if(!require("lavaan")) install.packages("lavaan"); library(lavaan)
if(!require("MplusAutomation")) install.packages("MplusAutomation"); library(MplusAutomation)
if(!require("semTools")) install.packages("semTools"); library(semTools)
% Parameters
This 1is used to determine whether mplus is called or if only the input files created

Significance level
n # Number of teams
t. 1:n.teams # Team IDs
n.membs = 30L # Number of members within team assuming a balanced design
N = n.teams * n.membs # Total size of sample
n.perfs = 20L # Number of peformance tasks
perf.corrs = .60 # Correlation between performance tasks
td = expand.grid(team.id = t.id, mem.num = 1:n.membs) # team data structure

% Generate multivariate performance data

S = matrix(rep(perf.corrs, n.perfs**2), ncol = n.perfs) # Population covariance matrix for performance tasks

diag(S) =1 # Makes population correlation matrix

L = chol(S) # Cholesky decomposition to simulate multivariate data

nvars = dim(L)[1] # Number of performance tasks

r = t(L) %*% matrix(rnorm(nvars*N), nrow=nvars, ncol=N) # Creates multivariate data frame of performance tasks according to population correlation matrix

rownames(r) = paste@("perf.", l:nvars) # Names variables as performance tasks

pd = as.data.frame(t(r)) # Individual performance data structure

d = cbind(td, pd) # Combined data set with individuals randomly assigned to team
% Function to calculate intraclass correlations
calcICC = function(d){

% If multiple performance tasks

if(n.perfs > 1){

Ts = do.call(rbind, lapply(l:n.teams, function(x){ #

% Sums of Squares

d.team = d[which(d$team.id == x), grep("perf.", names(d))] # Get the performance tasks for each group
x.sums = colSums(d.team) # Calculate the sum of the scores for each group
return(x.sums)})) # Return within-team summed performance scores
Gs = colSums(Ts) # Grand sum of each of performance task
SSBs = colSums(Ts**2 / n.membs) - (Gs**2 / N) # Sums of squares between groups
SSWs = colSums(do.call(rbind, lapply(l:n.teams, function(y){ # ==== % Sums of squares within groups
d.team = d[which(d$team.id == y), grep("perf.", names(d))] # Get each team
ssw = colSums(d.team**2) - (colSums(d.team)**2 / n.membs) # Calculate normal sums of squares within group
return(ssw)}))) # Return sums of squares from within teach team
SSTs = colSums(d[, grep("perf.", names(d))]**2) - (Gs**2 / N)} # Total sums of squares
% If single performance task
else{
Ts = do.call(rbind, lapply(l:n.teams, function(x){ # = % Sums of Squares
d.team = d[which(d$team.id == x), grep("perf.", names(d))] # Get the performance tasks for each group
Xx.sums = sum(d.team) # Calculate the sum of the scores for each group
return(x.sums)})) # Return within-team summed performance scores
Gs = sum(Ts) # Grand sum of each of performance task
SSBs = sum(Ts**2 / n.membs) - (Gs**2 / N) # Sums of squares between groups
SSWs = sum(do.call(rbind, lapply(l:n.teams, function(y){ # % Sums of squares within groups
d.team = d[which(d$team.id == y), grep("perf.", names(d))] # Get each team
ssw = sum(d.team**2) - (sum(d.team)**2 / n.membs) # Calculate normal sums of squares within group
return(ssw)}))) # Return sums of squares from within teach team
SSTs = sum(d[, grep("perf.", names(d))]**2) - (Gs**2 / N)} # Total sums of squares
if(lall.equal(SSTs, SSBs + SSWs)) { # Confirm that between and within sums of squares sum to the total sums of squares
warning("Total sums of squares do not equal summed between- and within-group sums of squares. ")}
% Variance / Mean-Squared Error
df.t =N -1 # Total degrees of freedom
df.b = n.teams - 1 # Between-group degrees of freedom
df.w = N - n.teams # Within-group degrees of freedom
MSBs = SSBs / df.b # Mean-squared error between (i.e., between-group variance)
MSWs = SSWs / df.w # Mean-squared error within (i.e., within-group variance)
F.aov = MSBs / MSWs # F statistic for Analysis of Variance
% ICCs From Bliese (2000)
ICC.1 = (MSBs - MSWs) / (MSBs + (n.membs - 1) * MSWs) # ICC(1): expected correlation between any two random performance scores drawn from within the same team
ICC.2 = n.membs*(ICC.1) / (1 + (n.membs - 1)*ICC.1) # ICC(2): reliability of the observed group performande task mean
return(data. frame(t(rbind(ICC.1, ICC.2, F.aov))))} # Return matrix of results from above
% Get ICC and bias results
ICCs = calcICC(d) # Intraclass correlations for the performance items across groups
print(ICCs)
#: % Fit CFA on observed means for each group
team.dat = as.data.frame(do.call(rbind, lapply(1l:n.teams, function(x){ # Get team-level data
td = d[which(d$team.id == x), grep("perf", names(d))] # Get each team's data independently
ifelse(n.perfs > 1, return(colMeans(td)), return(mean(td)))}))) # Aggregates all performance tasks to team average
if(n.perfs == 1) names(team.dat) = c("perf") # Re-name dataset if only a single performance task
% Team-level model, 'C' = collective intelligence

