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Abstract

This supplement has five parts. The first part discusses the reasons for
using a Bayes factor. The second part presents the 34 means choice prob-
abilities from the Barkan and Busemeyer (2003) experiment. The third
part summarizes the fits to the means of the models based on prospect
theory and quantum theory. The fourth part describes the prior distribu-
tions used for the Bayesian model comparison. The fifth part summarizes
the reasons for the behavior of the log likelihood function produced by
the quantum model.
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1 Bayes Factor

That counting parameters is an inappropriate way to control for complexity is
easy to illustrate with simple examples. Suppose a model has two parameters a
and b, and AIC or BIC count these as two. But in fact the parameters obey the
relation c = ab, so that a and b are perfectly (anti)correlated. In this case the
‘true’ parameter count would be one, not two. But putting aside correlations
among parameters, parameters should not count equally. Imagine a data set
with a thousand conditions, each data point representing the probability of a
given response in one of these conditions. A model is applied and among its
parameters are d and e. The value of d helps determine the predicted probability
over a range of (0,1) in every condition. The value of e helps determine the
predicted probability in only a single condition, over a range of (.6,.7). It should
be obvious that these parameters should not be counted equally when assessing
complexity. The converse of these examples also applies: one parameter can
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represent or do the work of many. In the first example above, c does the work
of a and b. It is also the case that one parameter can do the work of several
uncorrelated parameters. In the second example above suppose the parameter e
controls which of successive .10 regions contains the predicted probability, and
ten parameters e(n) control predicted probability within each of those regions.
It is obvious that a single parameter d could cover the same (0,1) range of
predictions. Another example: Suppose a model has two parameters a and b,
each in the range (0,1) and each represented in practice by two decimal precision:
a = xy and b = wz. Let an equivalent model have a new parameter replacing
a and b: c = xywz. Another equivalent model have a different new parameter
replacing a and b: c = 2x3y5w7z. When c is ‘unpacked’ correctly either of the
new models is equivalent to the first. These are all artificial examples, but serve
to demonstrate that parameter counts are not the way to quantify complexity.
In actual modeling these sorts of issues occur in many ways that are not at
all trivial and artificial, and the way that parameters map into predictions for
data can be very difficult to intuit. A true account of complexity requires an
analysis of the way that the parameter space is mapped onto data outcomes.
If for example all combinations of parameter values predict (roughly) the same
data points, that model has very low complexity; if different parameter values
produce different predictions, and if those predictions cover most of the possible
outcomes that could have been observed, then a model has very high complexity.
Bayesian Model Selection is the best current method for quantifying complexity
and its balance with good fit (Minimum Description Length is a competitor for
“best current method,” but in almost all cases gives answers very similar to
those produced by Bayesian Model Selection).

Another question that can be raised is whether or not a Bayesian analysis
can be performed using predictions derived from a quantum probability model.
The answer to this question is yes for the following simple reason. For each
condition, a sequence of outcomes are observed. The quantum model is used to
assign a probability to each outcome sequence. The traditional decision model
also assigns a probability to each outcome sequence. They assign different prob-
abilities to these sequences using either quantum or classic probabilitye rules.
However, for each condition and for each model, there is a set of mutually ex-
clusive and exhaustive sequence of outcomes. Both models assign a probability
to each outcome sequence, which at this point obey the axioms of traditional
Kolmogorov probability (e.g. the probability assigned to mutually exclusive
outcome sequences are additive and the probabilities assigned to all possible
outcome sequences sum to unity).

