or adults who might have deficits, the warm Upye 5 probability mass became . 1) to another adjacent quantile bin
period might be significantly longer. We often train older adultS(sq the .2 probability mass became .3), i.e., the first constraint in
for example, for a few minutes on a different task to familiarize 1, prior paragraph. They found that the increment to the chi-
them with the stimulus presentation and response recording square was 0.133*N, so for N=100, the increment would be 13.3
methods. An extreme case of warm up effects were experiments,q for N=1000, the increment would be 133. Thus, for example,
involving speed-accuracy instructions: Older adults required Wy, 14 conditions and 5 quantiles with 13 degrees of freedom (22
or three full 45 min. experimental sessions before their from data minus 9 model parameters), the change in chi-square
performance was stable (e.g., Ratcliff etal., 2001, 2003; Thapar gl, 14 pe over half the critical value (of 22.4) for N=100 and it
al., 2003). Therefore, even though thg hierarchical model May \yould be five times the critical value of N=1000. These

recover parameters reasonably well with very few observations, it .rements mean that even relatively small systematic misses in
would be a mistake to assume that the data were of adequate ¢ hroportions are accompanied by quite large increases in the
quality if this were the first reaction time task the subjects had chi-square. Furthermore, the chi-square statistic is a very

encountered. Note that this is a problem with data and applies {Q,hseryative statistic so that even small systematic differences
all methods. between theory and data show large increases in the chi-square as

Benefits of Diffusion Model Applications: Low the number of observations increases.
Numbers of Observation Designs Combining Parameters

A problem that comes up for some experimental designs is  Because there are correlations between model parameters for
what we call the “small-n” problem, which is that the number ofthe fits, we attempted to see if combinations of them provided a
observations in some conditions of an experiment is less than thyre compact description of the results. We ran exploratory factor
number usually needed to use the model, for example, less thagnalysis on the model parameters (for both low and high numbers
100. In some cases (e.g., neuropsychological testing and clinicgt observations in the numerosity design) to see if some
applications), this is because only a limited amount of time is  combination of parameter values produced better correlations
available for testing. In other cases, the limitis the number of itemgetween fitted parameters and those used to generate the simulated
that are available, the number that can be constructed, or the data. Although some of the factors made sense, the loadings were
number that can be used in an experiment before subjects develgBak and did not support the attempt to extract factors from
expectations about what kind of test items to expect. Asan  combinations of the model parameters (for these experiments).

example, White, Ratcliff, Vasey, and McKoon (2009) investigated . T .
differences between mildly depressed (dysphoric) subjects and An Exampleac;]f dCF?z;rrlgr%grt]egr\I/Easrtliarr?;l':gsm Subjects

control subjects in a lexical decision experiment. In the depression
literature, there are only about 30 words for which there is good  To provide a concrete example of the effect of variability in
agreement among researchers that they express the negative parameter estimates relative to individual differences, 1000
meanings that are relevant to dysphoric individuals. Experimengormally distributed random numbers were generated wits 8D

on reading comprehension provide other examples. McKoon aipoduce values. From these, three sets of random numbeys,(
Ratcliff (1986, 1992, 2013) tested whether subjects comprehena@ndw) were generated with mearand SD’s eithes, .75s, or .5s.
inferences like “the actress died” from sentences like “The directofhese represent examples in whichstivalues represent

and the cameraman were ready to shoot close-ups when the actrigsividual differences, and thg v, andw values represent values
fell from the 14th story roof” in an item recognition experiment. with SD’s in the estimates afof eithers, .75, or .%. The
Constructing items like this is difficult and the number of items correlations betweexandu, x andv, andx andw were .72, .80,
needs to be kept small so that subjects do not begin making thand .89 which shows that even if the SD in estimation is the same
inferences on the basis of explicit strategies; for example, McKoovelue as the SD in individual difference, the ceiling on the

and Ratcliff's 2013 experiment had only 32 such items. correlation would be reduced from 1 to only .72.
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Figure S6 (Referenced in the published article)Plots of boundary separation, nondecision time, and two drift
rates for the numeracy design with 1000 observations per condition in Simulation Study 2 as in Figure 5. The top row
shows the original HDDM parameter recovery and next two show the effects of fixing the proportion of contaminants;
this reduced the size and number of spurious results.
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