team.mod = c("C =~ NA*perf.1 + ", paste@('perf.', 2:n.perfs, collapse="+'),"C ~~ 1*C ")

team.cfa.fit = lavaan::cfa(team.mod, team.dat) Team CFA fit on average member task performance

summary(team.cfa.fit, fit.measures=T) Summarize team CFA results

fit.pars = parameterEstimates(team.cfa.fit) Get parameter estimates table

C.load.pars = which(fit.pars$lhs %in% c("C") & fit.pars$op %in% c("=~")) Select the indices for the performance taks loadings on the 'C' factor
C.loads = fit.pars[C.load.pars, c("est")] Get estimates associated with the loadings

C.ps = fit.pars[C.load.pars, c("pvalue")]

err.vars.pars = which(fit.pars$lhs %in% c("C"))

err.vars = fit.pars[-err.vars.pars, c("est")]

Rxx.C = sum(C.loads)**2 / (sum(C.loads)**2 + sum(err.vars))
cat("'C' reliability = ", round(Rxx.C, 3))
reliability(team.cfa.fit)

*

3 3 3 3

Select indices for error variances
Get estimates for error variability
Reliability of team-level 'C' factor
Print team-level composite reliability
Uncomment to confirm reliability formula above, should equal the 'omega' estiamte
% Individual-level model, 'G' = general mental ability
ind.mod = c("G =~ NA*perf.1l + ", paste@('perf.', 2:n.perfs, collapse="+"),"G ~~ 1*G ")
ind.cfa.fit = lavaan::cfa(ind.mod, d) Individual CFA fit on raw member task performance
summary(ind.cfa.fit, fit.measures=T) Summarize individual-level CFA fit
fit.pars.ind = parameterEstimates(ind.cfa.fit) Get parameter estimates table
G.load.pars = which(fit.pars.ind$op %in% c("=~")) Select the indices for the performance taks loadings on the 'G' factor
G.loads = fit.pars.ind[G.load.pars, c("est")] Get estimates associated with the loadings
G.ps = fit.pars.ind[G.load.pars, c("pvalue")] Get estimates associated with the loadings
G.err.vars.pars = which(fit.pars.ind$lhs %in% c("G")) Select indices for error variances
G.err.vars = fit.pars.ind[-G.err.vars.pars, c("est")] Get estimates for error variability
Rxx.G = sum(G.loads)**2 / (sum(G.loads)**2 + sum(G.err.vars)) Reliability of individual-level 'G' factor
cat("'G" reliability = ", round(Rxx.G, 3)) Print indivdiual-level composite reliability
reliability(ind.cfa.fit) Uncomment to confirm reliability formula above, should equal the 'omega' estiamte
Print the team- and individual-level loadings with p-values smaller than the alpha specified above
cat("The significant lavaan team-level loadings are:\n"); with(fit.pars, fit.pars[which(lhs == c("C") & pvalue < alpha), 1)
cat("The significant lavaan individual-level loadings are:\n"); with(fit.pars.ind, fit.pars.ind[which(lhs == c("G") & pvalue < alpha), 1)