2 Barkan and Busemeyer (2003)

A two stage gambling paradigm was used to study dynamic consistency, which
was a modification of the paradigm used by Tversky and Shafir (1992) to study
the disjunction effect. A total of 100 people participated and each person played
the 17 gambles involving real money shown in Table SI1 twice. Each gamble had
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an equal chance of producing a win or a loss. The columns labeled “win” and
“loss” indicate the money that could be won or lost for each gamble (one unit
was worth one cent) and the column labeled EV shows the expected value of each
gamble. For each gamble in Table SI1, the person was forced to play the first
round, and then contingent on the outcome of the first round, they were given a
choice whether or not to play the second round with the same gamble. On each
trial the person was first asked to make a plan for the second play contingent on
each possible outcome of the first play. In other words, during the planning stage
they were asked two questions: “if you win the first play, do you plan to play the
second gamble? and “if you lose the first play, do you plan to play the second
gamble?” Following the plan, the outcome of the first gamble was revealed, and
then the person was given a final choice: decide again whether or not to play the
second gamble after observing the first play outcome. To incentivize both plan
and final choices, the computer randomly selected either the planned choice or
the final choice to determine the real monetary payoff for each trial. The final
payment for the trial was then shown to the person at the end of each trial.
Participants were paid by randomly selecting four problems from the entire set,
randomly selecting either their plan or final choice, and randomly selecting an
outcome for each gamble to determine the actual payment.

Table SI1 displays the results obtained after averaging across the two repli-
cations for each person, and after averaging across all 100 participants. The
columns under the label “Gamble” display the amount to win and lose for each
gamble.

Table SI1: Barkan and Busemeyer (2003) Experiment
Gamble Win First Play Gamble Lose First Play

Win Loss Plan Final Win Loss Plan Final
200 220 0.46 0.34 80 100 0.36 0.44
180 200 0.45 0.35 100 120 0.47 0.63
200 200 0.59 0.51 100 100 0.63 0.64
120 100 0.70 0.62 200 180 0.57 0.69
140 100 0.62 0.54 160 140 0.68 0.69
200 140 0.63 0.53 200 160 0.67 0.72
200 120 0.74 0.68 160 100 0.65 0.73
200 100 0.79 0.70 180 100 0.68 0.80

200 100 .85 .82

The probability of planning to take the gamble is shown under the column
labeled “Plan.” There was little or no difference between the probabilities of
taking the gamble, contingent each planned outcome of the first gamble, and
so the results shown here are averaged across the two hypothetical outcomes
during the plan. See Barkan and Busemeyer (2003) for the complete results
listed separately for each contingent outcome. The probability of taking the
gamble during the final stage is shown under the column labeled “Final.”
Changes in probabilities down the rows of the Table show the effect of the
gamble payoffs on the probability of taking the gamble. The difference between
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the planned and final columns indicates a dynamic inconsistency effect. Notice
that following a win (the first 4 columns), the probability of taking the gamble
at the final stage was always smaller than the probability of taking the gamble
at the planning stage. In other words, participants changed their minds and
became more risk averse after experiencing a win as compared to planning for
a win. Notice that following a loss (the last 4 columns), the probability of
taking the gamble at the final stage was always smaller than the probability of
taking the gamble at the planning stage. In other words, participants changed
their minds and became more risk seeking after experiencing a loss as
compared to planning for a loss.

3 Unitary rotation matrix used in quantum model

Evaluation of the payoffs causes the state ψ to be “rotated” by a unitary operator
U into a decision state ψD = U · ψI used to make a choice about taking or
rejecting the second stage gamble. The initary operator is defined by

U = exp
(
−i · π

2
· (H1 +H2)
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The upper left corner of H1 is defined by the payoffs given a win; and the bottom
right corner of H1 is defined by the payoffs given a loss. The parameters hi,
i = W,L, in H1 are determined by the utilities of playing the gamble following
the outcome of the first stage: hi = tanh(.5·Di), where DW = u(G|Win)−xaW is
defined by Equations 2,3 in the article. For example, if γ = 0 and hW = hL = h,
then the probability of taking the gamble is an increasing S-shaped function of
h (see Pothos and Busemeyer, 2009; Busemeyer & Bruza, 2012, Ch. 9).

The matrixH2 aligns beliefs with actions of the decision-maker by amplifying
the potentials for states WT,LR and attenuating potentials for states WR,LT
to produce what is called an entanglement state (see Pothos and Busemeyer,
2009; Busemeyer & Bruza, 2012, Ch. 9). In this application, entanglement
refers to a state that is non-decomposable because of interdependence between
beliefs about the first stage gamble and the intentions for actions to take during
the second stage gamble. In particular, in this application, it captures the idea
of a belief in a “hot hand,” e.g., winning the first hand is correlated with playing
again on the second hand. The parameter γ adjusts the degree of changes in
beliefs during the decision process. For example, if H1 = 0, then γ = 1 produces
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|ψWT |2 = .5 = |ψLR|2 and |ψWR|2 = 0 = |ψLT |2, producing an entangled state
containing only WT,LR.1

4 Model comparisons based on least squares fits
to mean data

This section compares various versions of the two competing models based on
least squares fits to the 34 means reported in Barkan & Busemeyer (2003, see
SI). The models are compared using R2 = 1 − SSE

TSS , and adjusted R2 = 1 −
SSE
TSS ·

34−1
34−n , with SSE =

∑
(Pi − pi)2, TSS =

∑(
Pi − P̄

)2
, Pi is the observed

mean proportion of trials to choose gamble i = 1, ..., 34, pi is the predicted
mean proportion, P̄ is the grand mean, 34 = 17 (payoff conditions) ×2 (plan vs
final stage choices) is the number of means being fit, and n =number of model
parameters.

4.1 Model R

Model R has n = 3 parameters, and the best fitting parameters (minimizing
sum of squared error) are a = .87, b = .92, and γ = 2.70. The loss aversion
parameter b is less than one (i.e., less sensitivity to losses), even though it is
theoretically expected to be greater than one (i.e., greater sensitivity to losses).
The model produced R2 = .77 and an adjusted R2 = .76. We also compared
the conventional utility model defined in the article with an alternative utility
model defined by u(x) = xa for x ≥ 0 and u(x) = |x|b for x < 0. The alternative
model also has n = 3 parameters, and the best fitting parameters are a =
.92, b = .79, γ = 2.47. This alternative version of the reference point model also
produced R2 = .77 and adjusted R2 = .76. Finally, we fit a reference point
model using the conventional utility function that allowed for unequal weights
for gains and losses. In this case, we replaced the .50 probability of a win with a
decision weight parameter w, and the decision weight for the probability of a loss
equaled (1−w). The best fitting n = 4 parameters are a = .85, b = 1.00, γ = 2.47
and w = .52, and this model produced a slightly higher R2 = .80 and an adjusted
R2 = .78.

4.2 Model Q

This quantum model has n = 3 parameters, and the best fitting parameters
(minimizing sum of squared error) are a = .71, b = 2.54, and γ = −4.40. The
risk aversion parameter is a bit below one as expected, and the loss parameter
b exceeds one, as it should be. The model produced an R2 = .82 and an

1The model predictions for γ oscillate according to a sinusoidal function, so that if H1 = 0,
then+γ gives exactly the same result as −γ.
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adjusted R2 = .81.2 We also compared the conventional utility model defined
above with the alternative utility model defined by u(x) = xa for x ≥ 0 and
u(x) = |x|b for x < 0. The alternative model also has n = 3 parameters, and
the best fitting parameters are a = .93, b = .25, γ = −4.40. The alternative
model produced a slightly higher R2 = .85 and adjusted R2 = .84. We also
fit a quantum model using the conventional utility function that allowed the
decision weight to change for gains and losses. In this case, we replaced the .50
probability of a win with a parameter w, and the probability of a loss equaled
(1−w). The best fitting model using n = 4 parameters produced estimates
a = .82, b = 2.53,γ = −4.37, w = .51, and the model fit produced an R2 = .83
and an adjusted R2 = .82.