EE R

33 I I R W I I R W

*

% Run multilevel CFA in Mplus
ml.cfa.obj = mplusObject(VARIABLE = paste@("\n\tUSEVARIABLES = team_id\n", # Mplus USEVARIABLES command: team_id
paste@d("\t\t\tperf_", .perfs, collapse="\n"), Mplus USEVARIABLES command: performance tasks
";\n\tCLUSTER = team_id;\n"), Mplus CLUSTER command: team_id, identifies multilevel structure

**

**

ANALYSIS = paste@("\n\tTYPE = TWOLEVEL;\n", # Mplus TWOLEVEL command: specificies robust maximum likelihood estimation
"\tH1ITERATIONS = 5000;\n"), # Mplus HIITERATIONS command: default is 2000, might need more to converge, e.g., 5000
MODEL = paste@("\n\t¥WITHIN%¥\n\n", # Mplus ¥WITHIN% command: specifies the within-team performance factor
"\t\tG BY \t*perf_1\n", # *perf_1 frees first loading to be estimated

*

paste@("\t\t\tperf_", 2:n.perfs, collapse="\n"), Performance tasks 2 through the number of tasks
"SNM\E\tG@L. 05 \n\n", Standardizes within loadings by fixing the G factor variance to be 1.0
"\N\t%BETWEEN%¥\n\n", Mplus %BETWEEN% command: specifies the between-team performance factor
"\t\tC BY \t*perf_1\n", # *perf_1 frees first loading to be estimated
paste@("\t\t\tperf_", 2:n.perfs, collapse="\n"), # Performance tasks 2 through the number of tasks
";\n\t\tCe1.0;"), # Standardizes between loadings by fixing the C factor variance to be 1.0
OUTPUT = c("RESIDUAL"), # Get the model implied covariance matrix to calculate average variance extracted
rdata=d, # Use the data simulated above to run Mplus analyses
usevariables=names(d))
res = mplusModeler(ml.cfa.obj,
dataout=paste@("d_T", n.teams, "_I", n.membs, ".dat"),
modelout=paste@("ml_cfa_T", n.teams, "_I", n.membs, ".inp"),
run=as.integer(mplus))
out = readModels(paste@("ml_cfa_T", n.teams,
pars = out$parameters$unstandardized
win.sigma = out$residuals$WITHINScovarianceEst
btn.sigma = out$residuals$BETWEEN$covarianceEst

* 3

Fit the multilevel CFA in Mplus, creates MPlus input file ml_cfa.inp with full syntax
_T123, e.g., indicates team-level sample size; _I12 indicates number of team members
_T123, e.g., indicates team-level sample size; _I12 indicates number of team members
If mplus = TRUE above, sruns in Mplus; if mplus = FALSE only creates input files

, n.membs, ".out")) # Read in Mplus output file
#
#
#
%

Get parameter estimates from Mplus fit to calculate reliability
Model-implied covariance matrix for ¥WITHIN% level
Model-implied covariance matrix for ¥BETWEEN% level

#: % Two-level CFA Results % = Uses equations found in Geldhoff et al. (2013)
#: SWITHIN%
win.loads = with(pars, pars[which(paramHeader == c("G.BY") & BetweenWithin == c("Within")), 1) # Get within-team loadings
win.sigma.var = diag(win.sigma) # Get within-team item variances
win.sigma.covs = win.sigma[lower.tri(win.sigma, diag=FALSE)] # Get within-team item covariances
win.alpha = (n.perfs**2*mean(win.sigma.covs)) / (sum(2*win.sigma.covs) + sum(win.sigma.var)) # Calculate within team coefficient alpha
win.ave = sum(win.loads[, c("est")]**2) / sum(win.sigma.var) # Calculate within average variance extracted
win.evars = with(pars, pars[which(paramHeader == c("Residual.Variances") & BetweenWithin == c("Within")), 1) # Get item residual variances for %WITHIN%
win.omega = sum(win.loads[, c("est")])**2 / (sum(win.loads[, c("est")])**2 + sum(win.evars[, c("est")])) # Calculate within-team latent composite reliability

#= % Print Results for Within-level Model
cat("The significant Mplus loadings for the within-level are:\n");with(win.loads, win.loads[which(pval < alpha), 1) # Print significant within-team loadings

cat("The Average Variance Extracted for the within-level is: ", win.ave) # Print individual-level composite reliability

cat("The latent composite reliability for the within-level is: ", win.omega) # Print individual-level composite reliability

cat("The coefficient alpha for the within-level is: ", win.alpha) # Print individual-level composite reliability
%BETWEEN%

btn.loads = with(pars, pars[which(paramHeader == c("C.BY") & BetweenWithin == c("Between")), 1) # Get between-team loadings

btn.sigma.var = diag(btn.sigma) # Get between-team item variances

btn.sigma.covs = btn.sigma[lower.tri(btn.sigma, diag=FALSE)] # Get between-team item covariances

btn.alpha = (n.perfs**2*mean(btn.sigma.covs)) / (sum(2*btn.sigma.covs) + sum(btn.sigma.var)) # Calculate between-team coefficient alpha

btn.ave = sum(btn.loads[, c("est")]**2) / sum(btn.sigma.var) # Calculate between average variance extracted

btn.evars = with(pars, pars[which(paramHeader == c("Residual.Variances") & BetweenWithin == c("Between")),]) # Get item residual variances for %BETWEEN%

btn.omega = sum(btn.loads[, c("est")])**2 / (sum(btn.loads[, c("est")])**2 + sum(btn.evars[, c("est")])) # Calculate between-team latent composite reliability

#=: % Print Results for Between-Level Model

cat("The significant Mplus team-level loadings are:\n");with(btn.loads, btn.loads[which(pval < alpha), 1) # Print significant team-level loadings

cat("The Average Variance Extracted for the between-level is: ", btn.ave) # Print team-level composite reliability

cat("The latent composite reliability for the between-level is: ", btn.omega) # Print team-level composite reliability

cat("The coefficient alpha for the begween-level is: ", btn.alpha) Print individual-level composite reliability

Save all objects above using unique name based on n.teams/n.membs combination

*

save(d, # Individual-level data
team.dat, # Aggregated team-level data
team.cfa.fit, # CFA fit on aggregated team-level data
ind.cfa.fit, # CFA fit on individual-level data
ml.cfa.obj, # Mplus object specifying the multilevel CFA
res, # Mplus results
pars, # Parameter estimates from Mplus
win.loads, # Within-team loadings

win.sigma.var, # Within-team implied item variances

win.evars, # Within-team item residual variances
win.ave, # Within-team average variance extracted
win.omega, # Within-team latent composite reliability
win.alpha, # Within-team coefficient alpha

btn.loads, # Between-team loadings

btn.sigma.var, # Between-team implied item variances

btn.evars, # Between-team item residual variances
btn.omega, # Between-team latent composite reliaiblity
btn.alpha, # Between-team coefficient alpha

btn.ave, # Between-team average variance extracted

file=paste@("ML_Spurious_CFA_T", n.teams, "_I", n.membs, ".RData")) # Saves all data files and results from above