It is worth noting that γ is an important parameter in the quantum decision
model. As explained above, it captures the theoretical idea that people correlate
their beliefs about winning the first stage gamble with playing again on the
second stage. If we force γ = 0, then the quantum model is reduced to a
Markov model, and we can no longer account for the violation of the “sure
thing” principle described earlier (Pothos & Busemeyer, 2009). In the current
study, γ = 0 means the choice probability for the plan is an equal weight average
of the two choice probabilities produced after either winning or losing the first
stage: p(T |plan) = (.50) · p(T |Win) + (.50) · p(T |loss), where p(T |j) is defined
by Equation 4 with γ = 0. This model was fit to the results in Table SI1 by
using only n = 2 parameters, a and b, for the quantum model (with γ = 0), and
it produced an R2 = .78 and an adjusted R2 = .78.

Comparing the various versions of Model R with the corresponding versions
of Model Q with respect to least squares fits to the means, we see that Model Q
always performs better than the corresponding Model R by a few percentage of
variance explained even though both models use the same number of parameters.
However, best fits to aggregate data does not imply best fit to individual data,
and so the next section examines fits at the individual level.

5 Model comparisons based on log likelihood
fits to individual data

Next, we compare the two competing models based on log likelihood fits to
data from each individual using the four combinations of plan and final choices
observed from 33 gambles that each person completed. The definition of the log
likelihood for each person is described in the article. The log likelihood from
the each person was converted into G2 = −2 · ln (Li) which indexes lack of fit,
and the parameters that minimized G2 were found for each person.3

2One result of the oscillating nature of the quantum model is that there are many local
maximum. For example, the parameters a = .60, b = 4.60, γ = 2.63 produce an equally good
fit with R2 = .82.

3A surprising feature was found with the log likelihood function of the quantum model
as a function of the key quantum parameter γ. The log likelihood function forms a damped
oscillation that converges at a reasonably high log likelihood at the extremes, and this is
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5.1 Model R

First we examined Model R using the conventional utility function. This model
has n = 4 parameters for each person {a, b, γ,m}. The mean estimates, averaged
across 100 individual estimates, were a = .7067, b = .9095,m = .5789, γ = 3.09.
Summed across the 100 participants, this model produced a total G2 = 7020.
We also examined Model R using the alternative utility function defined by
u(x) = xa for x ≥ 0 and u(x) = |x|b for x < 0, which also has 4 parameters, but
this model produced a larger total lack of fit with 4.

Next we examined a version of Model R that introduced an additional free
parameter for the weight given to gains w and a weight (1−w) for losses. This
model produced a total G2 = 6936. This unequal decision weight model has
n = 5 parameters, and so we used a difference in Bayesian Information Criterion
(pooled across all 100 participants) to compare the two models BIC diff =
(BIC5Par −BIC4Par). This model comparison produced BIC diff = 725.60,
favoring the simpler n = 4 parameter model. If instead we perform a significance
test, then the G2 difference = 85 is less than the critical value for a .05 level of
significance (χ2(100) = 124).

5.2 Model Q

Model Q was fit using the conventional utility function and this model also has
n = 4 parameters {a, b, γ,m}. The mean estimates from fitting the 100 individ-
uals were a = .6518, b = 1.97,m = .5932, γ = −2.67. Summed across the 100
participants, this model produced a total G2 = 6883, which is an improvement
over the four parameter version of Model R using the conventional utility func-
tion. A total of 77 out of the 100 participants produced better fits (as measured
by G2) for the four parameter version of Model Q as compared to the four
parameter version of Model R using the conventional utility function.

In summary, the log likelihood fits and BIC comparisons indicate that the 4
parameter version of model R using the conventional utility function is the best
version of model R. This version of the reference point model performs worse
with respect to total G2 lack of fit (using the same number of parameters) than
the quantum model.

6 Prior distributions and Bayes factors

Two different prior distributions were examined: a uniform and a normal dis-
tribution. The uniform distribution assigned equal probability to each grid
combination point (described in the article). For the normal prior, we assumed
independent (discretized) normal distributions for each parameter denoted as

true both for the average across participants as well as for individual participants. See SI for
details.

7



Figure 1: Convergence of Bayes Factor

f(xi) for the i-th value of one of the parameters.

g(xi) = e−( xi−µσ )
2

, f(xi) =
g(xi)∑
g(xi)

, i = 1, 41.

The means and standard deviations used for the comparisons are described in
the article. We examined convergence of the Bayes factor as a function of the
number of grid points. This is shown in Figure 1 for three different participants.

In addition to the Bayes factor comparisons described in detail in the article,
we also conducted several other comparisons between model R versus model Q
using the conventional utility function. In one analysis, when using the uniform
prior, we reduced the ranges of the parameters to one half the range described in
the manuscript, and in this case the total log Bayes factor equaled 98.85 favoring
the quatum model. In another analysis, we reduced the standard deviations as
follows: standard deviation for a equal to .25, standard deviation for b equal to
.25, standard deviation of m equal to .25, standard deviation of γ for Model R
equal to .75, and standard deviation of γ for model Q equal to 5. The latter
produced a total log Bayes factor equal to 159.93 in favor of model Q.

7 Log likelihood as a function of gamma

A surprising feature was found with the log likelihood function of the quantum
model. Figure 2 plots the log likelihood (averaged across participants and other
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Figure 2: Log likelihood as a function of Gamma
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parameters) for the quantum model when the parameter γ varies across a wide
range. As can be seen in the figure, the log likelihood function forms a damped
oscillation that converges at a reasonably high log likelihood at the extremes,
and this is true both for the average across participants as well as for individual
participants.

Why does the log likelihood function for the quantum model reach a reason-
ably high asymptote as the quantum parameter gamma increases in magnitude
in either the positive or negative direction?

The log likelihood converges to an aysmptote because the model predictions
always converge to an asymptote for all model parameter values. Why do the
model predictions converge to an asymptotic value as gamma increases?

The quantum model predictions are derived from a Hamiltonian (which is
real and symmetric) that can be decomposed into four real eigenvalues and four
real valued orthonormal eigenvectors. So the predictions are computed from
these eigenvalues and eigenvectors. The eigenvalues come in pairs – plus-minus
for one value, and plus-minus for a second second value.
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As gamma increases, the 4 eigenvalues converge to 4 values that vary with
gamma: [(-gamma - constant), (-gamma - constant + difference), (gamma +
constant - difference), (gamma + constant)]. The term “constant” is a number
that is fixed and does not depend on gamma. The term “difference” is the
difference between the first and second eigenvalue, and the difference between
the third and fourth eigenvalue. This difference also converges to a fixed value
as gamma increases. In the formula used to compute the probabilities for each
each action, we can factor out gamma so that it disappears in the computation
of the probabilities – except for one term, which is a cross product interference
type of term. Gamma has a mutiplicative effect on this cross product term.
The cross product term is composed of sums of products of the values in the
eigenvectors. However as gamma increases, this cross product interference
terms approaches zero. Why?

As mentioned earlier, the eigenvalues come in pairs, plus - minus for one
value; plus - minus for another. The eigenvectors are determined from the
eigenvalues, and consequently, the two eigenvectors for a pair have four values
that are the same magnitudes, but they appear in permutted positions and only
change in sign.

As gamma increases, the eigenvalues all increase, but the value of the eigen-
value used for one pair becomes approximately the same as the value of the
eigenvalue used for another pair. Once again, the eigenvalues are used to de-
termined the eigenvectors. As gamma increases, all four eigenvectors converge
to have the same magnitudes, and they only differ in terms of the permuta-
tion of the values and the signs. In other words, all four eigenvectors can be
formed by permutting the the first one and changing signs of the first one. This
produces a very constrained set of eigenvectors. Recall that the cross product
term is formed by the sum of products of the values of the eigenvectors. The
constrained values of the eigenvectors satisfy precisely the property required to
force the cross product interference term to zero. The only effect of gamma is
produced by multiplying the cross product term, and so when this term goes to
zero, the effect of gamma disappears.
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